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_omputing Paradigm Shift

Cloud Challenges
e Cost-effectiveness, Performance and Security

? . [
User Termlrml |

— Mainframa
f" _ . , Mainframe
e ‘- - = User B —
b >,
- ____.,-'

) y - Qoud computing
Cleud compautin

tv

User L“E - Grid computing




_loud Computing Challenges

Q: How important is it that cloud service providers...
(scale: 1-5; 1=not at all important, 5=very important)

Offer competitive pricing
Qffer Service Level Agreements
Provice a complete solution
Understand my business and industry
Allow managing on-premise & off-premise..
Support manay of my IT needs

Offer both private & public clouds

Are atechnology & business model..

Have local presence, can come to my..

Source: IDC Enterprise Panel, 3Q2009, n = 263
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Cloud Computing Challenges

Q: Rate the challenges/issues of the 'cloud'/on-demand model

(1=not significant, 5=very significant)

5%

Security

Performance 1%

Availability | . %

Hard to integrate Wit N .5

in-house IT|

Not enough 2By o N <

customize

Worried cloud will | =1 15

cost more |

Bringing back in-house | - 55

may be difficult

Not enough major 34.6%
o o I .
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Source: IDC Enterprise
Panel, 2010
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Data Growth

Worldwide Corporate Data Growth
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31g Data processing in a Cloud

e MapReduce and Big Data Processing

. Plrogramming model for data-intensive computing on commodity
clusters

e Pioneered by Google
e Processes 20 PB of data per day

e Scalability to large data volumes
— Scan 100 TB on 1 node @ 50 MB/s = 24 days
— Scan on 1000-node cluster = 35 minutes

— It is estimated that, by 2015, more than half the world's data will be
processed by Hadoop — Hortonworks

e Existing Dedicated MapReduce Clouds

e Natural extensions of rental store models
e Performance and cost-inefficiency



outline

e Goals:
» Cost-effective and scalable Big Data Processing using MapReduce
* Privacy conscious Data access and Data processing in a cloud

e Qutline

* Cost-aware Resource Management

* Goal: to devise resource management techniques that yield the required
performance at the lowest cost.

e Cura - Cost-optimized Model for MapReduce in a Cloud

e Performance-driven Resource Optimization:

* Goal: Optimizations based on physical resource limits in a data center such as
networking and storage bottlenecks

e Purlieus — Locality aware Resource Allocation for MapReduce

e Privacy-conscious MapReduce Systems
* VNCache — MapReduce analysis for Cloud-archived data
e Airavat: Security and Privacy for MapReduce



MapReduce - Data Parallelism

X :=(a*b) + (y * 2);
— \

computation A computation B

* At the micro level, independent algebraic operations
can commute — be processed in any order.

e [f commutative operations are applied to different
memory addresses, then they can also occur at the
same time

 Compilers, CPUs often do so automatically



Higher-level Parallelism

X = Too(a) + bar(b)
7' \
computation A computation B

e Commutativity can apply to larger operations. If foo()
and bar() do not manipulate the same memory, then
there is no reason why these cannot occur at the same
time



Parallelism: Dependency Graphs

X = Too(a) + bar(b)
foo(a) bar(b)
write x

m Arrows indicate dependent operations

m |f foo and bar do not access the same memory, there is not
a dependency between them

m These operations can occur in parallel in different threads
m write x operation waits for predecessors to complete



Master/\Workers

* One object called the
master initially owns all
data.

e Creates several workers to
process individual
elements

* Waits for workers to
report results back

worker threads

'S

master




Example: Count word occurrences of each
word in a large collection of documents

map(String 1nput _key, String 1nput value):
// 1nput_key: document name
// input value: document contents
for each word w 1n 1nput value:
Emitintermediate(w, '1');

reduce(String output_key, lterator
intermediate_values):

// output _key: a word
// output values: a list of counts
int result = 0;
for each v 1In Intermediate values:
result += Parselnt(v);
Emit(AsString(result));



ViapReduce Execution Overview
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Need for Cost-optimized Cloud Usage
Model

Existing Per-job Optimized Models:
»  Per-job customer-side greedy optimization may not be globally optimal

»  Higher cost for customers

Cura Usage Model:

User submits job and specifies the required service quality in terms of job response time and
is charged only for that service quality

Cloud provider manages the resources to ensure each job’s service requirements

Other Cloud Managed Resource models:

Database as a Service Model
Eg: Relational Cloud (CIDR 2011)
Cloud managed model for Resource management

Google bigquery

Cloud managed SQL like query service
Delayed query model in Google Big Query execution results in 40% lower cost



User Scheduling Vs Cloud
Scheduling

Job# Atri:‘VZI Deadline Running time O':;ifn:,?\l,,zo'
1 20 40 20 20
2 25 50 20 20
3 30 75 20 20
4 35 85 20 20
User Scheduling
Job # 1 2 3 4
Start time | 20 55 30 T 80 concurrent VMs

Cloud Scheduling

Job # 1 2 3 4
Start time 20 25 40 45

40 concurrent VMs




_ura System Architecture




Static Virtual Machine sets
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Irtual Machine sets
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ey Challenges in Cura Design

Resource Provisioning and Scheduling
e Optimal scheduling
e Optimal Cluster Configuration
e Optimal Hadoop Configuration

Virtual Machine Management
e Optimal capacity planning
e Right set of VMs(VM types) for current workload?
 Minimize Capital expenditure and Operational expenses

Resource Pricing
 What is the price of each job based on its service quality and job characteristics?



/M-aware Job Scheduling
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. Sﬁhedgler needs to decide on which instance type to use for
the jobs

 The job scheduler has two major goals:
e (i) complete all job execution within the deadlines
 (ii) minimize operating expense by minimizing resource usage



/M-aware Scheduling Algorithm

e Goal:

 VM-aware scheduler decides (a) when to schedule each job in the job
queue, (b) which VM instance pool to use and (c) how many VMs to
use for the jobs.

e Minimum reservations without under-utilizing any resources.
* Job J;has higher priority over Job J; if the cost of scheduling J; is

highér.
e For each VM pool picks the highest priority job, J
gueue and makes a reservation.

e Subsequently, the scheduler picks the next highest priority jobs
in the job queue by considerinﬁ priority only with respect to
the reservations that are possible within the current
reservation time windows of the VM pools.

e Runsin O(n?) time

e Straight forward to obtain a distributed implementation to
scale further

in the job

prior



Reconfiguration-aware Scheduler

Assume two new jobs need a
cluster of 9 small instances and 4
large instances respectively.

The scheduler has the following

options:

1) Wait for some other clusters of
small instances to complete
execution

2) Runthejobin a cluster
available of extra large
instances

3) Convert some large or extra
large instances into multiple
small instances

Poal of extra
large
instances

Poal of Large

instances
Paal of small

Reconfiguration-unaware Scheduler

Pool of exira Poal of Largs
large instances

Reconfiguration-aware Scheduler



Reconfiguration Algorithm

e Reconfiguration time window- Observation period for collecting
history of job executions.

* For each job, J, the optimal cost C,,,(J)) that incurs the lowest
resource usage is found.

 The reconfiguration plan reflects the proportion of demands for the
optimal instance types.

e Reconfiguration Benefit:

4 )

Overaucostobsewed = Z Cost(]i‘ ck,‘n) % Zik,‘n
Lkn

Overallcostostimate = Z Cost(Ji) Cope (1))
i

Reconfpenefic = Overallcostestimare — Overallcostgerya

N /




Number of servers and Effective
Jtilization

Dedicated Cluster m Per-job Cluster m Cura Dedicated Cluster m Per-job Cluster m Cura
12000 0.8
10000 15
g 8000 A
@ 6000 504
5 ¢
o 4000 =
2 _&’_, 0.2
2000 &
0 0
200 400 600 800 1000 200 400 600 800 1000
Deadline Deadline
Fig 1. No. of Servers Fig 2. Effective Utilization

. Curg rlequires 80% lower resources than conventional cloud
models

e Cura achieves significantly higher resource utilization



[alk Outline

e Cost-optimized Cloud Resource Allocation
e Cura — Cost-optimized Model for MapReduce in a Cloud

* Performance-driven Resource Optimization
e Purlieus — Locality aware Resource Allocation for MapReduce

* Privacy-conscious Processing of Cloud Data
e VNCache: Efficient MapReduce Analysis for Cloud-archived Data
e Airavat: Security and Privacy for MapReduce



ViapReduce cloud provider - Challenges

e Different loads on the shared physical infrastructure
e Computation load: number and size of each VM (CPU, memory)
e Storage load: amount of input, output and intermediate data

* Network load: traffic generated during the map, shuffle and reduce
phases

 The network load is of special concern with MapReduce
e Large amounts of traffic can be generated in the shuffle phase

e As each reduce task needs to read the output of all map tasks, a
sudden explosion of network traffic can significantly deteriorate cloud
performance



—Xisting Dedicatgd MapReduce Clouds

LQ LJ /J

Crr)

Infrastructure

Computer [nfrastructure

Amazon Elastic MapReduce Model

e Utilize a hosted Hadoop framework running on the Compute Cloud (e.g.: Amazon EC2)
and use a separate storage service (e.g.: Amazon S3)

e Drawbacks
e Adversely impacts performance as it violates data locality
e Unnecessary replication leading to higher costs

* Processing 100 TB of data using 100 VMs takes 3 hours just to load the data



urlieus: Storage Architecture

e Semi-persistent storage architecture

e Data is broken up into chunks corresponding to
MapReduce blocks

- stored on a distributed file system of the physical
machines

* Ability to transition data stored on physical
machines in a seamless manner

e j.e. without requiring an explicit data-loading step

e The data on physical machines is seamlessly made
available to VMs

e Uses loopback mounts and VM disk-attach



Purlieus Architecture and Locality-optimization Goals
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Job Specific Locality-awareness

* Job-specific locality cost

-~

.

Cost(A,Di) = MCost(A,Di) + RCost(A, Di)
Mcost(A, Di)
= Z size(Bi ;) X dist(Snode (B,‘ j),Cnode (B,‘ i)

Rcostt?jff,%i)

dist( Snode (B, ;), Cnode (rtask;)) X m,,. (A, (B; ), (rtask,))
i<j<QLI<I<L(A) '

~

/

e Job categories

e Map and Reduce input-heavy
Sort workload : map-input size = map-output size
* Map input-heavy
Grep workload: large map-input and small map-output
* Reduce input-heavy
Synthetic Dataset Generators: small map-input and large map-output

30



Viap and Reduce input-heavy jobs

e Example: sorting a huge data set (output size = input size)
 Both map and reduce localities are important.

e Map phase:

e Incorporates map locality by pushing compute towards data

e Reduce phase:

 Make communications happen within a set of closely connected
nodes
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—Xperimental Setup

e Cluster Setup

e Testbed of 20 CentOS 5.5 physical machines (KVM as the hypervisor)
e Each physical machine has 16 core 2.53 GHz Intel Processors.

e The network is 1 Gbps.

* Nodes are organized in 2 racks, each containing 10 physical machines

Job types:
Workload Type Job Input data Output data
Map-input heavy Grep: word Search 20GB 2.43 MB
Permutation
Red -i th 2 GB 20GB
Sy Generator
Map and Reduce-input heavy Sort 10 GB 10 GB

By default, each job uses 20 VMs with each VM configured with 4 GB memory and 4

2GHz vCPUs.




mpact of Reduce-locality

Running tasks

Running tasks

Timeline plotted using Hadoop job _history summary

With only Map-locality

100 ® Map
80 = Shuffle
60
20 |l Reduce
20
0
O T 00N O O T O N OO SO N OO <~
N < NO AN < OO0 A < OO0 A mMm O 0 O
T 1 N AN NN OO NN <
Time (sec)
With both Map and Reduce-locality
120
100 B Map
80 - m Shuffle
60 - Reduce
40 -
20
0
O T 0N OO < OO N OO SN OO I ®©
NS NO AN OO dAd << O dHmMm W o0 O
T AN AN AN AN OO NN <

Time (sec)

35



Viap and Reduce-input heavy workload

M Locality-aware Data Placement m Random Data Placement M Locality-aware Data Placement m Random Data Placement
1600 o 1
1400 £ g-z
5 0.
g 1200 % 07
= 1000 206
c "
2 800 g 0.5
5 G 04
g °09 2 03
o 0.
400 = 02 -
200 g 0.1 -
0 - 2 0
Map Locality Reduce Map and No Locality Map Locality = Reduce Map and  No Locality
Locality Reduce Locality Reduce
Locality Locality
VM Placement VM Placement
Fig 3. Execution time Fig 4. Cross-rack traffic

Performance depends on both Map and Reduce locality !

Locality depends not only on compute placement but also on data placement



[alk Outline

e Cost-optimized Cloud Resource Allocation
e Cura — Cost-optimized Model for MapReduce in a Cloud

e Performance-driven Resource Optimization
e Purlieus — Locality aware Resource Allocation for MapReduce

e Privacy-conscious Processing of Cloud Data
* VNCache: Efficient MapReduce Analysis for Cloud-archived Data
e Airavat: Security and Privacy for MapReduce



ViapReduce Analysis for Cloud-archived
Jata

e Compute Cloud and Storage Cloud
can not be collocated always

e E.g. When there is a privacy/security
concern

e Example use case: private log data
archived in Clouds

* Logs can contain sensitive information

e require data to be encrypted before
moved to the cloud.

e Current solutions

* require the data to be transferred and
processed in a secure enterprise
cluster.



_urrent analytics solutions for Cloud-
archived Data

 MapReduce analysis for Cloud-archived data

« Current analytics platforms at secure enterprise site(e.g.
Hadoop/MapReduce)

 first download data from these public clouds
o decrypt it and then process it at the secure enterprise site

/-/'\ N e \\
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e 7 g > ~
Fﬁ }S ;s’ \
Q %[jJ 7 | () | \
PP - TCP/IP N J
= sfY & ~_ -7
N AN AN i
\“\\ s ‘%B/ Remote Storage
Cloud
Secure Enterprise Site

Data needs to be loaded before the jobs can even start processing
Duplicates data at both enterprise site and Storage clouds.



_urrent analytics solutions for Cloud-
archived Data
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* Wan copy time, decrypt time and HDFS load time are predominant factors of job

execution time
e Actual job execution is significantly slowed down because of this overhead



/NCache: Seamless Data Caching
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* VNCache —Key idea
e to use a virtual HDFS Filesystem image that provides virtual input data files on
the target cluster.
e to provide a virtual existence of the Hadoop datablocks to the HDFS
* enables jobs to begin execution immediately

* For HDFS filesystem running on top of the VNCache
* All data appears to be local though initially the data is at the storage cloud



/NCache: Data flow
/

¥ i
[ Hadoop Distributed File System
Disk Cache J«

VNCache Filesystem
virtual HDFS | [On-demand| [ Cache

L Manager btreamingJ Manager J
Secure Enterprise Cluster -

Archiving
process

J

Hadoop job Hadoop job

Create chunks of
HDFS block size

l

Encrypt

A 4

Public Storage Cloud

e Data is archived at the public storage cloud as chunks of HDFS block size

e For job analysis, VNCache seamlessly streams and prefetches data from
the storage cloud



overview of HDFS

HDFS Architecture

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Namenode

Metadata ops

Re!d Datanodes Datanodes
] | ‘
OB - — Replication a B %D
O = Ju Blocks
\ S
Rack 1 VWrite Rack 2

(Gtent;

 HDFS - primary storage by Hadoop applications
e The HDFS Namenode

* manages the file system namespace and regulates access to files by clients

e The individual Datanodes
* Manage the storage attached to the nodes that they run on.



nteraction of HDFS with its underlying
-llesystem

Namenode at the master node
e stores the HDFS filesystem, fsimage

HDFS filesystem namespace
 includes the mapping of HDFS files to their constituent blocks
e Block identifiers
 Modification and Access times

Datanode
e stores a set of HDFS blocks
e uses separate files in the underlying filesystem
e both metadata and actual blocks



HDFS Filesystem Image layout

N

Image Version | NAMESPACE_ID | Numlnodes | GENERATION_STAMP NuminodesUC
Inode 1 Inode n InodeUC1 InodeUC n
(Integer) (Integer) (Integer) (Long) (Integer)
[/
|
inode_path | Repiication | iviodification_time | Access_time | Biock_size | numBiocks | N5_Quota | D5_Quota | USER_NAME | GROUP_NAME Blockl | *** | Blockn
( (String) (Short) (Long) (Long) (Long) (Integer) (Long) (Long) (String) (String)
BLOCKID | NUM_BYTES | GENERATION_STAMP
(Long) (Long) (Long)

e Consists of an Inode structure for each HDFS file

Each Inode has the information for the individual data blocks corresponding to the

file



HDFS Virtualization

VNCache Filesystem

e FUSE based filesystem used as the underlying filesystem on the Namenode and
Datanode.

e |tis avirtual filesystem (similar to /proc on Linux)
e simulates various files and directories to the HDFS layer placed on it

' Namenode Filesystem (fsimage) virtualization
e avirtual HDFS namespace is created with a list of relevant HDFS blocks

 Datanode virtualization

e exposes a list of data files corresponding to the HDFS blocks placed on that
datanode



/NCache’s Dataflow

HDFSfile | "
[ request [ VNCache]
“ User

space , <}:>

HDFS [ libfuse |

TCP/IP

FUSE

Kernel Public Storage
VFS Cloud
space

ext2

Virtual Machine at Secure
Enterprise Site

Dataflow in the VNCache model

Two models of operation: Streaming and Prefetching
e Seamless Streaming:

e For data block accesses on demand, the VNCache Filesystem streams the data
seamlessly from the storage cloud.

e Cache Prefetching:

Cache-prefetching obtains the block ahead of processing and significantly reduces
job execution time.



_ache Prefetching
e Cache Prefetching Logic

* Analyzes job input data and prefetches data blocks
e Carefully considers the order of task processing in the input data

e Prefetching order

* task ordering based on decreasing order of file sizes in the job
input
* based on the order of blocks in the HDFS file system image.

 Distributed Cache Prefetching algorithm

e Master Prefetcher

* Makes prefetching decisions and delegates prefetch tasks to slave
prefetchers

e Slave Prefetchers
e transfer the individual data blocks from the remote cloud



_aching Algorithm

Rate-adaptiveness

* monitors the progress of the Hadoop jobs in terms of task processing rate and the HDFS bloc
request rate

* adaptively decides the set of data blocks to prefetch

Cache Eviction Policy
* enforces minimal caching principle.
e Keeps only the most immediately required blocks in the cache
* minimizes the total storage footprint

Workflow-awareness
* Workflows may have multiple jobs processing the same input dataset
* VNCache recognizes it and prefetches those blocks only once
e uses a persistent workflow-aware caching



—Xperimental Setup

e Cluster Setup

e Testbed of 20 CentOS 5.5 physical machines (KVM as the
hypervisor)

e Each physical machine has 16 core 2.53 GHz Intel Processors.
* 5 nodes used as remote Storage cloud servers

e [Individual job Workloads:

e Grep, Sort, Facebook jobs using Swim workload generator

e Workflow-based Workloads:
e Facebook workflows, Tfidf

e Dataset sizes:
e 5GB,10GBand 15 GB

e Network Latencies:
e 45 ms, 90 ms, and 150 ms

e By default, each job uses 5 VMs with each VM
configured with 4 GB memory and 3.5GHz vCPUs.



2erformance of Grep workload

M Fullecopy + Decrypt Model
VNCache: Streaming
B VNCache: Streaming + Prefetching

Ay

Network Latency (msec)

1600

5

= =
[ = %

o

Execution time (sec)
8888

o 88

45

Fig 5. Execution time
VNCache:Streaming model achieves 42% reduction in execution time

VNCache Prefetch optimization further improves it by 30%



Yerformance of Facebook workload

M Full Copy + Decrypt Model B VVNCache: Streaming + Prefetching
WMCache: Streaming 80.0%

B VMNCache: Streaming + Prefetching

70.0%
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Workload Workload
Fig 6. Execution time Fig 7. Cache Hit Ratio

VINCache gets more than 55% reduction in job execution time

Achieves an average cache hit ratio of 43.5%



[fidf workflow

B Fullcopy + Decrypt Model
WNCache: Streaming
B VYNCache: Streaming + Prefetching

B VYNCache: Streaming + Prefetching

2500.0
< 2000.0
3
£ 1500.0 -
-
2 1000.0 -
=
9
& 500.0

0.0 -

45 90 150
Network Latency (msec) 45 30 150
Network Latency (msec}
Fig 9. Execution time Fig 10. Cache Hit Ratio

VNCache reduces the execution time by 47% and results in 70% cache hits on
average



mpact of Cache size — Grep Workload
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Fig 16. Cache Hit Ratio

Even with a reasonable cache size, VNCache achieves good performance



[alk Outline

e Cost-optimized Cloud Resource Allocation
e Cura — Cost-optimized Model for MapReduce in a Cloud

e Performance-driven Resource Optimization
e Purlieus — Locality aware Resource Allocation for MapReduce

* Privacy-conscious Processing of Cloud Data
e VNCache: Efficient MapReduce Analysis for Cloud-archived Data

e Airavat: Security and Privacy for MapReduce
e (slides adapted from Indrajit Roy et. al, NSDI 2010 paper)



_omputing In the year 201X

By
Kg Po
dmazZon Windows Azure o
webservices™ GO* 13[ x

w
o

o

b

dlllusion of infinite resources
Data

dPay only for resources used

JQuickly scale up or scale down ...

Indrajit Roy et. al, NSDI 2010



>rogramming model in year 201X

Frameworks available to ease cloud programming

MapReduce: Parallel processing on clusters of machines

% - Output
< e
!
"’, i o . .
—= Data mining
e Genomic
Data

computation
* Social networks

Indrajit Roy et. al, NSDI 2010



>rogramming model in year 201X

Thousands of users upload their data
e Healthcare, shopping transactions, census, click stream

Multiple third parties mine the data for better service

Example: Healthcare data

Incentive to contribute: Cheaper insurance policies, new drug
research, inventory control in drugstores...

Fear: What if someone targets my personal data?
* Insurance company can find my illness and increase premium



2rivacy In the year 201X ?

Informatio
= N leak?

Untrusted MapReduce

il

e Data mining

* Genomic
computation

e Social networks

Health Data

Indrajit Roy et. al, NSDI 2010



Jse de-identification?

Achieves ‘privacy’ by syntactic transformations
e Scrubbing , k-anonymity ...

Insecure against attackers with external information
e Privacy fiascoes: AOL search logs, Netflix dataset

Run untrusted code on the original
data?

How do we ensure privacy of the
IndrajitlB4|>$eeamSSBI 2010




[his talk: Airavat

Framework for privacy-preserving MapReduce computations with
untrusted code.

Untruste g
d o "

Protected

Data db

WK

Airavat

Airavat is the elephantrof the clouds (Indian mythology).



Alravat guarantee

Bounded information leak* about any individual data after performing
a MapReduce computation.

Untruste
d

Protected

Data db

WK

Airavat

*Differential privacy

Indrajit Roy et. al, NSDI 2010



3ackground: MapReduce

3 Data |

map(k,,v,) =2 list(k,,v,)
reduce(k,, list(v,)) =2 list(v,)

a Data 2
4 Data 3

'3 Data 4

A
~—

& N
/7[_’,‘\

N

—

~ |
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Map phase

7
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MlapReduce example

Map(input)=2>{ if (input has iPad) print (iPad, I) }
Reduce(key, list(v))=2>{ print (key + *“,’+ SUM(v)) }

N

o -
3 Pad o7 i~
-
" Tablet PC | 5 t‘
§,  iPad '
\\
2 Laptop l 5 |
| \. V.

A

Map phase

L

—> (iPad, 2)

v

Reduce phase



Alravat model

e Airavat framework runs on the cloud infrastructure

* Cloud infrastructure: Hardware + VM
e Airavat: Modified MapReduce + DFS + JVM + SELinux

g ¢ ¢ ¢

1) Airavat framework

Trusted
Clotid trfrastrticture



Alravat model

e Data provider uploads her data on Airavat
e Sets up certain privacy parameters

0 4

Data provider

¢ ¢ ¢ d

1 Airavat framework

T

Trusted
Clotid trfrastrticture



Alravat model

e Computation provider writes data mining algorithm
e Untrusted, possibly malicious

Computation
(2 gk provider

Data provider Program . £ ©

Output

1 Airavat framework

T

Trusted
Clotid trfrastrticture



[hreat model

e Airavat runs the computation, and still protects the
privacy of the data providers

Threat
W

Computation
provider

o H

Data provider

Program

1 Airavat framework

T

Trusted
Clotid trfrastrticture



R0admap

What is the programming model?
How do we enforce privacy?

What computations can be supported in Airavat?



’rogramming mode|

Split MapReduce into untrusted mapper + trusted reducer
\ /
f

Limited set of stock

. reducers

Untrusted

MapRed |
pReduce ‘ Mapper Trusted

program for / Reduce

data mining r

No need to audit Airavat

Data

53993 ..... 23334



’rogramming mode|

Need to confine the mappers !

Guarantee: Protect the privacy of data providers

w

Untrusted

MapReduce | Trusted
P ‘ Mapper
program for / Reduce
data mining T
No need to audit INIEVE]

Data

513499 ..... 39494



_hallenge 1: Untrusted mapper

Untrusted mapper code copies data, sends it over the network

—

Pertger Ll
— /T g —
'l‘.'a.mf"m\
" - \ .
- 3 X
Chris 1 > '|‘ “ 'J-‘
Map Reduce
| S
Meg 1 Leaks using system
<

resources
Data Indrajit Roy et. al, NSDI 2010



_hallenge 2: Untrusted mapper

Output of the computation is also an information channel

Peter [ |
S
/ﬁ A
¢
: - \R_
Chri h_!‘! > "‘ =
ris - - =
- 1 'h + Output | million if
Mép Reduce Peter boughtVi*gra
| e g
Meg 1
__

Data Indrajit Roy et. al, NSDI 2010



Alravat mechanisms

Mandatory access control  Hjis Differential privacy

| )

( | [ \
Prevent leaks through Prevent leaks through
storage channels like network the output of the
connections, files... computation

\“““-HH:B |
'._-
4 I

. Reduce,

Output




3ack to the roadmap

What is the programming model?

Untrusted mapper + Trusted reducer

How do we enforce privacy?
e Leaks through system resources
e Leaks through the output

What computations can be supported in Airavat?

Indrajit Roy et. al, NSDI 2010



Alravat confines the untrusted code

Untrusted Given by the
program computation provider

MapReduce | _____  Add mandatory

+ DFS access control (MAC)
—

SELinux m—)  Add MAC policy

Indrajit Roy et. al, NSDI 2010



Alravat confines the untrusted code

— * We add mandatory access control to

the MapReduce framework
Untrusted : : :
 Label input, intermediate values,
program
output
MapReduce e Malicious code cannot leak labeled
+ DFS —_— data
. 4 R
SELinux ] Data | > { I
j Data2 ——> '.I.‘ ——> Output ‘
|:| Data 3 \\ 'l‘
,_
— Indrajil%loyAe\E%?ﬁ\?SDl 2010 Ma pRed uce

control label



Alravat confines the untrusted code

— ¢ SELinux policy to enforce MAC

Untrusted o Creatgs trusted and untrusted
orogram domains
e Processes and files are labeled to
MapReduce restrict interaction
"o  Mappers reside in untrusted
domain
SELinux —  Denied network access, limited file
system interaction

Indrajit Roy et. al, NSDI 2010



3ut access control Is not enough

e Labels can prevent the output from been read
* When can we remove the labels?

if (input belongs-to Peter)

print (iPad, 1000000) Output leaks the
Peter presence of Peter !
! ~
0'3 I iPad _— mn
@ ITabletPc — ——> | (iPad, 1000002)
G U ipad ~
'? l Laptop ~ V.

— Access
Map phagei v Reeuce phase control label



3ut access control Is not enough

Need mechanisms to enforce that the output does not violate an
individual’s privacy.



3ackground: Differential privacy

A mechanism is if every output is
produced with similar probability whether any given
input is included or not

Cynthia Dwork. Differenticl, Reivacy. ICALP 2006



Differential privacy (intuition)

A mechanism is differentially private if every output is
produced with similar probability whether any given
input is included or not

T
a “--. Output distribution
3 ONEN
2 A

Cynthia Dwork. Differential Rrivacy. ICALP 2006



Differential privacy (intuition)

A mechanism is differentially private if every output is
produced with similar probability whether any given
input is included or not

§ E=== Similar output distributions n--. a

: I L prac = E

Bounded risk for D if she includes her data!

Cynthia Dwork. Differential Rrivacy. ICALP 2006



Achieving differential privacy

A simple differentially private mechanism

. ; - Tell me f(x) N

B f(x)+noise #
How much noise should one add?

Indrajit Roy et. al, NSDI 2010




Achieving differential privacy

Function sensitivity (intuition): Maximum effect of any single input or
the output

e Aim: Need to conceal this effect to preserve privacy

Example: Computing the of the people in this room
has low sensitivity

e Any single person’s height does not affect the final average by too much
e Calculating the has high sensitivity



Achieving differential privacy

Function sensitivity (intuition): Maximum effect of any single input or
the output

e Aim: Need to conceal this effect to preserve privacy

Example: SUM over input elements drawn from [0, M]

——p Sensitivity = M

Max. effect of any input element is M

BEES

Indrajit Roy et. al, NSDI 2010



Achieving differential privacy

A simple differentially private mechanism

« Tell me f(x) [N

B f()+Lap(A(f)) #

Intuition: Noise needed to mask the effect of a single input

A(f) = sensitivity Indrajit Roy et. al, NSDI 2010 Lap = Laplace distribution



3ack to the roadmap

What is the programming model?

Untrusted mapper + Trusted reducer

How do we enforce privacy?

e Leaks through system resources MAC

e Leaks through the output

What computations can be supported in Airavat?

Indrajit Roy et. al, NSDI 2010



Enforcing differential privacy

 Mapper can be any piece of Java code (“black box”)
but...

 Range of mapper outputs must be declared in advance

e Used to estimate “sensitivity” (how much does a single input
influence the output?)

 Determines how much noise is added to outputs to ensure
differential privacy

 Example: Consider mapper range [0, M]
e SUM has the estimated sensitivity of VI



—nforcing differential privacy

Malicious mappers may output values outside the range

If a mapper produces a value outside the range, it is replaced by a value
inside the range

e User not notified... otherwise possible information leak

Range Ensures that code is not
- [ enforcer more sensitive than
% Data | Mapper ~ declared
d Data?2
> Reducer %‘f
., Data3 Mapper _~

Data 4 [ Range 1 < N >
enforcer




Nhat can we compute?

* Reducers are responsible for enforcing privacy

e Add an appropriate amount of random noise to the
outputs

e Reducers must be trusted
e Sample reducers: SUM, COUNT, THRESHOLD

e Sufficient to perform data mining algorithms, search log
processing, recommender system etc.

e With trusted mappers, more general computations
are possible

e Use exact sensitivity instead of range based estimates



sample computations

* Many queries can be done with untrusted
mappers
e How many iPads were sold today?
 What is the average score of male students at UT? }
e Output the frequency of security bocijﬁ, that sciléi ean
. «— lhresho
more than 25 copies today.

«—Sum

e ... others require trusted mapper code

e List all items and their quantity sold
Malicious mapper can encode

information in item names

Indrajit Roy et. al, NSDI 2010



Revisiting Aliravat guarantees

Allows differentially private MapReduce computations
e Even when the code is untrusted

Differential privacy => mathematical bound on information leak

What is a safe bound on information leak ?
* Depends on the context, dataset
* Not our problem



mplementation details

SELInux
policy

MapReduce

" Domains for | " Modifications |
trusted and to support
untrusted mandatory
_ programs _access control
4 ) 4 N
Appl
~PPYY Set of trusted
restrictions on
. reducers
each domain
\_ J \_ J
450 LoC 5000 LoC

Indrajit Roy et. al, NSDI 2010

" Modifications
to enforce
mapper

_ independence |

500 LoC

LoC = Lines of Code



Alravat In brief

Airavat is a framework for privacy preserving MapReduce
computations

Confines untrusted code

First to integrate mandatory access control with differential privacy
for end-to-end enforcement

Untruste

ProtectedJ

N

Airavat

(

Indrajit Roy et. al, NSDI 2010
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