

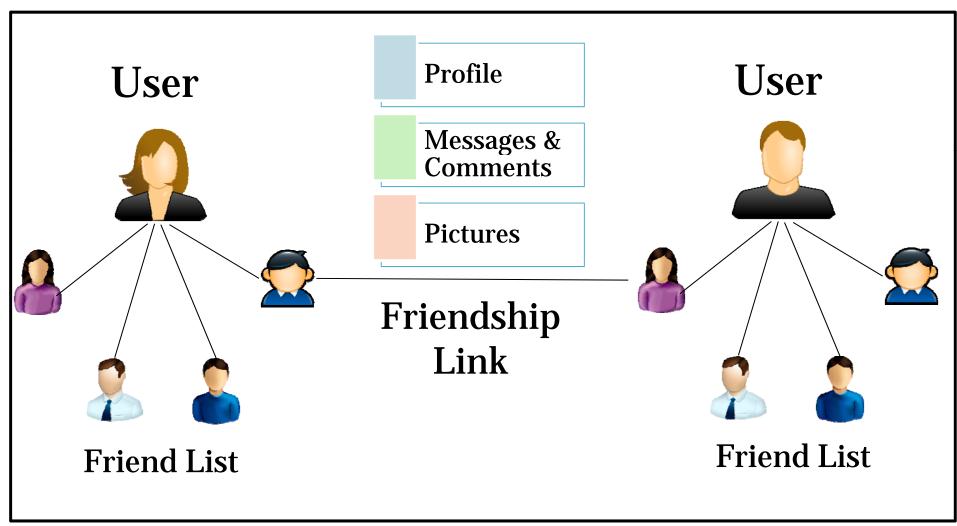
Topics

- Focus is the new vulnerabilities that exist in online social networks
 - Typical online social networks (OSN); E.g., Facebook & LinkedIn
 - Location-based social networks (LBSN); E.g., Foursquare
 & Yelp
- Not the traditional problems in online systems
 - Secure Communication
 - Web-based Attacks; E.g., SQL Injection, Cross Site Scripting

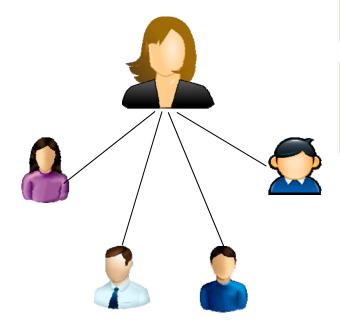
Outline

- Identity & Authentication Problems
 - Email Address, Connections of Identities & Login
 - Social Authentication
 - Identity Validation
- Privacy Issues
 - Privacy of User Profiles
 - Privacy of Friendships
- Malicious Resources

Purpose


- Be aware of these problems & know how to mitigate or avoid the potential attacks
- Start to know current research topics regarding security & privacy in online social networks

Social Media Landscape 2013


Background – OSN

LBSN

User

Friendship Network

Create venues

Explore various places

Check in at venues

CHECK-IN

(user, venue, time,...)

Venue

VENUE

(name, location, category,...)

Entities, Elements & Mechanisms

- User's Social Network
 - Friends
 - Mutual Friends
 - Recommended Friends
- User's Posts
 - Messages
 - Photos
 - Check-ins (LBSN)

- User Identity / User Profile
 - Attributes
- Venue (LBSN)
 - Attributes

- Mechanisms
 - User Authentication
 - Access Control Mechanisms

Outline

- Identity & Authentication Problems
 - Email Address, Connections of Identities & Login
 - Authentication
- Privacy Issues
 - Privacy of User Profiles
 - Privacy of Friendships
- Malicious Resources

Email Address as Identity [1]

- Most online systems adopt a user's email address as the user's identity
- Caused and causing many threats
 - Used to identify various identities of a user in many online systems
 - More vulnerable regarding online password cracking
 - Share the same password
 - Avoid the limits of fail login times
 - Cracking one email address = Cracking related online accounts associated with this email address

Email Address as Identity (cont.)

- Possible solutions
 - Different email addresses?
 - Different passwords?
 - Password management?

Email Address as Identity (cont.)

- Email address is private & sensitive
- Anonymous Email Service
 - Like Craigslist email system
 - <u>leijin@anonymous.com</u> <-> <u>leijin@gmail.com</u>
 - Anonymous.com
 - ✓ Accept, extract messages and construct the new email, send
 - ✓ No any record
 - ✓ Not record leijin@gmail.com as a plaintext
 - Gmail
 - ✓ Not disclose leijin@anonymous.com

Outline

- Identity & Authentication Problems
 - Email Address, Connections of Identities & Login
 - Authentication
- Privacy Issues
 - Privacy of User Profiles
 - Privacy of Friendships
- Malicious Resources

Authentication problems in OSNs

- Authentication between a user and a social network system: facilitating login attempts (Login)
- Authentication between users: validating a user's identity (Identity Validation)

Login

- Motivations
 - Difficult to remember text-based passwords
 - Tend to use one simple password for multiple systems
- Social Authentication: adopting users' knowledge in OSNs to authenticate users in order to facilitate their login attempts

Photo-Based Authentication

- Proposed by Yardi et al. [2]
- Basic idea: authenticate a user's login using the tagged photos in Facebook based on the assumption that a user can identify their friends from various photos

Photo-Based Authentication (cont.)

- Facebook Implementation
- It is triggered when the system detects a suspicious login attempt, according to a set of heuristics
 - the user logs in from a different geographical location
 - uses a new device (e.g., computer or smartphone) for the first time to access his account

Photo-Based Authentication (cont.)

A sequence of 7 pages featuring authentication

This appears to be:

O Jason Polakis Federico Maggi

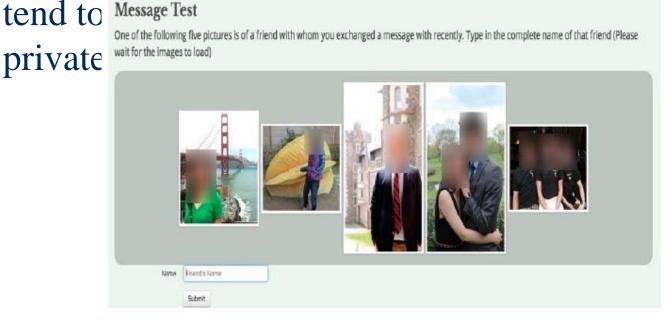
Marco Lancini Sotiris Ioannidis Georgios Kontaxis Angelos Keromytis

them, but must correctly identify the people in at least 5 to pass the social authentication test

Issues in Photo-based Social Authentication

- Kim *et al*. [3]
 - Friend information is not private enough
 - People in the photos can be automatic recognized using face recognition tools
 - Such a social authentication is vulnerable to statistical guessing attack for the names
- Polakis *et al*. [4] conducted the real attacks for the photobased social authentication in Facebook
 - Access to 42% of friends -> solve 22% of Facebook social authentication tests
 - Access to 120 faces of friends -> solve 100%

Improvements


- Polakis et al. [5]
 - photo selection by using photos that fail software-based face recognition

Improvements (cont.)

- Jain *et al*. [6]: asks users to verify information about private their social contacts and their interactions
- Results: not as what they expected, since many users

neir

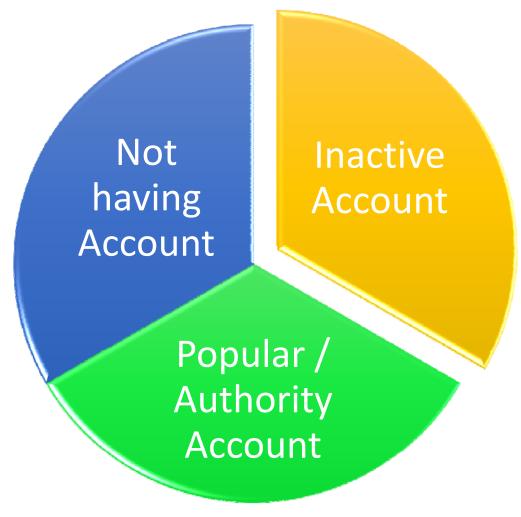
Conclusions - Login

- Social authentication (*e.g.*, photo-based authentication) still needs many improvements
 - Not each user has enough friends who are tagged in the photos
 - No enough appropriate photos for authentications
 - Theatrical analysis: How secure is it?

Identity Validation

- Motivations
- Difficult to identify the authenticity of a user's identity in an OSN
 - Identity Clone Attacks [7] -> Various Security & Privacy Attacks

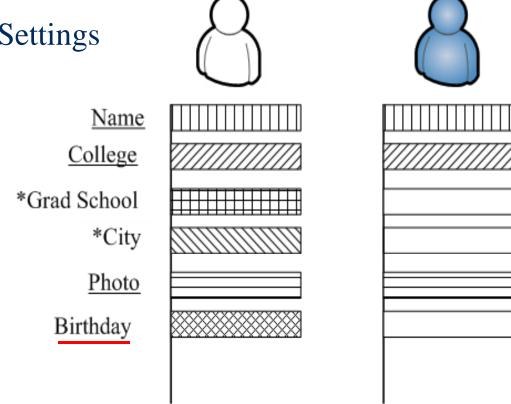
Cloned Identity



Identity Clone Attack [7] - Design

- Attributes: name, education, birthday...
- Friend network
 - Friend List (FL): Connected friends of an ID
 - Recommended Friend List (RFL):
 - ✓ Generated by OSN systems (function of "People You May Know" on Facebook)
 - ✓ Share same RFs
 - Excluded Friend List (EFL):
 - ✓ Social embarrassments
 - ✓ Attackers try to connect these individuals

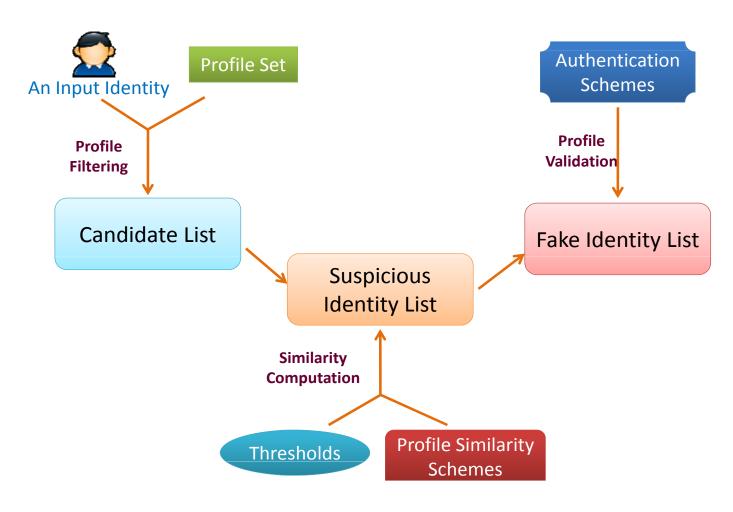
What are the best targets



Attribute As Target

Sub Targets:

- 1. Attribute Values
- 2. Privacy Settings


Victim

Faked Identity

Friend Networks As Target

Friend List FL Recommended H) Friend List **RFL** Victim Excluded Friend List Friend List ID Friend List Recommended Η Friend List Victim Excluded **EFL** Friend List Faked ID B' Friend List ID

Cloned Identity Detection [7]

Profile Similarity

Attribute Similarity

$$S_{att}(P_{c}, P_{v}) = \frac{SA_{cv}}{\sqrt{|A_{c}| \times |A_{v}|}}$$

Basic Principle: Similar Attributes in Two Profiles

Friend Network Similarity

For Basic Profile Similarity (BPS)

$$S_{bfn}(P_{c}, P_{v}) = (\alpha S_{ff} + \beta S_{frf} + \gamma S_{fef})$$

Basic Principle:
Mutual Friends in Friend Networks

For Multiple-faked Identities Profile Similarity (MFIPS)

$$S_{mfn}(P_{c}, P_{v}) = \alpha(S_{s-ff} + S_{s-cf}) + \beta(S_{s-frf} + S_{s-cfrf}) + \gamma S_{s-fef}$$

Basic Principle:

ilar Friends in Friend Networks

Identity Validation

• Li *et al*. [8] propose a key exchange protocol that utilizes the secret questions, which work like a

"natura Question list, Q authenticator authenticatee two pai 1. Did you take me out for dinner last Friday? 2. Did we first meet in Starbucks? 3. Is Jack our mutual friend? send O personal personal answers answers interactions ans' ans [yes, no, no...] [yes, no, yes...] sksk'Other security protocols

1 between

Identity Validation (cont.)

- Proposed by Zhao et al. [9]
- Basic Idea:
 - A user trusts their friends and the trust in a social network system is transitive. A user could find a trusted path, indicating the transmission of the trust, to another in a social graph
 - When two strangers meet in a social network, if they can find a trusted path, then they can rely on this common trusted persons in the path to authenticate each other

Conclusions - Identity Validation

- Many limitations
- Li *et al*:
 - Friends in the physical world
 - Not enough secrets
 - How to select secrets
- Zhao et al:
 - trust may not be transitive

Conclusions - Identity Validation (cont.)

- A practical approach [7]:
 - To ask users to provide their IDs in the real world
 - Education

Outline

- Identity & Authentication Problems
 - Email Address, Connections of Identities & Login
 - Authentication
- Privacy Issues
 - Privacy of User Profiles & Shared Resources
 - Privacy of Friendships
- Malicious Resources

Infer User's Profile Information

- Assumptions: Friends tend to share the same interests
- Inferring a targeted user's private attribute based on his/her friends' public attributes
- Example [10]:
 - A user hides his education and occupation from the public
 - Many of a user's friends are current students at the University of Pittsburgh
 - Inference: University of Pittsburgh, Student

Issues related to Shared Resources

- Photos
 - A photo includes multiple individuals
 - One of them posts it in his/her wall
 - Privacy: others in the photos may be upset
- Check-ins (LBSNs) [11]
 - A user exposes where and when he is
 - A user exposes where his lives
 - A user's friend or other people expose the user's location related information
- Existing Access Control mechanisms cannot address all of these problems [12]

Outline

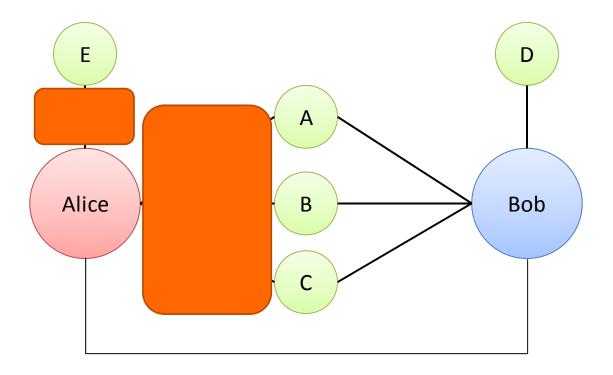
- Identity & Authentication Problems
 - Email Address, Connections of Identities & Login
 - Authentication
- Privacy Issues
 - Privacy of User Profiles & Shared Resources
 - Privacy of Friendships
- Malicious Resources

Issues Related to Users' Friend Lists

- Importance of the friend list
- What a user's friends reveals
 - Family, Work, Income, Reputation, Religion...
 - Used for Identity Clone Attacks
 - Used for Inferring Private Attributes

Attacks - Expose a User's Social Network

- Mutual-friend based Attack [13]
- Friendship Identification and Inference Attack [14]

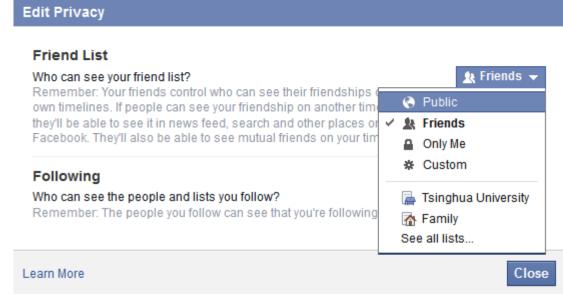

Mutual Friend Feature

- Show mutual friends between two users
- Useful feature, *e.g.* Friend Recommendation, Friend Introduction

Lack of the Access Control Mechanism!

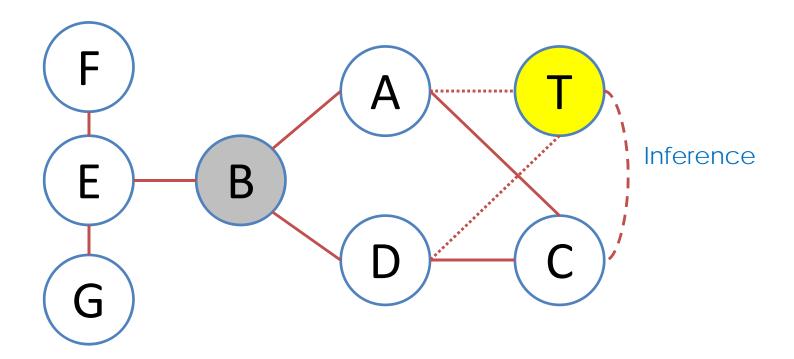
Attack Example

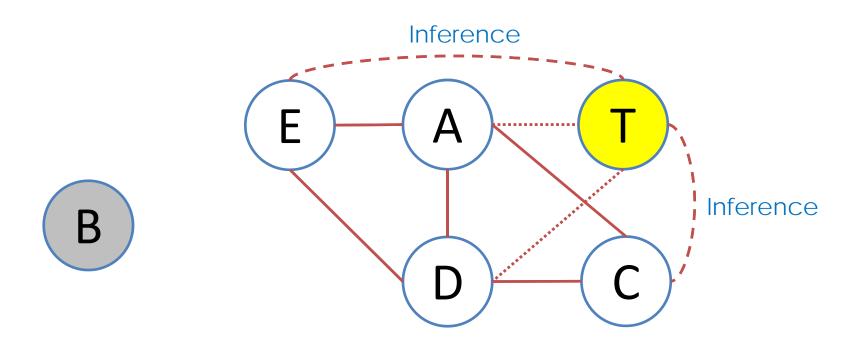
Defense Approaches


- Reason
 - *no restriction for querying mutual friends
- Defense approaches
 - Hide user profile
 - *Access control to query mutual friends

Friendship Identification & Inference Attack

- Users' Privacy Settings for Friend Lists
 - Private
 - Friends w/o an excluding list
 - Public


Consistent Among Users?

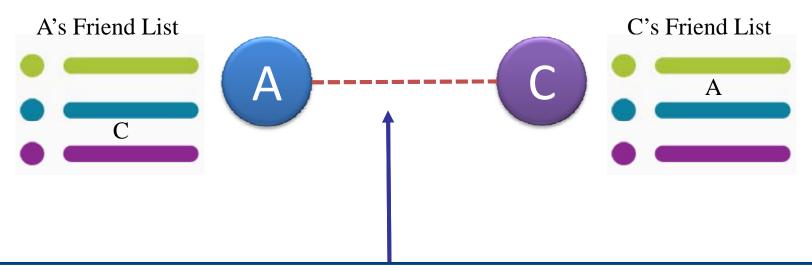

Inconsistent Policies

Inconsistent Preferences Example -1

Inconsistent Preferences Example -2

Key Issue

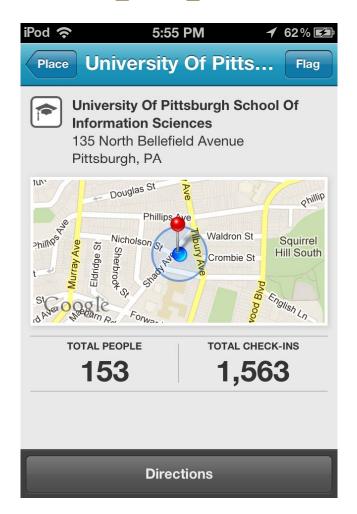
- How to conduct effective inferences to identify the private friendships
 - Guess
 - Similarity-based inferences
 - Random-walk inferences



Attack Schemes

- One attacker node & one target
 - ❖ Adversary chooses a number of users, who are the most likely to be friends of a target, at one time based on the calculations
- Multiple attacker nodes & one target
 - ❖ Combine the attack knowledge (segments of the network) from different attacker nodes to be a more completed segment of the network
- Topology of the entire social network (multiple attacker nodes & multiple targets)
 - ❖ Attack the most vulnerable targets first

Defense Approaches


- Squicciarini et al. -> voting algorithm & game theory
- Hu et al. -> Label Privacy Level, minimize privacy risk & sharing loss

Outline

- Identity & Authentication Problems
 - Email Address, Connections of Identities & Login
 - Authentication
- Privacy Issues
 - Privacy of User Profiles
 - Privacy of Friendships
- Malicious Resources

Venue Attacks in LBSNs [15]

- Venue Attributes
 - Creator
 - Owner
 - Name
 - Address
 - Geo-location
 - Category
 - Statistical Information Owner
 - Promotion/Coupon (Set by Owner)

Malicious Venue Creation Attack

- ANY user can create ANY type of a venue without being subjected to any AUTHENTICATION and the AUTHORIZATION from the actual owner
- Venue Not Created in a LBSN
 - Does not exist in the real world: deceive and confuse users, destroy users' trust for LBSNs
 - Exists in the real world but not willing to share; e.g. home,
 private place
- Venue Already Created in a LBSN
 - Create a similar venue using a similar/alternative name; e.g.,
 School of Information Sciences iSchool

Venue Ownership Hijacking Attack

- Bypass the owner authentication process & become the owner of the created venue
- Owner Authentication in Foursquare, Yelp and Facebook Place
 - Phone number
 - Address
- Impacts
 - Expose customers' visit information: users' privacy
 - Manipulate coupons/promotions: financial loss and/or destroy user trust on the venue
 - Change the address of the venue
 - **—** ...

Venue Location Hijacking Attack

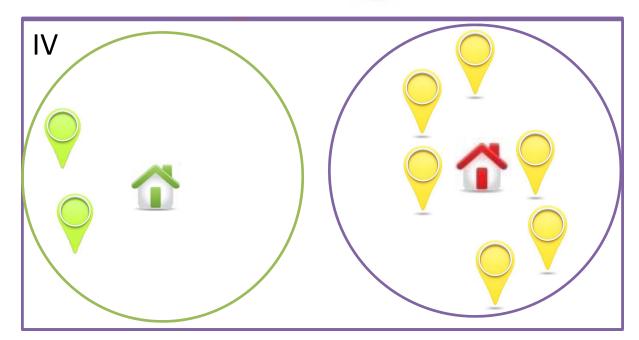
- Venue's location is associated with its geo-location not the physical address
- Geo-location is dynamic in terms of possible inaccurate GPS signals
- Location update: the center of all the honest check-ins marked by a LBSN

University of Pittsburgh

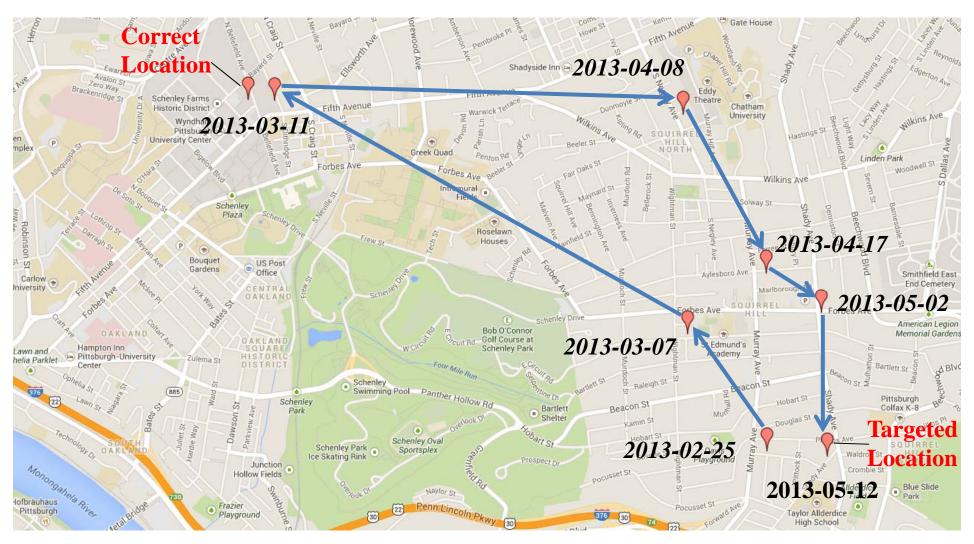
Users' Honest Check-ins & Marked as Host Check-ins by System

Users' honest Check-ins & Marked as Dishonest Check-ins by System

Users' Dishonest Check-ins & Marked as Honest Check-ins by System


Users' Dishonest Check-ins & Marked as Dishonest Check-ins by System

Actual Location of the Venue

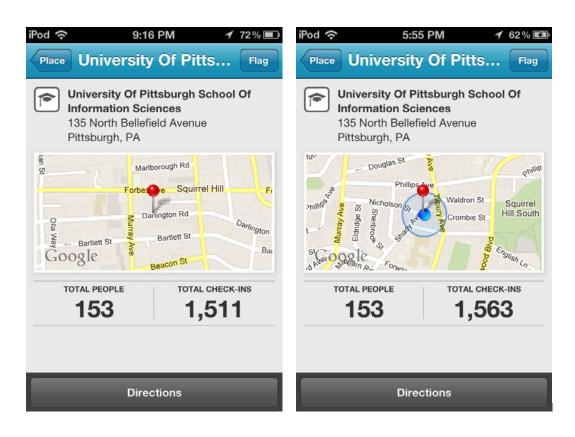


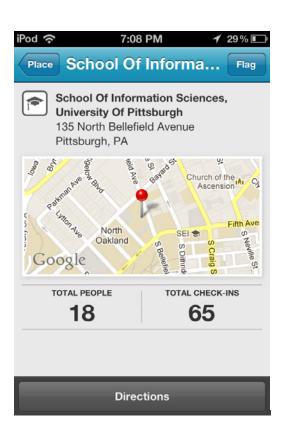
Manipulated Location of the Venue

The Movements of the Locations of the LERSAIS Lab

Combined Venue Attacks

Venue Location Hijacking attack Venue Ownership Hijacking attack




Malicious Venue Creation attack

Moved 2 Miles away in May, 2012

Moved 3 Miles away in July, 2012

New Venue Created & Its Check-ins in August, 2012

References

- Jin, L., Takabi, H., & Joshi, J. B. (2010, August). Security and privacy risks of using e-mail address as an identity. In Social Computing (SocialCom), 2010 IEEE Second International Conference on (pp. 906-913). IEEE.
- 2) Yardi, S., Feamster, N., & Bruckman, A. (2008). Photo-based authentication using social networks. In *Proceedings of the first workshop on Online social networks* (pp. 55-60). ACM.
- 3) Kim, H., Tang, J., & Anderson, R. (2012). Social authentication: harder than it looks. In *Financial Cryptography and Data Security* (pp. 1-15). Springer Berlin Heidelberg.
- Polakis, I., Lancini, M., Kontaxis, G., Maggi, F., Ioannidis, S., Keromytis, A. D., & Zanero, S. (2012). All your face are belong to us: breaking Facebook's social authentication. In *Proceedings* of the 28th Annual Computer Security Applications Conference (pp. 399-408). ACM.
- Polakis, I., Ilia, P., Maggi, F., Lancini, M., Kontaxis, G., Zanero, S., ... & Keromytis, A. D. (2014, November). Faces in the distorting mirror: Revisiting photo-based social authentication. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (pp. 501-512). ACM.
- 6) Jain, S., Lang, J., Gong, N. Z., Song, D., Basuroy, S., & Mittal, P. (2015). New Directions in Social Authentication. NDSS Workshop on Usable Security.
- 7) Jin, L., Takabi, H., & Joshi, J. B. (2011, February). Towards active detection of identity clone attacks on online social networks. In *Proceedings of the first ACM conference on Data and application security and privacy* (pp. 27-38). ACM.

References

- 8) Li, L., Zhao, X., & Xue, G. (2012, May). An identity authentication protocol in online social networks. In Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security (pp. 28-29). ACM.
- 9) Zhao, X., Li, L., & Xue, G. (2011, December). Authenticating strangers in fast mixing online social networks. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE (pp. 1-5). IEEE.
- Mislove, A., Viswanath, B., Gummadi, K. P., & Druschel, P. (2010, February). You are who you know: inferring user profiles in online social networks. In *Proceedings of the third ACM international conference on Web search and data mining* (pp. 251-260). ACM.
- Jin, L., Long, X., & Joshi, J. B. (2012, October). Towards understanding residential privacy by analyzing users' activities in foursquare. In *Proceedings of the 2012 ACM Workshop on Building analysis datasets and gathering experience returns for security* (pp. 25-32). ACM.
- Jin, L., Long, X., Joshi, J. B., & Anwar, M. (2012, August). Analysis of access control mechanisms for users' check-ins in Location-Based Social Network Systems. In *Information Reuse and Integration (IRI)*, 2012 IEEE 13th International Conference on (pp. 712-717). IEEE.
- 13) Jin, L., Joshi, J. B., & Anwar, M. (2013). Mutual-friend based attacks in social network systems. *Computers & security*, *37*, 15-30.
- Jin, L., Takabi, H., Long, X., & Joshi, J. (2014, November). Exploiting Users' Inconsistent Preferences in Online Social Networks to Discover Private Friendship Links. In *Proceedings of the 13th Workshop on Privacy in the Electronic Society* (pp. 59-68). ACM.
- Jin, L., & Takabi, H. (2014, November). Venue attacks in location-based social networks. In *Proceedings of the 1st ACM SIGSPATIAL International Workshop on Privacy in Geographic Information Collection and Analysis* (p. 1). ACM.

Questions?

Thank You!