
Formal Verification/Methods

Lecture 9

Feb 26, 2013

Formal Verification

 Formal verification relies on

 Descriptions of the properties or requirements

 Descriptions of systems to be analyzed, and

 Verification techniques showing requirements are

met by system description

 Rely on underlying mathematical logic system and the

proof theory of that system

Formal Approach

 Formal Models use language of mathematics

 Specification languages

 For policies, models and system descriptions

 Well-defined syntax and semantics – based on maths

 Current trends - two general categories

 Inductive techniques

 Model checking techniques

 Differences based on

 Intended use, degree of automation, underlying logic

systems, etc.

Verification techniques –

Criteria for classifying

 Proof-based vs model-based

 Proof-based
 Formula define premises : embody the system description

 Conclusions: what needs to be proved

 Proof shows how to reach conclusions from premises

 Intermediate formulas need to found to reach conclusions

 Model-based:

 Premises and conclusions have same truth table values

 Degree of automation

 manual or automated (degree) & inbetween

Propositional

logic

Boolean

• And

• Or

• Not

• Implies

Propositional

• Axioms

• Inference rules

Verification techniques –

Criteria for classifying

 Full verification vs property verification

 Does methodology model full system?

 Or just prove certain key properties?

 Examples?

 Intended domain of application

 HW/SW, reactive, concurrent

 Predevelopment vs post development

 As design aid or after design

Inductive verification

 Typically more general

 Uses theorem provers

 E.g., uses predicate/propositional calculus

 A sequence of proof steps starting with premises
of the formula and eventually reaching a
conclusion

 May be used

 To find flaws in design

 To verify the properties of computer programs

Model-checking

 Systems modeled as state transition systems

 Formula may be true in some states and false in others

 Formulas may change values as systems evolve

 Properties are formulas in logic

 Truth values are dynamic (Temporal logic)

 Show: Model and the desired properties are

semantically equivalent

 Model and properties express the same truth table

 Often used after development is complete but

before a product is released to the general market

 Primarily for reactive, concurrent systems

Formal Verification:
Components

 Formal Specification
 Defined in unambiguous (mathematical) language

 Restricted syntax, and well-defined semantics based
on established mathematical concepts
 Example:?

 Implementation Language
 Generally somewhat constrained

 Formal Semantics relating the two

 Methodology to ensure implementation ensures
specifications met

Specification Languages

 Specify WHAT, not HOW

 Valid states of system

 Pre/Post-conditions of operations

 Non-Procedural

 Typical Examples:

 Propositional / Predicate Logic

 Temporal Logic (supports before/after conditions)

 Set-based models (e.g., formal Bell-LaPadula)

11

Example:

Primitive commands (HRU)

Create subject s
Creates new row, column in ACM;

s does not exist prior to this

Create object o
Creates new column in ACM

o does not exist prior to this

Enter r into a[s, o]
Adds r right for subject s over object o

Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM

12

Example:

Primitive commands (HRU)

Create subject s
Creates new row, column in ACM;

s does not exist prior to this

Precondition: s  S

Postconditions:

S´ = S { s }, O´ = O { s }

(y  O´)[a´[s, y] = ] (row entries for s)

(x  S´)[a´[x, s] = ] (column entries for s)

(x  S)(y  O)[a´[x, y] = a[x, y]]

Safety Theorems

Specification Languages

 Must support machine processing

 Strong typing

 Model input/output/errors

 Example: SPECIAL (from SRI)

 First order logic based

 Strongly typed

 VFUN: describes variables (state)

 OFUN/OVFUN: describe state transitions

Example: SPECIAL
 MODULE Bell_LaPadula_Model Give_read

 Types
 Subject_ID: DESIGNATOR;

 Object_ID: DESIGNATOR;

 Access_Mode: {READ, APPEND, WRITE};

 Access: STRUCT_OF(Subject_ID subject; Object_ID object;
Access_Mode mode);

 Functions
 VFUN active (Object_ID object) -> BOOLEAN active: HIDDEN;

INITIALLY TRUE;

 VFUN access_matrix() -> Accesses accesses: HIDDEN;
INITIALLY FORALL Access a: a INSET accesses => active(a.object);

 OFUN give_access(Subject_ID giver; Access access);
ASSERTIONS active(access.object) = TRUE;
EFFECTS `access_matrix() = access_matrix() UNION (access);

 END_MODULE

Example: Enhanced Hierarchical
Development Methodology

 Based on HDM

 A general purpose design and implementation methodology

 Goal was

 To mechanize and formalize the entire development process

 Design specification and verification + implementation

specification and verification

 Successive refinement of specification

 Proof-based method

 Uses Boyer-Moore Theorem Prover

Example: Enhanced Hierarchical
Development Methodology

 Hierarchical approach
 Abstract Machines defined at each level

 Hierarchy specification in in Hierarchy Specification Language (HSL)

 AM specification written in SPECIAL

 Mapping Specifications in SPECIAL

 define functionality in terms of machines at next lower layers

 Hierarchy Consistency Checker
 validates consistency of HS, Module Spec and Mapping Spec

 Compiler : programs for each AM in terms of calls to lower level
 that maps a program into a Common Internal Form (CIF) for HDM tools

 Two levels of spec – translated to CIF  correctness is verified (BMT)

 Successfully used on MLS systems

 Few formal policy specifications outside MLS domain

Levels of Abstraction

Formal Top Level

Spec (FTLS)

HDM Verification

Used for MLS

Using the mapping 2 level

specifications Translated to

intermediate form

Boyer-Moore Theorem Prover

 Fully automated

 No interface for comments or directions

 User provides all the theorems, axioms, lemmata,

assertions
 LISP like notation

 Very difficult for proving complex theorems

 Key idea

 Used extended propositional calculus

 Efficiency – to find a proof.

Boyer-Moore Theorem Prover

 Steps:

 Simplify the formula
 Apply axioms, lemmata, theorems

 Reformulate the formula with equivalent terms
 E.g., replace x-1, x by y and y+1

 Substitute equalities

 Generalize the formula by introducing variables

 Eliminate irrelevant terms

 Induct to prove

Gypsy verification
environment (GVE)

 Based on Pascal
 Formal proof and runtime validation support

 Focused on Implementation proofs rather than
design proofs
 verification of specification and its implementation

 Also to support incremental development

 Specifications defined on procedures
 Entry conditions, Exit conditions, Assertions

 Proof techniques ensure exit conditions /
assertions met given entry conditions

 Also run-time checking

Other Examples

 Prototype Verification System (PVS)

 Based on EHDM

 Interactive theorem-prover

 Symbolic Model Verifier

 Temporal logic based / Control Tree Logic

 Notion of “path” – program represented as tree

 Statements that condition must hold at a future state, all

future states, all states on one path, etc.

Other Examples

 Formal verification of protocols

 Naval Research Laboratory Protocol Analyzer

 For Crypto protocols

 Key management (distribution)

 Authentication protocols

 Verification of libraries
 Entire system not verified

 But components known okay

 High risk subsystems

Protocol Verification

 Generating protocols that meet security

specifications

 BAN Logic

 Believes, sees, once said

 Assumes cryptography secure

 But cryptography is not enough

