S — e —

Formal Verification/Methods

Lecture 9
Feb 26, 2013

Formal Verification

e Formal verification relies on
Descriptions of the properties or requirements
Descriptions of systems to be analyzed, and

Verification techniques showing requirements are
met by system description

Rely on underlying mathematical logic system and the
proof theory of that system

Formal Approach

e Formal Models use language of mathematics

Specification languages
For policies, models and system descriptions
Well-defined syntax and semantics — based on maths

e Current trends - two general categories

Inductive techniques

Model checking techniques

Differences based on

« Intended use, degree of automation, underlying logic
systems, etc.

Verification techniques — eet
Criteria for classifying

e Proof-based vs model-based

Proof-based

« Formula define premises : embody the system description
« Conclusions: what needs to be proved

Proof shows how to reach conclusions from premises
« Intermediate formulas need to found to reach conclusions

Model-based:
Premises and conclusions have same truth table values

e Degree of automation
manual or automated (degree) & inbetween

Boolean

Propositional
logic

“true” statements
derived from axiom set
under these rules

apply rule

And

Or

Not
Implies

Propositional
AXioms
Inference rules

Verification techniques —
Criteria for classifying

e Full verification vs property verification
Does methodology model full system?
Or just prove certain key properties?

Examples?

¢ Intended domain of application
HW/SW, reactive, concurrent

e Predevelopment vs post development

As design aid or after design

Inductive verification

e Typically more general

e Uses theorem provers
E.g., uses predicate/propositional calculus
A sequence of proof steps starting with premises
of the formula and eventually reaching a
conclusion

e May be used
To find flaws in design
To verify the properties of computer programs

Model-checking

e Systems modeled as state transition systems
Formula may be true in some states and false in others
Formulas may change values as systems evolve

e Properties are formulas in logic
Truth values are dynamic (Temporal logic)

e Show: Model and the desired properties are
semantically equivalent
Model and properties express the same truth table
e Often used after development is complete but
before a product is released to the general market
Primarily for reactive, concurrent systems

Formal Verification:
Components

e Formal Specification

Defined in unambiguous (mathematical) language

Restricted syntax, and well-defined semantics based

on established mathematical concepts

« Example:?

e Implementation Language
Generally somewhat constrained

e Formal Semantics relating the two

e Methodology to ensure implementation ensures

specifications met

Specification Languages

e Specify WHAT, not HOW
Valid states of system
Pre/Post-conditions of operations
e Non-Procedural

e Typical Examples:
Propositional / Predicate Logic
Temporal Logic (supports before/after conditions)
Set-based models (e.g., formal Bell-LaPadula)

Example: oss
Primitive commands (HRU)

Creates new row, column in ACM;

Create subject s . . :
) s does not exist prior to this

Creates new column in ACM

Create object o . . :
J 0 does not exist prior to this

Adds r right for subject s over object o

Enter rinto a[s, o A
[s. o] Ineffective if r is already there

Delete r from a[s, 0] | Removes r right from subject s over object o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM

11

Example: oss
Primitive commands (HRU)

Creates new row, column in ACM;

Create subject s _ _ _
s does not exist prior to this

Precondition: s ¢ S
Postconditions:
S =SU{s},0=0U{s}

(Vy e O')[a’[s, y] = 9] (row entries for s)
(Vx e SH[a’[x, s] =] (column entries for s)
(Vx e S)(Vy € O)[a’[x, y] = a[x, y]]

Safety Theorems

12

Specification Languages |

e Must support machine processing
e Strong typing
e Model input/output/errors

e Example: SPECIAL (from SRI)

e First order logic based

e Strongly typed
VFUN: describes variables (state)
OFUN/OVFUN: describe state transitions

Example: SPECIAL

e MODULE Bell LaPadula Model Give _read

e Types
Subject_ID: DESIGNATOR;
Object_ID: DESIGNATOR;
Access_Mode: {READ, APPEND, WRITE};

Access: STRUCT_OF(Subject_ID subject; Object_ID object;
Access_Mode mode);

e Functions

VFUN active (Object_ID object) -> BOOLEAN active: HIDDEN;
INITIALLY TRUE;

VFUN access_matrix() -> Accesses accesses: HIDDEN;

INITIALLY FORALL Access a: a INSET accesses => active(a.object);

OFUN give_access(Subject_ID giver; Access access);
ASSERTIONS active(access.object) = TRUE;
EFFECTS "access_matrix() = access_matrix() UNION (access);

e END _MODULE

Example: Enhanced Hierarchical |
Development Methodology

e Based on HDM
A general purpose design and implementation methodology
Goal was
To mechanize and formalize the entire development process
Design specification and verification + implementation
specification and verification
= Successive refinement of specification

e Proof-based method
Uses Boyer-Moore Theorem Prover

Example: Enhanced Hierarchical | ee¢
Development Methodology

e Hierarchical approach
e Abstract Machines defined at each level
Hierarchy specification in in Hierarchy Specification Language (HSL)
AM specification written in SPECIAL

o Mapping Specifications in SPECIAL

define functionality in terms of machines at next lower layers
e Hierarchy Consistency Checker

validates consistency of HS, Module Spec and Mapping Spec

e Compiler : programs for each AM in terms of calls to lower level
e that maps a program into a Common Internal Form (CIF) for HDM tools
e Two levels of spec — translated to CIF - correctness is verified (BMT)

e Successfully used on MLS systems
o Few formal policy specifications outside MLS domain

Levels of Abstraction s

Requirements

Y

Model

Y

External interfaces
AW

'

Abstract machine
AN

Y

Primitive machine
A€M

The requirements are analyzed and accepted.

The model 15 proven to be internally consistent
and 15 used as a basis for verification of the

lower abstract machines.

The first abstract machine 15 generally the Formal Top Level
external interface specification, often called Spec (FTLS)

a Top Level Specification (TLS) or Formal

TLS (FILS).

Each abstract machine 1s mapped to successively
lowerlevel machines, which represent successively
lower levels of specification of the system.

The lowest-level specification is the so-called

primutive machuse, which 1s some combination of hardware
and software on which the verified system runs,

HDM Verification .

Used for MLS

ettt |

Desionn Specification

ettt |

Abstract machine AMA - " - -~ -~~~ 4—=-—-=——n

i i

Mapping specification

Y

language

e

I
1
1
Intenmediate :‘ CIF || Soumce code
I
1

specifications Translated to

intermediate form Theorem prover —gm| froof results

Abstract machine ANMAE+1 | :
N Verification condition | !
-------------------- : goncrator : Machine code
1 |
Using the mapping 2 level ! + |
: :
|
1

b e e o e e o e o o e e e e ol

Boyer-Moore Theorem Prover

e Fully automated
No interface for comments or directions

User provides all the theorems, axioms, lemmata,
assertions
= LISP like notation

Very difficult for proving complex theorems
e Key idea

Used extended propositional calculus

Efficiency — to find a proof.

Boyer-Moore Theorem Prover |:

o Steps:

o Simplify the formula
« Apply axioms, lemmata, theorems

o Reformulate the formula with equivalent terms
- E.g., replace x-1, x by y and y+1

e Substitute equalities

o Generalize the formula by introducing variables
e Eliminate irrelevant terms

e Induct to prove

Gypsy verification :
environment (GVE)

e Based on Pascal

Formal proof and runtime validation support

Focused on Implementation proofs rather than
design proofs

= verification of specification and its implementation
Also to support incremental development

e Specifications defined on procedures
Entry conditions, Exit conditions, Assertions

e Proof techniques ensure exit conditions /
assertions met given entry conditions
Also run-time checking

Other Examples

e Prototype Verification System (PVS)
Based on EHDM
Interactive theorem-prover

e Symbolic Model Verifier
Temporal logic based / Control Tree Logic
Notion of “path” — program represented as tree

Statements that condition must hold at a future state, all
future states, all states on one path, etc.

Other Examples

e Formal verification of protocols

Naval Research Laboratory Protocol Analyzer

For Crypto protocols
« Key management (distribution)
« Authentication protocols

e Verification of libraries
Entire system not verified
But components known okay

e High risk subsystems

Protocol Verification

e Generating protocols that meet security
specifications
BAN Logic
Believes, sees, once said
e Assumes cryptography secure
But cryptography is not enough

