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Formal Verification 

 Formal verification relies on 

 Descriptions of the properties or requirements 

 Descriptions of systems to be analyzed, and 

 Verification techniques showing requirements are 

met by system description 
 

 Rely on underlying mathematical logic system and the 

proof theory of that system 



Formal Approach 

 Formal Models use language of mathematics 

 Specification languages 

 For policies, models and system descriptions 

 Well-defined syntax and semantics – based on maths 

 Current trends - two general categories 

 Inductive techniques 

 Model checking techniques 

 Differences based on 

 Intended use, degree of automation, underlying logic 

systems, etc. 

 

 



Verification techniques – 

Criteria for classifying 

 Proof-based vs model-based 

 Proof-based 
 Formula define premises : embody the system description 

 Conclusions: what needs to be proved 

 Proof shows how to reach conclusions from premises 

 Intermediate formulas need to found to reach conclusions 

 Model-based:   

 Premises and conclusions have same truth table values 

 Degree of automation 

 manual or automated (degree) & inbetween 

 



Propositional  

logic 

Boolean 

• And 

• Or 

• Not 

• Implies 

Propositional 

• Axioms 

• Inference rules 



Verification techniques – 

Criteria for classifying 

 Full verification vs property verification  

 Does methodology model full system? 

 Or just prove certain key properties? 

 Examples? 

 Intended domain of application 

 HW/SW, reactive, concurrent 

 Predevelopment vs post development 

 As design aid or after design 

 



Inductive verification 

 Typically more general 

 Uses theorem provers 

 E.g., uses predicate/propositional calculus 

 A sequence of proof steps starting with premises 
of the formula and eventually reaching a 
conclusion 

 May be used  

 To find flaws in design 

 To verify the properties of computer programs 



Model-checking 

 Systems modeled as state transition systems 

 Formula may be true in some states and false in others 

 Formulas may change values as systems evolve 

 Properties are formulas in logic 

 Truth values are dynamic (Temporal logic) 

 Show: Model and the desired properties are 

semantically equivalent 

 Model and properties express the same truth table 

 Often used after development is complete but 

before a product is released to the general market 

 Primarily for reactive, concurrent systems 



Formal Verification: 
Components 

 Formal Specification  
 Defined in unambiguous (mathematical) language 

 Restricted syntax, and well-defined semantics based 
on established mathematical concepts 
 Example:? 
 

 Implementation Language 
 Generally somewhat constrained 

 

 Formal Semantics relating the two 
 

 Methodology to ensure implementation ensures 
specifications met 

 



Specification Languages 

 Specify WHAT, not HOW 

 Valid states of system 

 Pre/Post-conditions of operations 

 Non-Procedural 

 Typical Examples: 

 Propositional / Predicate Logic 

 Temporal Logic (supports before/after conditions) 

 Set-based models (e.g., formal Bell-LaPadula) 
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Example: 

Primitive commands (HRU) 

Create subject s 
Creates new row, column in ACM;  

s does not exist prior to this 

Create object o 
Creates new column in ACM 

o does not exist prior to this 

Enter r into a[s, o] 
Adds r right for subject s over object  o 

Ineffective if r is already there 

Delete r from a[s, o] Removes r right from subject s over object  o 

Destroy subject s Deletes row, column from ACM; 

Destroy object o Deletes column from ACM 
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Example: 

Primitive commands (HRU) 

Create subject s 
Creates new row, column in ACM;  

s does not exist prior to this 

Precondition: s  S 

Postconditions: 

S´ = S { s }, O´ = O { s } 

 

(y  O´)[a´[s, y] = ] (row entries for s) 

(x  S´)[a´[x, s] = ] (column entries for s) 

(x  S)(y  O)[a´[x, y] = a[x, y]] 

Safety Theorems 



Specification Languages 

 Must support machine processing 

 Strong typing 

 Model input/output/errors 

 Example:  SPECIAL  (from SRI) 

 First order logic based 

 Strongly typed 

 VFUN:  describes variables (state) 

 OFUN/OVFUN:  describe state transitions 



Example:  SPECIAL 
 MODULE Bell_LaPadula_Model Give_read 

 Types 
 Subject_ID:  DESIGNATOR; 

 Object_ID:    DESIGNATOR; 

 Access_Mode:  {READ, APPEND, WRITE}; 

 Access:  STRUCT_OF(Subject_ID subject; Object_ID object; 
Access_Mode mode); 

 Functions 
 VFUN active (Object_ID object) -> BOOLEAN active:  HIDDEN; 

INITIALLY TRUE; 

 VFUN access_matrix() -> Accesses accesses: HIDDEN; 
INITIALLY FORALL Access a: a INSET accesses => active(a.object); 

 OFUN give_access(Subject_ID giver; Access access); 
ASSERTIONS active(access.object) = TRUE; 
EFFECTS `access_matrix() = access_matrix() UNION (access); 

 END_MODULE 



Example:  Enhanced Hierarchical 
Development Methodology 

 Based on HDM 

 A general purpose design and implementation methodology 

 Goal was 

 To mechanize and formalize the entire development process 

 Design specification and verification + implementation 

specification and verification 

 Successive refinement of specification 

 Proof-based method 

 Uses Boyer-Moore Theorem Prover 



Example:  Enhanced Hierarchical 
Development Methodology 

 Hierarchical approach 
 Abstract Machines defined at each level 

 Hierarchy specification in in Hierarchy Specification Language (HSL) 

 AM specification written in SPECIAL 

 Mapping Specifications in SPECIAL 

 define functionality in terms of machines at next lower layers 

 Hierarchy Consistency Checker  
 validates consistency of HS, Module Spec and Mapping Spec 

 Compiler : programs for each AM in terms of calls to lower level 
 that maps a program into a Common Internal Form (CIF) for HDM tools 

 Two levels of spec – translated to CIF  correctness is verified (BMT) 

 Successfully used on MLS systems 

 Few formal policy specifications outside MLS domain 



Levels of Abstraction 

Formal Top Level 

Spec (FTLS) 



HDM Verification 

Used for MLS 

Using the mapping 2 level 

specifications Translated to 

intermediate form 



Boyer-Moore Theorem Prover 

 Fully automated 

 No interface for comments or directions 

 User provides all the theorems, axioms, lemmata, 

assertions 
 LISP like notation 

 Very difficult for proving complex theorems 

 Key idea 

 Used extended propositional calculus 

 Efficiency – to find a proof. 



Boyer-Moore Theorem Prover 

 Steps: 

 Simplify the formula 
 Apply axioms, lemmata, theorems 

 Reformulate the formula with equivalent terms 
 E.g., replace x-1, x by y and y+1 

 Substitute equalities 

 Generalize the formula by introducing variables 

 Eliminate irrelevant terms 

 Induct to prove 



Gypsy verification 
environment (GVE) 

 Based on Pascal 
 Formal proof and runtime validation support 

 Focused on Implementation proofs rather than 
design proofs  
 verification of specification and its implementation 

 Also to support incremental development 

 Specifications defined on procedures 
 Entry conditions, Exit conditions, Assertions 

 Proof techniques ensure exit conditions / 
assertions met given entry conditions 

 Also run-time checking 
 



Other Examples 

 Prototype Verification System (PVS) 

 Based on EHDM 

 Interactive theorem-prover 

 Symbolic Model Verifier 

 Temporal logic based  / Control Tree Logic 

 Notion of “path” – program represented as tree 

 Statements that condition must hold at a future state, all 

future states, all states on one path, etc. 



Other Examples 

 Formal verification of protocols 

 Naval Research Laboratory Protocol Analyzer 

 For Crypto protocols 

 Key management (distribution) 

 Authentication protocols 

 Verification of libraries 
 Entire system not verified 

 But components known okay 

 High risk subsystems 



Protocol Verification 

 Generating protocols that meet security 

specifications 

 BAN Logic 

 Believes, sees, once said 

 Assumes cryptography secure 

 But cryptography is not enough 


