- — — D — e

UMLSec
Lecture 10 E:‘

March 19, 2013

Objective 2o

e Overview of UMLSec

e How UML has been extended with security
construct

e Some security constructs in UMLSec
e Validation of design

e Acknowledgement: Courtesy of Jan Jurgens

Quality vs. cost

e Systems on which human life and commercial
assets depend need careful development.

e Systems operating under possible system failure
or attack need to be free from weaknesses/flaws

e Correctness in conflict with cost.

e Thorough methods of system design not used If

too expensive.

Problems oot

e Many flaws found in designs of security-
critical systems, sometimes years after
publication or use.

e Spectacular Example (1997):

e NSA hacker team breaks into U.S. Department of
Defense computers and the U.S. Electric power
grid system.

e Simulates power outages and 911 emergency
telephone overloads in Washington, D.C..

Causes | o

e Designing secure systems correctly is difficult.

e Even experts may fail:
— Needham-Schroeder protocol (1978)
— attacks found 1981 (Denning, Sacco), 1995 (Lowe)

e Designers often lack background in security.
e Security as an afterthought.

Ccauses |l o

e “Blind” use of mechanisms:

e Security often compromised by circumventing (rather
than breaking) them.

e Assumptions on system context, physical
environment.

“Those who think that their problem can be solved by
simply applying cryptography don't understand
cryptography and don't understand their problem”
(Lampson, Needham).

Previous approaches

e "Penetrate-and-patch”: unsatisfactory.

e Insecure
e damage until discovered
e disruptive

e distributing patches costs money, destroys
confidence, annoys customers

e Traditional formal methods: expensive.
e training people
e constructing formal specifications.

Holistic view on Security 2ot

e Saltzer, Schroeder 1975

e “An expansive view of the problem is most
appropriate to help ensure that no gaps appear in
the strategy”

e But “no complete method applicable to the
construction of large general-purpose systems
exists yet” (since 1975)

Model-based Security

e Goal:

e Make the transition from
human ideas to executed
systems easy

e Increase quality/assurance
with bounded time-to-market
and cost.

Relatively abstract

Goal: Secure by Design

Consider critical properties

e from very early stages

e Within development context
e taking an expansive view

e seamlessly throughout the development

lifecycle.

High Assurance/Secure design by model analysis.
High Assurance/Secure implementation by test

generation.

Model-based Security

Engineering 2ot

Combined strategy:

e Verify models against
requirements

e Generate code from models
where reasonable

e \Write code and generate
test sequences

Code Gen. | | Test Gen.

Secure by design

e Establish the system fulfills the security
requirements

e At the design level
e By analyzing the model

e Make sure the code Is secure
e Generate test sequences from the model

Using UML 41

e UML

e Provides opportunity for high-quality and cost-
and time-efficient high-assurance systems
development:

e De-facto standard in industrial modeling:
arge number of developers trained in UML.

e Relatively precisely defined
e Many tools (specifications, simulation, ...).

Challenges 2ot

e Adapt UML to critical system application
domains.

e Correct use of UML In the application
domains.

e Conflict between flexibility and unambiguity in
the meaning of a notation.

e Improving tool-support for critical systems
development with UML (analysis, ...).

Requirements on UML
extension

Mandatory requirements:

e Provide basic security requirements such as
secrecy/confidentiality and inteqgrity.

e Allow considering different threat scenarios
depending on adversary strengths.

e Allow including important security concepts (e.g.

tamper-resistant hardware).

e Allow Incorporating security mechanisms (e.g.

access control).

Requirements on UML

extension °

e Provide security primitives
e e.g. (a)symmetric encryption

e Allow considering underlying physical security.

e Allow addressing security management
e e.g. secure workflow

e Optional requirements:

e Include domain-specific security knowledge
Java, smart cards, CORBA, ...

UML Extension Goals oot

e Extensions for high assurance systems
development.

evaluate UML specifications for weaknesses in design

encapsulate established rules of prudent
critical/secure systems engineering as checklist

makes available to developers not specialized In
critical systems

consider critical requirements from early design
phases, in system context

make certification cost-effective

The High-assurance design

UML profiles :

e Recurring critical security requirements,
fallure/adversary scenarios, concepts offered as
stereotypes with tags at component-level.

e Use associated constraints to evaluate
specifications and indicate possible UML Profile
weaknesses.

e Ensures that UML specification provides desired level
of critical requirements.

e Link to code via test-segquence generation.

UML - Review oot

Unified Modeling Language (UML):

e visual modeling for OO systems

e different views on a system

e high degree of abstraction possible
e de-facto industry standard (OMG)
e standard extension mechanisms

Summary of UML Components

e Use case diagram

e Sequence diagram

— Interaction by message

e discuss requirements of exchange
the system

e Class diagram

system

* Deployment diagram
— physical environment

e (data structure of the . Package/Subsystem
— collect diagrams for system

e Statechart diagram part
e dynamic component
b_ehaViO_r Current: UML 1.5 (as of 210)
e Activity diagram [http://www.omg.org/spec/UML/2.3/]

e flow of control between
components

UML Extension mechanisms

e Stereotype
e specialize model element using «label».
e Adds security relevant information to model elements

e Tagged value
e attach {tag=value} pair to stereotyped element

e Constraint
e refine semantics of stereotyped element.

o Profile:
e gather above information.

Stereotypes

e Central idea — stereotypes

e Add security relevant information to model
elements of three kinds

Security assumptions on the physical level of the
systems: e.qg., «Internet»

Security requirements on the logical structure of
the system, e.g.,

«Secrecy» or

On specific data values, e.qg., «critical»

000
0000
0000
o000
o0
Stereotypes :
e Security policies that the system parts are supposed
to obey; e.q.
«fair exchange», «secure links», «data security», «no
down-flow»

e First two cases
o Simply add some additional information to a model

e Third one

e Constraints are associated that needs to be
satisfied by the model

UML run-through: Class

diagrams

Clsl {guarded,GObj}

Attl: AttTyl

Opl(argl:ATyl1):RTyl

Dependency

<<call>>

Class

e Class structure of system.

e Classes with attributes and operations/signals;
e relationships between classes.

Cls? {signed,Key]

Att2: AutTy2

Op2(arg2:ATy2):RTy2

UML run-through: 1
Dependency

Uli=User

first=rafael
Parties last=calvo

#

~

- | email=rafa@yahoo.com

#

supertype dependency’

<<instance ofz=

y Ul=User
subtype L first=John

, - 4 last=Peters

User . email=john@yahoo.com

Ty

_ e ' Ui=User
<<instance of>> _ | & ct_Patrick
last=Lee

email=biglee @ aol.com

UML run-through: Statecharts |:

diti
[-~ }message(x)[con llon](

/action
Transition

| InitialSt ate},._.

State Start marker

e Dynamic behavior of individual component.
e |nput events cause state change and output

actions.

e[g]/a

event[guard]/action

UML run-through: Sequence
Diagrams
ObjEEt .C:Client. :S:Sewer

Messages
init(N;, K¢, SiEnl{—l (C:Kg))

Lifeline ‘ > N = arge 11
(I Sien L (KN
"ESF".\{ IEN ke LMY JrK!s K' = args 1.2

SignH_ll:S:: HSJH
K" = sndl:z"mHCA[argc 1.2/ CA !

[Eod(&ty (args 13)) = K

, <
ko i= Bt (St (Dec g (argc 1))

[fﬂt':f}"tﬁc,ﬁ':afﬂc,l,zﬁh= SA xehdi{shi)

sn-:ll:f:-rtﬁﬁI:PECHC—U:E“’EC,M:'” = Njj

e Describe interaction between objects or

components via message exchange.

Guards

UML run—=through: Activity sels

diagrams :

Swimlanes
Objects C:Card L:LSAM [:Issuer
For each Syinchronization

component or

. bar
ObjeCt States |:u‘l1tl}'.-"|11: {Ji entry/n:—) “H....l

Transitions

entry/ entry/
nt:=nt+1 n:—ntl

[nt=Timit | [n=limit]

action state___
Sub-activity
e Specify the control flow between components
within the system, at higher degree of abstraction
than state-charts and sequence diagrams.

UML Deployment diagrams :

Node

Location

CompName

Component

Physical Link
...... <<kindOfLink>>

o=
-

I .
-

<<kindOfDep>>
/ Dependency

Logical
(connections)

e Describe the physical layer on which the
system Is to be implemented.

UML Package

Name

Operations

slnterfaces
sand_on_channel

s=ndid:Data)

.ﬁ\.
Interface™..

Diagrams

Channel

«data securitys I_LI

send(d:Data)

recervel |:Data

S:Sender | R:Receiver

Sl

(s |

Sendernode

. S2nde oo mp
1 S:Sender

. sendid)
Wait Send
Sansmatid)
Sender .criticals Receiver «critical
jecrecy=d) | ____ = lzecrecy=d"|
ssends (1 Data
imoeivel i
sendid: Data) ttansmitid"-Data |
Receivernods
Receaivemomp
-encrypled- R:Raceiver
S R R — s = - il
-~ wgEfdw "

e May be used to organize model elements into

groups within a physical system

Basic Security Requirements

Secrecy
/\

[

@ | |nformation

I

Integrity

!

Information

i

Availability

Information

it

Basic Security Requirements |l |

Authenticity Nonrepudiability
_ Sender
Information e

Sender

000
0000
| X N
o000
| X J
UMLseC profile :
Stereotype Base Class Constraints Description
fair exchange subsystem st..a.rt. stop, | after start eventually reach stop enforce fair exchange
aﬂluemaa}-'
provable subsystem | action, cert, | action is non-deniable non-repudiation requirement
adversary
rbac subsystem | protected, only permitted activities executed enforces role-based access control
role, right
Internet link Internet connection
encrypted link encrypted connection
LAN link, node LAN connection
wire link wire
smart card no<le smart card node
POS device no<de POS device
issuer node no<de issuer node
integrity dependency assumes integrity
high dependency high sensitivity
critical object, SeCTeCy, critical object
subsystem | integrity,
authenticity,
high, fresh
secure links subsystem | adversary dependency security matched by links | enforces secure communication links
secure dependency | subsystem tcally, €send I‘ESPE!:‘L data security structural interaction data security
data security subsystem | adversary, prc-nr.les secrecy, Wtegrity, authenticity, | basic data security requirements
integ., auth, | freshness
no down-flow subsystem prevents down-flow information flow condition
no up-flow subsystem prevents up-flow information flow condition
guarded access subsystem guarded objects accessed through guards | access control using guard objects
guarded object guard guarded object.

Fig. 4.1. UM Lsec stereotypes

UMLsec profile

Tag Stereotype Tvpe Multip. Drescription
start fair exchange | state = start states
sStop fair exchange | state * stop states
adversary fair exchange adversarvy model 1 adversarv tvpe
action provable state * provable action
cert provahle EXPression * certificate
adversary provahle adversarv model * adversarv tvpe
protected rbhac state * protected resources
role rbac (actor, role) * assign role to actor
right rhac (role, right) * assign right to role
SECTecy critical data * secrecy of data
integrity critical (variable, * integrity of data
expression)
anthenticity | critical (data, origin) * anthenticity of data
high critical mMessage * high-level message
iresh critical data * fresh data
adversary seciure links adversarv model 1 adversarv tvpe
adversary data security adversarv model 1 adversarv tvpe
integrity data security (variahle, - integrity of data
expression)
aunthenticity | data security (data, origin) authenticity of data
guard guarded object name 1 guard object

Fig. 4.2, UMLsec tags

<<Internet>>, <<encrypted>>, | se:

e Kinds of communication links (resp. system
nodes)
e For adversary type A, stereotype s, have

e Threats, (s) & {delete, read, insert, access} of
actions that adversaries arekgpable of. \

Stereotype Threats g, \ _
- Directly access
Default *|nternet {delete, read, mserf}\ a physical node
9
attacker | *encrypted {delete}
_ L AN %)
Insider %) .
attacker? smart card Eor links

Requirements with use case

diagrams

Sales application

X

Customer

buys goods

sells goods f%?

Business

e Capture security requirements In use case

diagrams.
e Constraint:

e need to appear in corresponding activity diagram.

«falr exchange» 2o

e Ensures generic fair exchange condition
e Avoid cheating

e Constraint:

e after a {start} state in activity diagram is reached,
eventually reach {stop} state.

e Cannot be ensured for systems that an
attacker can stop completely.

«falr exchange»

e Customer buys a good
from a business.

e Fair exchange means:

e after payment,
customer is
eventually either
delivered good or
able to reclaim
payment.

“Pay” may be «provable»

0000
[X X X
XX
[X |
[]
Purchase «fanr exclnnge» ’_I_‘
tstart={ Pay} | +stop—{ Reclaim,Pick up]
Customer Buamess
(Request gDDcD
Pay
(Wait until
dc]n ery due ;
- - Deliver
undelivered -]n ered
Pick up
Ru.ll m |

] 0000
<<secure links>> 5555‘
Example 44

e Ensures that physical layer meets security
requirements on communication.

e Constraint:

e for each dependency d with stereotype s in {
<<secrecy>>, <<integrity>>, <<high>>} between
components on nodes n, m, have a communication
link | between n and m such that
o if s = <<high>>: have Threats, (l) is empty.

o If s = <<secrecy>>: have read ¢ Threats, (I).
o If s = <<integrity>> : have insert ¢ Threats, (l).

<<secure links>>

Example

Remote access

«secure linksy

-~

client machine
get_passwor

ﬁl._..

client apps
browser

{BECTECY »
..........

«cally

L]

-

server machine

web server

«Internety

access control

L

e Given default adversary type, Is <<secure
links>> provided ?

<<secure links>>
Example

Remote access

wsecure linksy

client machine
.
cel_passwor

client apps
browser

-
““““““
-

wealls

-

server machine

'i"_'l-_lv-'ch server

alnlernets

=

e Given default adversary type, constraint

for stereotype <<secure links>> violated:
e According to the Threats,, (Internet) scenario

(read eThreats ., (Internet)),

e <<lInternet>> link does not provide secrecy against default

adversary.

<<secure dependency>> | <-

e Ensure that <<call>> and <<send>>
dependencies between components respect
security requirements on communicated data
given by tags {secrecy}, {integrity} and {high}.

e Constraint:

e for <<call>> or <<send>> dependency from C to D (for
{secrecy}):
e Msgin D is {secrecy}in C if and only if also in D.

e Ifmsgin D is {secrecy} in C, dependency is stereotyped
<<secrecy>>.

Example

<<secure dependency>>

Key generation

newkey(): Key

Random generator

seed: Real

random(): Real

«secure dependency» IJ'I

«interfacey
Random number

random(): Real [

ﬂ F
*' “‘
e iy
weall»

Key generator «critical»

tsecrecy={newkey(),random()}

*bnewkey(): Key

<<secure dependency>> provided ?

Example

<<secure dependency>>

Key generation

«secure dependency» I_I_I

newkey(): Key

Random generator

«interface»
Random number

seed: Real

random(): Real

Key generator «critical»
{secrecy={newkey(),random()}

random(): Real

weall»

»Jewkey(): Key

Violates <<secure dependency>> : Random
generator and <<call>> dependency do not give
security level for random() to key generator.

<<no down-flow>>

e Enforce secure information flow.

e Constraint:

e Value of any data specified in {high} may

Influence only the values of data also specified in

thigh}.

Formalize by referring to formal behavioral

semantics.

o000
(X X X
o000
Example oo
d fl o
<<Nno down-riow=>=>
Customer account N0 down-flow» L,
rm(): Data rmi{¥returni{money) rm{)/return{maoney)
wmix: Data) T
rei): Boolean \
re()returnitrue) . ra() returni alse]
Accountecriticals || N b [wm[:-:]1 0ocy |
: mongy==
thigh={wm,rm,money}} ExtraService ‘] — L MoExtraService
maney: Integer mmneyr;n_(]ney +x b | fmoney:=0

. HE‘I
i) Flgtata money+x Imoney:= [money<=1000]
wm(x: Data) wm[:-:] money+x W)
r¥): Boolean o

<<no down-flow>> provided ?

000
0000
o000
Example °cs
d flow>> S
<<no down-riow
Customer account «N© down-flow» L,
rmi): Data rmi Vreturn{money) rmi)/return{money)
wmix: Data) /f"_"\\ //’ '_"\\
rei): Boolean
,/ re)returndtru E:'\. / re)retu Lﬂ[fﬂlﬁe]\l
Account «criticals || [[} win{x) . N '
) [money==1000]
thigh={wm,rm,money}} ‘ ExtraService }'er — [MoExtraService
maney: Integer j | ﬂn&yﬁn_.:,neyﬂ) | fmoney:=0
, v imoney:=
rom) Flata money+x fmoney:= [money=1000]
wmix: Data) wmix) MONEy+x W)
reil): Boolean — —

e <<no down-flow>> violated: partial information
on input of high wm() returned by non-high rx().

<<data security>>

e Behavior of Subsystem with this tag respects

Security requirements of data marked <<critical>>
enforced against A from deployment diagram.

e Constraints:
Secrecy {secrecy} of data preserved against A
Integrity {integrity} of (v, E) preserved against A
Authenticity {integrity} of (a, 0) prespuras s’

Default (E is not mentioned):
Freshness {fresh} : data in Data U | #Ashouldnotbe able to
f h make the variable v take on
res a value previously known
only to him

Assumption: A does not know data being protected

0000
0000
o000
. o0

. _o_ (concatenation| N O t at I O n e

e head(_) and tail{_) (head and tail of a concatenation)

o {_}_ (encryption)

o Dec_(_) (decryption)

o Sign_(-) (signing)

e Euxl () (extracting from signature)

o Hash(.) (hashing)

by factoring out the equations:

o Decp1({E}k) = E (for all E € Exp and K € Keys)
o Cilp(Signg-(E)) = FE (for all E € Exp and K € Keys)
e and the usual laws regarding concatenation, head(). and tail():
— [E1 M Eg:ll M E:g = E1 M {Eg o E:';} {fﬂr all E1,E3,Eﬁ: = EJ{I}]
— head(FE; :: Es) = Fy (for all expressions Fy, Fs € Exp) and
— tail(K = Es) = Ey (for all expressions Ey, Fy € Exp such that there
exist no £, K" with Ey, = E = E'). For all other cases, head() and
tail() are undefined.

For each £ € Exp, we use the following abbreviations:
def

o fst(l) = head(F)

def

e snd(F) = head(tail(£))

de

o thd(E)E head(tail(tail(E))).

TLS goals: Secure
channel between client

and server
-Secrecy and Server Authenticity

Variant of TLS
(INFOCOM 99).
<<data security>>
against default
adversary provided ?

. «data security s
TLg\vanant [adversary_d mt,‘{; ?
_eClient «criticals

C

{secrecy={s_K7'}} {fresh={N_}}
{integrity={s_,MN_ K¢ K7 " Kca.it}
ticity={k,Si)}

S_5_.N_:Data; i:H
Ke, KZ ' Kca : Keys

resp(shrd:Exp,cert: Exp) —

integrity={Ks K5 " Kea k_jl} 1] 1]
M Ks K LKoa ko Keys (tls.C tls. S
init{n:Data, k:kKeys,cert:Exp)
xchd({mstr:Exp)

tls: C:Client S.:Server

entr_,r.-"i::f;‘"

S:Server «critical s

~

{secrecy={K:Lk_}} {fresh={k_}} 0|

kentrg,f.-"l::iarl)- -\Entr_,r.-"jzzjﬂ

5
f

C:Client ‘ S:Server

init{N;, Kc,S'ﬂ:yﬂ,Hc]{c::Kc]:I

re5p({3-fgra.m’_1[kj;; N’j}"'c"
éﬂ..g--nl{c;{s; i KE :I)

>

[snd(Ext KL (cc))

= K"c]
[i'st[ri':nf.ﬁm [Cg]l]l = Si M Xﬂhdl:{'ji}k}
snd(Extg: (Dec,—1(ck)))
=i C
= NI: _— _—
C) 11= respy M ::=inity
CEF;:Z respo K"C::=ir'lit2
Kgi ::=Sl:1:|:l[rf,:.r|f.|-;,,:.,.,L (cs)) Ce = inits
k= f'st{éxf.,(-si ['Dm:KE 1))
ey
clientsite “LAN» serversite “LAN
«ntemets
|—‘—‘ clientapp serverapp
[:;:I C:Client -.usend> | S:Server
% wsend» | %

Violates
{secrecy} of si
against default

adversary.

{authenticity=({k

—— . «Clata SECUHW”
JLS vanant . orcary-detaun -
«critical= >
{fresh=

St

5_5_.MN_:Data;
Ko K- 1,_ Kea: Keys

is T

C:Client ‘ S:Server

{secrecy={K:Lk_}} {fresh={k_}}

-

resp(shrd:Exp,cert:Exp) t"’f: T -
T tr'i:=0 entry]:=0)
«send» | T «send» s i
. wcriticals
S:Server ~ | ~

— —
entryd:=i+1) | | entryj:=j+1

{integrity={Ks. K7 " Kca.k_jt} [i741]
j: B KE,_KE_I:_KCA,R_:KE}"S b #s.C J

xchd{mstr:Exp)

initin:Data k:Keys,cert: Exp)

Li7l]
tls.S

tls: C:Client S, :Server
[init(N;, Ke, Sign, (C::Ke)) [
C
>
resp ({Sf_qu;1 [k N’j}"-'c"
SﬂgnKE;{Si::KE.]) [Sndl:-ﬁ'ﬂ??fwclzccjl:l
< = K]
[fst{Extw, (cs)) = S M =wchd (s)
snd(Extg: (Dec,—1(ck)))
=i C

= NI] L L

C) 11= respy M ::=inity

C5 (1= respa Kg ::=initz

Ks, i=snd(Erlw,, (cs)) Ces:=inits

k= fst{fxEK-s_ {DecKc—: (eI

ey
clientsite wLAN= | serversite «LAN»
- — «ntemets
I—L‘ clientapp serverapp
/ “S-ér:ld;'.------- /

)

Surprise :

e Add knows(K,)A knows(K, ') (general
previous knowledge of own keys).

e Then can derive knows(s) ().

e That is: C||S does not preserve secrecy of s
against adversaries whose initial knowledge
contains K,, K,

e Man-in-the-middle attack.

The attack .

Ni::HC::S’égﬂﬂal(G::I{c‘] N.i.;::I{_,l::Si‘gﬂH?ll(G’::I{_,l]
C - A -8
{Si‘gﬂﬂgl[Ifj::h".i]}_;{:l::ﬂi‘gﬂﬂah(S::I{_g]l
A - — S
{Sigﬂﬂgl (I{j::N.i]}_;{c::Sigﬂﬂgi{fi‘::ﬂ’_g]
C - — A
(s}, (stK;
C A .S

The fix -

C:Client S:Server

init (N, Kc, Sign__1(C:Kc))
\ HC .

N':=argg 1,
£ ol et
resp {Sieny -1 (K 1 Nt Ko K 1= argg) »

] Sign _1(51Kg)]
K= snd (B, (argc,1.2)) Kea) [snd (St (args 1 3)) = K]

k = fst(Sty I:DECHC—IEE”EC,LLHJ
[t (St (arEC,1,2)) = SA
Elﬂ':fﬂﬁﬂ':DEC}{C—l':E“’EC,l,ﬁl]J:NiJ‘”*
th:ll:zi-:tHSIZI"ech_lI:arg.Ll‘l:l:l:l = K¢]

AT

xchd {{s})

Include K’ in signed part

<<guarded access>>

e Ensures that in Java, <<guarded>> classes

only accessed through {guard} classes.

e Constraints:

e References of <<guarded>> objects

remain secret.

e Each <<quarded>> class has {guard}

class.

Application :

e Web-based financial application

Internet Bank: BankEasy
Financial advisor: Finance

e A local client needs to provide applets from these
certain privileges
= Access to local financial data: using GuardedObjects

Guarded objects: StoFi, FInEx, MicSi

Example: applets that are signed by the bank can read and write the
financial data stored in local database, but only between 1 — 2PM

Enforced by FinGd guard object
Slot is fulfilled iff time is 1-2PM

Provides <<guarded
access>> ;

Access to MicSi protected by
MicGd.

slot could be “between 1
and 2PM

LDCMD

getObject(Exp,Exp):Exp JavaSecArch:
StoFi.Read():E [2bj=FinEx]
oFi.Read():Exp retum FExcGo.chkiGd(sig)
StoFi.Write(arg:Exp) fretum({FinEx) -
FinEx.Read():Exp Waitheq | OO [opymeg |-
MicSi.Sign(req:Exp):Exp ret1]|jmih.'1|::3|3 MicGd.c kGdtmﬂ
FQ m
-MGdFi‘eturn'? [obj=MicSi]
[obj=5taFi] /FinGd.chkGdisig)
JavaSechrch MicGd
sl s ——
------- «| limit: Bool
chkGd() ecalln | chkGd()
™ s .
sl . wcall» " "-H:ccalln
FinGd wealls] Excad
slot: Boal
chkGdi) chkGd()

wguardedi™
StoFi uard=FinGd}

«guarded» «guardedi
FinEx {guard=ExcG MicSi uard=MicGd}

1| B
FinData: Exp =TT ExcData: Exp MicrokKey: Keys
Read|):Exp : o : :
Write(arg:Exp) Read():Exp _ Sign(req:Exp):Exp
ExcGd: chkGd(sig)

WaitReq [, | CheckReq

[sig=cert]/raturn
M icGd: chkGd(sig)

WaitReq Eheckﬂeq

[sig=finan » Ilmlt_true] fretum

c'.thd(mg:l

.—a— WaitReq C.heckFieq

[sig=bank » slot=true] fretum

Does UMLsec meet requirements? coc

Security reguirements:. <<secrecy>> ,...
Threat scenarios: Use Threats_g, (ster).
Security concepts: e.g. <<smart card>> .

Security mechanisms: e.g. <<guarded
access>>,

e Security primitives: Encryption built in.
e Physical security: Given in deployment

diagrams.
Security management: Use activity diagrams.

e Technology specific: Java, CORBA security.

Design Principles

e How principles are enforced

Economy of mechanism

Guidance on employment of sec mechanisms to developers — use
simple mechanism where appropriate

Fails-safe defaults
Check on relevant invariants — e.g., when interrupted

Complete mediation
E.g., guarded access
Open design

Approach does not use secrecy of design

Design Principles

Separation of privilege
E.g. guarded objects that check for two signatures
Least privilege

Basically meet the functional requirements as specified; includes an
algorithm to determine least privilege given a functional specification

Least Common Mechanism
Based on the object oriented approach

Psychological acceptability
Emphasis on ease of development through a standard tool extension

