Security Management Models And Practices

Feb 5, 2008
Objectives

- Overview basic standards and best practices
 - Overview of ISO 17799
 - Overview of NIST SP documents related to security management practices and guidelines, certification and accreditation
Introduction

To create or maintain a secure environment

1. Design working security plan
2. Implement management model to execute and maintain the plan

Basic steps:

- begin with creation or validation of security framework,
- followed by an information security blueprint describing existing controls and identifying other necessary security controls
Framework:
- outline of the more thorough blueprint,
- Blueprint
 - basis for the design, selection, and implementation of all subsequent security controls

To develop a blueprint or methodology
- Use established security management models and practices
BS 7799

- One of the most widely referenced and often discussed security models
 - BS 7799:1 Information Technology – Code of Practice for Information Security Management,
 - Originally as British Standard BS 7799
 - Now ISO/IEC 17799 (since 2000)
 - BS 7799:2 Information Security Management: Specification with Guidance for Use

- The purpose of ISO/IEC 17799 (BS 7799:1)
 - give recommendations for information security management for use by those who are responsible for initiating, implementing or maintaining security in their organization
BS 7799 (Continued)

- Volume 2
 - provides information on how to implement Volume 1 (17799) and
 - how to set up an Information Security Management Structure (ISMS)
 - ISMS Certification and accreditation done by BS 7799 certified evaluator

- Standard has not been adopted by US, Germany, Japan etc.
ISO/IEC 17799 Drawbacks

- The global information security community has not defined any justification for a code of practice as identified in the ISO/IEC 17799
- Lacks “the necessary measurement precision of a technical standard”
- No reason to believe that ISO/IEC 17799 is more useful than any other approach
- Not as complete as other frameworks
- Perceived to have been hurriedly prepared, given tremendous impact its adoption could have on industry information security controls
The Ten Sections Of ISO/IEC 17799

1. Organizational Security Policy
2. Organizational Security Infrastructure objectives
3. Asset Classification and Control
4. Personnel Security objectives
5. Physical and Environmental Security objectives
6. Communications and Operations Management objectives
7. System Access Control objectives
8. System Development and Maintenance objectives
10. Compliance objectives
Plan-Do-Check-Act of BS7799:2

FIGURE 6-2 Plan-Do-Check-Act Cycle from BS 7799:2
The Security Management Index and ISO 17799

To determine how closely an organization is complying with ISO 17799, take Human Firewall Council’s survey, the Security Management Index (SMI)

- Asks 35 questions over 10 domains of ISO standard
- Gathers metrics on how organizations manage security
- Survey has been developed according to ISO 17799 international security standards to reflect best practices from a global perspective
- Enables information security officers to benchmark their practices against those of other organizations
The Human Firewall Council
SMI

- Familiarize yourself with the 10 categories of security management
- Benchmark your organization’s security management practices by taking the survey
- Evaluate your results in each category to identify strengths and weaknesses
- Examine the suggestions for improvement in each category in this report
- Use your SMI results to gain support for improving security
RFC 2196 Site Security Handbook

- RFC 2196
 - Created by the Security Area Working Group within the IETF
 - provides a good functional discussion of important security issues along with development and implementation details
 - Covers
 - security policies, security technical architecture, security services, and security incident handling
 - Also includes discussion of the importance of security policies, examination of services, access controls, etc.
NI ST Security Models

NI ST documents have two notable advantages:

- Publicly available at no charge
- Have been broadly reviewed by government and industry professionals

- SP 800-12, Computer Security Handbook
- SP 800-14, Generally Accepted Security Principles & Practices
- SP 800-18, Guide for Developing Security Plans
- SP 800-26, Security Self-Assessment Guide-IT Systems
- SP 800-30, Risk Management for Information Technology Systems
NI ST SP 800-12
The Computer Security Handbook

- Excellent reference and guide for routine management of information security
 - Little on design and implementation

- Lays out NIST philosophy on security management by identifying 17 controls organized into three categories:
 - Management Controls section
 - addresses security topics characterized as managerial
 - Operational Controls section
 - addresses security controls focused on controls that are, broadly speaking, implemented and executed by people (as opposed to systems)
 - Technical Controls section
 - focuses on security controls that the computer system executes
NIST Special Publication 800-14
Generally Accepted Principles and Practices for Securing Information Technology Systems

- Describes best practices useful in the development of a security blueprint
- Describes principles that should be integrated into information security processes
- Documents 8 points and 33 Principles
NIST Special Publication 800-14
Key Points

- Key points made in NIST SP 800-14 are:
 - Security Supports the Mission of the Organization
 - Security is an Integral Element of Sound Management
 - Security Should Be Cost-Effective
 - Systems Owners Have Security Responsibilities Outside Their Own Organizations
 - Security Responsibilities and Accountability Should Be Made Explicit
 - Security Requires a Comprehensive and Integrated Approach
 - Security Should Be Periodically Reassessed
 - Security is Constrained by Societal Factors
NIST Special Publication 800-14

Principles

1. Establish sound security policy as “foundation” for design
2. Treat security as integral part of overall system design
3. Clearly delineate physical and logical security boundaries governed by associated security policies
4. Reduce risk to acceptable level
5. Assume that external systems are insecure
6. Identify potential trade-offs between reducing risk and increased costs and decrease in other aspects of operational effectiveness
7. Implement layered security (Ensure no single point of vulnerability)
8. Implement tailored system security measures to meet organizational security goals
9. Strive for simplicity
10. Design and operate an IT system to limit vulnerability and to be resilient in response
11. Minimize system elements to be trusted
12. Implement security through a combination of measures distributed physically and logically
13. Provide assurance that the system is, and continues to be, resilient in the face of expected threats
14. Limit or contain vulnerabilities
15. Formulate security measures to address multiple overlapping information domains
16. Isolate public access systems from mission critical resources
17. Use boundary mechanisms to separate computing systems and network infrastructures
18. Where possible, base security on open standards for portability and interoperability
19. Use common language in developing security requirements.
20. Design and implement audit mechanisms to detect unauthorized use and to support incident investigations
21. Design security to allow for regular adoption of new technology, including a secure and logical technology upgrade process

22. Authenticate users and processes to ensure appropriate access control decisions both within and across domains

23. Use unique identities to ensure accountability

24. Implement least privilege

25. Do not implement unnecessary security mechanisms

26. Protect information while being processed, in transit, and in storage

27. Strive for operational ease of use

28. Develop and exercise contingency or disaster recovery procedures to ensure appropriate availability

29. Consider custom products to achieve adequate security

30. Ensure proper security in the shutdown or disposal of a system

31. Protect against all likely classes of “attacks”

32. Identify and prevent common errors and vulnerabilities

33. Ensure that developers are trained in how to develop secure software
Provides
detailed methods for assessing, designing, and implementing controls and plans for various sized applications

Serves as a guide for the activities
for the overall information security planning process

Includes templates for major application security plans
NIST Special Publication 800-26

17 areas Defining the core of the NIST Security Management Structure

Management Controls
1. Risk Management
2. Review of Security Controls
3. Life Cycle Maintenance
4. Authorization of Processing (Certification and Accreditation)
5. System Security Plan

Operational Controls
6. Personnel Security
7. Physical Security
8. Production, Input/Output Controls
9. Contingency Planning
10. Hardware and Systems Software
11. Data Integrity
12. Documentation
13. Security Awareness, Training, and Education
14. Incident Response Capability

Technical Controls
15. Identification and Authentication
16. Logical Access Controls
17. Audit Trails
Hybrid Security Management Model

- Management controls
 - Program management
 - System security plan
 - Life cycle management
 - Risk management
 - Review of security controls
 - Legal compliance

- Operational controls
 - Contingency planning
 - Security education, training and awareness
 - Personnel security
 - Physical security
 - Production inputs and outputs
 - Hardware and software systems maintenance
 - Data integrity

- Technical controls
 - Logical access controls
 - Identification, authentication, authorization and accountability
 - Audit trails
 - Asset classification and control
 - Cryptography
NI ST Special Publication 800-30
Risk Management Guide for Information Technology Systems

- Provides a foundation for the development of an effective risk management program

- Contains both the definitions and the practical guidance necessary for assessing and mitigating risks identified within IT systems

- Strives to enable organizations to better manage IT-related risks
Security Management Practices

- In information security, two categories of benchmarks are used
 - Standards of due care/due diligence
 - Best practices

- Gold standard – subcategory of Best practices
 - that are generally regarded as “the best of the best”
Standards of Due Care/Diligence

- Standard of due care
 - Organizations adopt minimum levels of security for a legal defense,
 - they may need to show that they have done what any prudent organization would do in similar circumstances

- Due diligence
 - Demonstrated by implementing controls at this minimum standard, and maintaining them
 - Requires that an organization ensure that the implemented standards continue to provide the required level of protection
 - Failure to support a standard of due care or due diligence
 - can expose an organization to legal liability,
 - provided it can be shown that the organization was negligent in its application or lack of application of information protection
Best Security Practices

- Best business practices or simply best practices
 - Security efforts that seek to provide a superior level of performance in the protection of information
 - Some organizations call them recommended practices
- Best security practices
 - Security efforts that are among the best in the industry
 - Balanced
 - Defense in depth
- Companies with best practices may not be the best in every area
VI SA International Security Model (best practices example)

- VI SA use two important documents that improve and regulate its information systems:
 - Security Assessment Process document
 - contains series of recommendations for detailed examination of organization’s systems with the eventual goal of integration into the VI SA systems
 - Agreed Upon Procedures document
 - outlines the policies and technologies used to safeguard security systems that carry the sensitive cardholder information to and from VI SA systems
The Gold Standard

- A model level of performance
 - Demonstrates industrial leadership, quality, and concern for the protection of information

- The implementation of gold standard security requires
 - a great deal of support, both in financial and personnel resources

- No published criteria!
Selecting Best Practices

- Choosing recommended practices could be a challenge
 - In industries that are regulated by governmental agencies,
 - government guidelines are often requirements
 - For other organizations,
 - government guidelines are excellent sources of information and can inform their selection of best practices
Selecting Best Practices (Continued)

- When considering best practices for your organization, consider the following:
 - Does your organization resemble the identified target organization of the best practice?
 - Are you in a similar industry as the target?
 - Do you face similar challenges as the target?
 - Is your organizational structure similar to the target?
 - Are the resources you can expend similar to those called for by the best practice?
 - Are you in a similar threat environment as the one assumed by the best practice?
Best Practices

- Microsoft best practices (at its Web site)
 - Use antivirus software
 - Use strong passwords
 - Verify your software security settings
 - Update product security
 - Build personal firewalls
 - Back up early and often
 - Protect against power surges and loss
Benchmarking and Best Practices Limitations

Biggest problems with benchmarking in information security:

- Organizations don’t talk to each other and are not identical
 - Successful attack is viewed as organizational failure and is kept secret, insofar as possible
 - Join professional associations and societies like ISSA and sharing their stories and lessons learned
 - Alternative to this direct dialogue is the publication of lessons learned

- No two organizations are identical
- Best practices are moving targets
Baselining

Baseline:
- “value or profile of a performance metric against which changes in the performance metric can be usefully compared”

Baselining:
- process of measuring against established standards

In InfoSec,
- the comparison of security activities and events against the organization’s future performance
- Can provide foundation for internal benchmarking, as information gathered for an organization’s first risk assessment becomes the baseline for future comparisons
Emerging Trends In Certification And Accreditation

- Accreditation
 - is authorization of an IT system to process, store, or transmit information
 - Issued by management official
 - Serves as means of assuring that systems are of adequate quality
 - Also challenges managers and technical staff to find best methods to assure security, given technical constraints, operational constraints, and mission requirements
Emerging Trends In Certification And Accreditation (Continued)

- Certification:
 - “the comprehensive evaluation of the technical and non-technical security controls of an IT system to support the accreditation process that establishes the extent to which a particular design and implementation meets a set of specified security requirements”

- Organizations pursue accreditation or certification to gain a competitive advantage, or to provide assurance or confidence to customers
SP 800-37
Guidelines for the Security Certification and Accreditation of Federal IT Systems

Three project goals

- Develop standard guidelines and procedures for certifying and accrediting federal IT systems including critical infrastructure of United States
- Define essential minimum security controls for federal IT systems
- Promote
 - development of public and private sector assessment organizations and
 - certification of individuals capable of providing cost effective, high quality, security certifications based on standard guidelines and procedures
Specific benefits of security certification and accreditation (C&A) initiative include:

- More consistent, comparable, and repeatable certifications of IT systems
- More complete, reliable, information for authorizing officials—leading to better understanding of complex IT systems and associated risks and vulnerabilities—and therefore, more informed decisions by management officials
- Greater availability of competent security evaluation and assessment services
- More secure IT systems within the federal government
The Process

- Preparation
- Notification and Resource Identification
- System Security Plan Analysis, Update, and Acceptance

- Security Control Assessment
- Security Certification Documentation

- Security Accreditation Decision
- Security Accreditation Documentation

- Configuration Management and Control
- Security Control Monitoring
- Status Reporting and Documentation
NIST SP 800-30

INITIAL THREAT AND RISK ASSESSMENT

Initiates the risk management process

NIST SP 800-53

MINIMUM SECURITY CONTROLS FOR FEDERAL IT SYSTEMS

Defines baseline management, technical and operational controls for federal systems

NIST SP 800-18

SYSTEM SECURITY PLAN

Documents security requirements and controls for federal systems

NIST SP 800-53A

SECURITY CONTROL VERIFICATION TECHNIQUES

Provides standardized verification procedures

NIST SP 800-37

SECURITY CERTIFICATION AND ACCREDITATION OF IT SYSTEMS

Determines system compliance with security requirements and implementation of security controls

NIST SP 800-30

FINAL RISK ASSESSMENT

Determines degree of residual risk

Certification Package

- CERTIFIER’S STATEMENT
- SYSTEM SECURITY PLAN
- SECURITY TEST AND EVALUATION REPORTS
- RISK ASSESSMENT REPORT

Provides critical information for authorizing officials in support of risk-based accreditation decision

OTHER SUPPORTING PUBS

- INTRO TO COMPUTER SECURITY
- INTERCONNECTING SYSTEMS
- SECURITY ENGINEERING
- CONTINGENCY PLANNING

- SECURITY MODELS
- SECURITY TRAINING
- SECURITY PRACTICES
- ASSESSMENT TOOLS

FIGURE 6-3 Special Publications Supporting SP 800-37
Planned Federal System Certifications

- Systems are to be certified to one of three levels:
 - Security Certification Level 1: Entry-Level Certification Appropriate For Low Priority (Concern) Systems
 - Security Certification Level 2: Mid-Level Certification Appropriate For Moderate Priority (Concern) Systems
 - Security Certification Level 3: Top-Level Certification Appropriate For High Priority (Concern) Systems
Accreditation Package & Decision

<table>
<thead>
<tr>
<th>SYSTEM SECURITY PLAN</th>
<th>SECURITY ASSESSMENT REPORT</th>
<th>PLAN OF ACTION AND MILESTONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Overview of the security requirements, the agreed-upon security controls, and supporting security-related documents such as risk assessment.</td>
<td>- Security control assessment results and recommended corrective actions.</td>
<td>- Measures implemented or planned to correct deficiencies and to reduce or eliminate known vulnerabilities.</td>
</tr>
</tbody>
</table>

Decision letter
- Security accreditation decision letter
 - Authorize to operate - Authorized to operate in interim basis - Not authorized to operate
- Supporting rationale for the decision
- Terms and condition for the decision
Participants in the Federal C&A Process

DESIGNATED APPROVING AUTHORITY

Senior agency official with authority to approve a system for operation in a specific environment with acceptable risk.

CERTIFIER AND CERTIFICATION TEAM

Conducts an independent technical and non-technical evaluation of a system to determine compliance with the security requirements and security controls documented in the security plan.

PROGRAM MANAGER OR SYSTEM OWNER

Represents the interests of a system throughout its life cycle: development, acquisition, implementation, operations, and maintenance.

SYSTEM SECURITY OFFICER

Responsible for the day-to-day security of an IT system including personnel, physical and technical security; assists in the development of the system security policy and ensures compliance with that policy.

Figure 6-4 Participants in the Certification and Accreditation Process
SP 800-53
Minimum Security Controls for Federal IT Systems

- SP 800-53 is part two of the Certification and Accreditation project
- Purpose
 - to establish a set of standardized, minimum security controls for IT systems addressing low, moderate, and high levels of concern for confidentiality, integrity, and availability
- Controls are broken into the three familiar general classes of security controls
 - management,
 - operational, and
 - technical
Security Control Selection Process

Risk-Management Framework

INITIAL SECURITY CONTROL BASELINE
(Low, Mod, High)
Before Tailoring

Application of Tailoring Guidance
Scoping Guidance
Compensating Controls
Parameterization

TAILORED SECURITY CONTROL BASELINE
(Low, Mod, High)
After Tailoring

Assessment of Organizational Risk
Supplemental Tailored Baseline Controls to Mitigate Unacceptable Risks

AGREED-UPON SET OF SECURITY CONTROLS
(Low, Mod, High)
After Risk Assessment

DOCUMENT THE SECURITY CONTROL SELECTION DECISIONS AT EACH STAGE
(Rationale that the agreed-upon set of security controls/use restrictions for the information system provide adequate protection of organizational operations, organizational assets, and individuals.)
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>FAMILY</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Access Control</td>
<td>Technical</td>
</tr>
<tr>
<td>AT</td>
<td>Awareness and Training</td>
<td>Operational</td>
</tr>
<tr>
<td>AU</td>
<td>Audit and Accountability</td>
<td>Technical</td>
</tr>
<tr>
<td>CA</td>
<td>Certification, Accreditation, and Security Assessments</td>
<td>Management</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
<td>Operational</td>
</tr>
<tr>
<td>CP</td>
<td>Contingency Planning</td>
<td>Operational</td>
</tr>
<tr>
<td>IA</td>
<td>Identification and Authentication</td>
<td>Technical</td>
</tr>
<tr>
<td>IR</td>
<td>Incident Response</td>
<td>Operational</td>
</tr>
<tr>
<td>MA</td>
<td>Maintenance</td>
<td>Operational</td>
</tr>
<tr>
<td>MP</td>
<td>Media Protection</td>
<td>Operational</td>
</tr>
<tr>
<td>PE</td>
<td>Physical and Environmental Protection</td>
<td>Operational</td>
</tr>
<tr>
<td>PL</td>
<td>Planning</td>
<td>Management</td>
</tr>
<tr>
<td>PS</td>
<td>Personnel Security</td>
<td>Operational</td>
</tr>
<tr>
<td>RA</td>
<td>Risk Assessment</td>
<td>Management</td>
</tr>
<tr>
<td>SA</td>
<td>System and Services Acquisition</td>
<td>Management</td>
</tr>
<tr>
<td>SC</td>
<td>System and Communications Protection</td>
<td>Technical</td>
</tr>
<tr>
<td>SI</td>
<td>System and Information Integrity</td>
<td>Operational</td>
</tr>
</tbody>
</table>
Security Control Structure
(examples)

AUDITABLE EVENTS

Control: The information system generates audit records for the following events: [Assignment: organization-defined auditable events].

Supplemental Guidance: The purpose of this control is to identify important events which need to be audited as significant and relevant to the security of the information system. The organization

Control Enhancements:

(1) The information system provides the capability to compile audit records from multiple components throughout the system into a systemwide (logical or physical), time-correlated audit trail.

(2) The information system provides the capability to manage the selection of events to be audited by individual components of the system.

(3) The organization periodically reviews and updates the list of organization-defined auditable events.

<table>
<thead>
<tr>
<th>LOW</th>
<th>MOD</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU-2</td>
<td>AU-2 (3)</td>
<td>AU-2 (1) (2) (3)</td>
</tr>
</tbody>
</table>

(Complete catalog is provided at the end of 800-53)