
IS 2620: Developing Secure Systems

Building Security In

Lecture 2

Jan 15, 2013

Software Security

 Renewed interest

 “idea of engineering software so that it continues

to function correctly under malicious attack”

 Existing software is riddled with design flaws and

implementation bugs

 “any program, no matter how innocuous it seems,

can harbor security holes”

 (Check the CBI report)

Software Problem

 More than half of the vulnerabilities are due to buffer
overruns

 Others such as race conditions, design flaws are
equally prevalent

vulnerabilities

Reported by CERT/CC

Software security

 It is about

 Understanding software-induced security risks
and how to manage them

 Leveraging software engineering practice,

 thinking security early in the software lifecyle

 Knowing and understanding common problems

 Designing for security

 Subjecting all software artifacts to thorough
objective risk analyses and testing

 It is a knowledge intensive field

Trinity of trouble

Bigger problem today .. And growing

 Three trends

 Connectivity

 Inter networked

 Include SCADA (supervisory
control and data acquisition
systems)

 Automated attacks, botnets

 Extensibility

 Mobile code – functionality
evolves incrementally

 Web/Os Extensibility

 Complexity

 XP is at least 40 M lines of code

 Add to that use of unsafe
languages (C/C++)

It boils down to …

more code,

 more bugs,

 more security problems

Security problems in software

 Defect
 implementation and

design vulnerabilities

 Can remain dormant

 Bug
 An implementation level

software problem

 Flaw
 A problem at a deeper

level

 Bugs + Flaws
 leads to Risk

Bug Flaw

Buffer overflow: stack smashing

Buffer overflow: one-stage attacks

Buffer overflow: string format attacks

Race conditions: TOCTOU

Unsafe environment variables

Unsafe system calls (fork(), exec(),

system())

Incorrect input validation (black list vs.

white list

Method over-riding problems

(subclass issues)

Compartmentalization problems in

design

Privileged block protection failure

(DoPrivilege())

Error-handling problems (fails open)

Type safety confusion error

Insecure audit log design

Broken or illogical access control

(role-based access control [RBAC]

over tiers)

Signing too much code

Solution …

Three pillars of security

Pillar I:

Applied Risk management

 Architectural risk analysis

 Sometimes called threat modeling or security

design analysis

 Is a best practice and is a touchpoint

 Risk management framework

 Considers risk analysis and mitigation as a full life

cycle activity

Pillar II:

Software Security Touchpoints

 “Software security is not security software”
 Software security

 is system-wide issues (security mechanisms and design security)

 Emergent property

 Touchpoints in order of effectiveness (based on experience)
 Code review (bugs)

 Architectural risk analysis (flaws)
 These two can be swapped

 Penetration testing

 Risk-based security tests

 Abuse cases

 Security requirements

 Security operations

Pillar II: (contd.)

 Many organization

 Penetration first

 Is a reactive approach

 CR and ARA can be switched however

skipping one solves only half of the problem

 Big organization may adopt these touchpoints

simultaneously

Pillar II: (contd.)

Software security best practices applied to various software artifacts

Pillar II: (contd.)

Microsoft’s move ..

Pillar II: (contd.)

System-wide

 Issue

Emergent

Property

Software Security

account for

Security Mechanisms

Design for Security

Process models

Apply Security Touchpoints
(Process-Agnostic)

iCMM

XP
RUP

CMMI

Pillar III:

Knowledge

 Involves

 Gathering, encapsulating, and sharing security knowledge

 Software security knowledge catalogs

 Principles

 Guidelines

 Rules

 Vulnerabilities

 Exploits

 Attack patterns

 Historical risks

Can be put into three categories

Prescriptive knowledge

Diagnostic knowledge

Historical knowledge

Pillar III: Knowledge catalogs

to s/w artifacts

Risk management framework:

Five Stages

 RMF occurs in parallel with SDLC activities

Understand

the Business

context

Identify

the Business

and Technical

Risk

 Artifact Analysis

Synthesize and

Rank the Risks

Define the Risk

Mitigation

Strategy

Carry out fixes

And validate

Business

Context

1 2 3 4

5

Measurement and reporting

Stage 1:

Understand Business Context

 Risk management
 Occurs in a business context

 Affected by business motivation

 Key activity of an analyst
 Extract and describe business goals – clearly

 Increasing revenue; reducing dev cost; meeting SLAs;
generating high return on investment (ROI)

 Set priorities

 Understand circumstances

 Bottomline – answer the question
 who cares?

Stage 2: Identify the business

& technical risks

 Business risks have impact

 Direct financial loss; loss of reputation; violation of

customer or regulatory requirements; increase in

development cost

 Severity of risks

 Should be capture in financial or project

management terms

 Key is –

 tie technical risks to business context

Stage 3: Synthesize and rank

the risks

 Prioritize the risks alongside the business

goals

 Assign risks appropriate weights for

resolution

 Risk metrics

 Risk likelihood

 Risk impact

 Number of risks mitigated over time

Stage 4: Risk Mitigation

Strategy

 Develop a coherent strategy

 For mitigating risks

 In cost effective manner; account for

 Cost Implementation time

 Completeness Impact

 Likelihood of success

 A mitigation strategy should

 Be developed within the business context

 Be based on what the organization can afford, integrate

and understand

 Must directly identify validation techniques

Stage 5: Carry out Fixes and

Validate

 Execute the chosen mitigation strategy
 Rectify the artifacts

 Measure completeness

 Estimate

 Progress, residual risks

 Validate that risks have been mitigated

 Testing can be used to demonstrate

 Develop confidence that unacceptable risk does

not remain

RMF - A Multi-loop

 Risk management is a continuous process
 Five stages may need to be applied many times

 Ordering may be interleaved in different ways
 Risk can emerge at any time in SDLC

 One way – apply in each phase of SDLC

 Risk can be found between stages

 Level of application
 Primary – project level

 Each stage must capture complete project

 SDLC phase level

 Artifact level

 It is important to know that RM is
 Cumulative

 At times arbitrary and difficult to predict

Seven Touchpoints

Cost of fixing defect at each

stage

Code review

 Focus is on implementation bugs

 Essentially those that static analysis can find

 Security bugs are real problems – but architectural flaws

are just as big a problem

 Code review can capture only half of the problems

 E.g.

 Buffer overflow bug in a particular line of code

 Architectural problems are very difficult to find by looking at

the code

 Specially true for today’s large software

Code review

 Taxonomy of coding errors
 Input validation and representation

 Some source of problems
 Metacharacters, alternate encodings, numeric representations

 Forgetting input validation

 Trusting input too much

 Example: buffer overflow; integer overflow

 API abuse
 API represents contract between caller and callee

 E.g., failure to enforce principle of least privilege

 Security features
 Getting right security features is difficult

 E.g., insecure randomness, password management,
authentication, access control, cryptography, privilege
management, etc.

Code review

 Taxonomy of coding errors

 Time and state

 Typical race condition issues

 E.g., TOCTOU; deadlock

 Error handling

 Security defects related to error handling are very common

 Two ways

 Forget to handle errors or handling them roughly

 Produce errors that either give out way too much information or so

radioactive no one wants to handle them

 E.g., unchecked error value; empty catch block

Code review

 Taxonomy of coding errors
 Code quality

 Poor code quality leads to unpredictable behavior

 Poor usability

 Allows attacker to stress the system in unexpected ways

 E.g., Double free; memory leak

 Encapsulation
 Object oriented approach

 Include boundaries

 E.g., comparing classes by name

 Environment
 Everything outside of the code but is important for the security of the

software

 E.g., password in configuration file (hardwired)

Code review

 Static analysis tools

 False negative (wrong sense of security)

 A sound tool does not generate false negatives

 False positives

 Some examples

 ITS4 (It’s The Software Stupid Security Scanner);

 RATS; Flawfinder

Rules overlap

Cigital Static analysis process

Architectural risk analysis

 Design flaws
 about 50% of security problem

 Can’t be found by looking at code

 A higher level of understanding required

 Risk analysis
 Track risk over time

 Quantify impact

 Link system-level concerns to probability and impact
measures

 Fits with the RMF

ARA within RMF

Understand

the Business

context

Synthesize and

Rank the Risks

Define the Risk

Mitigation

Strategy

Validate the

artifacts

Business

Context

1 4 5

7

Fix the artifacts

6

Validation loop

Identify

the Business

Risk

Artifact Analysis

2

Identify

the Technical

Risk

Artifact Analysis

3

Technical

expertise

Measurement and reporting

Initiate process

improvement

ARA process

 Figure 5-4

ARA process

 Attack resistance analysis

 Steps

 Identify general flaws using secure design literature and

checklists

 Knowledge base of historical risks useful

 Map attack patterns using either the results of abuse case

or a list of attack patterns

 Identify risk based on checklist

 Understand and demonstrate the viability of these known

attacks

 Use exploit graph or attack graph

- Note: particularly good for finding known problems

ARA process

 Ambiguity analysis
 Discover new risks – creativity requried

 A group of analyst and experience helps – use multiple points of view
 Unify understanding after independent analysis

 Uncover ambiguity and inconsistencies

 Weakness analysis
 Assess the impact of external software dependencies

 Modern software
 is built on top of middleware such as .NET and J2EE

 Use DLLs or common libraries

 Need to consider
 COTS

 Framework

 Network topology

 Platform

 Physical environment

 Build environment

Software penetration testing

 Most commonly used today

 Currently
 Outside->in approach

 Better to do after code review and ARA

 As part of final preparation acceptance regimen

 One major limitation

 Almost always a too-little-too-late attempt at the end of a
development cycle
 Fixing things at this stage

 May be very expensive

 Reactive and defensive

Software penetration testing

 A better approach
 Penetration testing from the beginning and throughout the

life cycle

 Penetration test should be driven by perceived risk

 Best suited for finding configuration problems and other
environmental factors

 Make use of tools
 Takes care of majority of grunt work

 Tool output lends itself to metrics

 Eg.,
 fault injection tools;

 attacker’s toolkit: disassemblers and decompilers; coverage tools
monitors

Risk based security testing

 Testing must be

 Risk-based

 grounded in both the system’s architectural reality
and the attacker’s mindset

 Better than classical black box testing

 Different from penetration testing

 Level of approach

 Timing of testing

 Penetration testing is primarily on completed software in
operating environment; outside->in

Risk based security testing

 Security testing

 Should start at feature or component/unit level

testing

 Must involve two diverse approaches

 Functional security testing

 Testing security mechanisms to ensure that their

functionality is properly implemented

 Adversarial security testing

 Performing risk-based security testing motivated by

understanding and simulating the attacker’s approach

Abuse cases

 Creating anti-requirements

 Important to think about

 Things that you don’t want your software to do

 Requires: security analysis + requirement analysis

 Anti-requirements

 Provide insight into how a malicious user, attacker,
thrill seeker, competitor can abuse your system

 Considered throughout the lifecyle

 indicate what happens when a required security function is
not included

Abuse cases

 Creating an attack model

 Based on known attacks and attack types

 Do the following

 Select attack patterns relevant to your system – build

abuse case around the attack patterns

 Include anyone who can gain access to the system

because threats must encompass all potential sources

 Also need to model attacker

Abuse cases

 Figure 8-1

Security requirements and

operations

 Security requirements

 Difficult tasks

 Should cover both overt functional security and
emergent characteristics

 Use requirements engineering approach

 Security operations

 Integrate security operations

 E.g., software security should be integrated with
network security

