

Lecture 10

March 19, 2013

UMLSec

1

Objective

 Overview of UMLSec

 How UML has been extended with security

construct

 Some security constructs in UMLSec

 Validation of design

 Acknowledgement: Courtesy of Jan Jurgens

Quality vs. cost

 Systems on which human life and commercial

assets depend need careful development.

 Systems operating under possible system failure

or attack need to be free from weaknesses/flaws

 Correctness in conflict with cost.

 Thorough methods of system design not used if

too expensive.

Problems

 Many flaws found in designs of security-
critical systems, sometimes years after
publication or use.

 Spectacular Example (1997):

 NSA hacker team breaks into U.S. Department of
Defense computers and the U.S. Electric power
grid system.

 Simulates power outages and 911 emergency
telephone overloads in Washington, D.C..

Causes I

 Designing secure systems correctly is difficult.

 Even experts may fail:

– Needham-Schroeder protocol (1978)

– attacks found 1981 (Denning, Sacco), 1995 (Lowe)

 Designers often lack background in security.

 Security as an afterthought.

Causes II

 “Blind” use of mechanisms:
 Security often compromised by circumventing (rather

than breaking) them.

 Assumptions on system context, physical
environment.

 “Those who think that their problem can be solved by
simply applying cryptography don`t understand
cryptography and don`t understand their problem”
(Lampson, Needham).

Previous approaches

 “Penetrate-and-patch”: unsatisfactory.

 insecure

 damage until discovered

 disruptive

 distributing patches costs money, destroys
confidence, annoys customers

 Traditional formal methods: expensive.

 training people

 constructing formal specifications.

Holistic view on Security

 Saltzer, Schroeder 1975:

 “An expansive view of the problem is most

appropriate to help ensure that no gaps appear in

the strategy”

 But “no complete method applicable to the

construction of large general-purpose systems

exists yet” (since 1975)

Model-based Security

 Goal:

 Make the transition from

human ideas to executed

systems easy

 Increase quality/assurance

with bounded time-to-market

and cost.

Requirements

Models

Code
Relatively abstract

Goal: Secure by Design

Consider critical properties

 from very early stages

 within development context

 taking an expansive view

 seamlessly throughout the development

lifecycle.

High Assurance/Secure design by model analysis.

High Assurance/Secure implementation by test

generation.

Model-based Security

Engineering

Combined strategy:

 Verify models against

requirements

 Generate code from models

where reasonable

 Write code and generate

test sequences

Requirements

Models

Code

Verify

Code Gen. Test Gen.

Secure by design

 Establish the system fulfills the security

requirements

 At the design level

 By analyzing the model

 Make sure the code is secure

 Generate test sequences from the model

Using UML

 UML

 Provides opportunity for high-quality and cost-
and time-efficient high-assurance systems
development:

 De-facto standard in industrial modeling:
large number of developers trained in UML.

 Relatively precisely defined

 Many tools (specifications, simulation, …).

Challenges

 Adapt UML to critical system application
domains.

 Correct use of UML in the application
domains.

 Conflict between flexibility and unambiguity in
the meaning of a notation.

 Improving tool-support for critical systems
development with UML (analysis, …).

Requirements on UML

extension

Mandatory requirements:

 Provide basic security requirements such as
secrecy/confidentiality and integrity.

 Allow considering different threat scenarios
depending on adversary strengths.

 Allow including important security concepts (e.g.
tamper-resistant hardware).

 Allow incorporating security mechanisms (e.g.
access control).

Requirements on UML

extension

 Provide security primitives

 e.g. (a)symmetric encryption

 Allow considering underlying physical security.

 Allow addressing security management

 e.g. secure workflow

 Optional requirements:

 Include domain-specific security knowledge

 Java, smart cards, CORBA, ...

UML Extension Goals

 Extensions for high assurance systems
development.
 evaluate UML specifications for weaknesses in design

 encapsulate established rules of prudent
critical/secure systems engineering as checklist

 makes available to developers not specialized in
critical systems

 consider critical requirements from early design
phases, in system context

 make certification cost-effective

The High-assurance design

UML profiles

 Recurring critical security requirements,

failure/adversary scenarios, concepts offered as

stereotypes with tags at component-level.

 Use associated constraints to evaluate

specifications and indicate possible

weaknesses.

 Ensures that UML specification provides desired level

of critical requirements.

 Link to code via test-sequence generation.

UML Profile

UML - Review

Unified Modeling Language (UML):

 visual modeling for OO systems

 different views on a system

 high degree of abstraction possible

 de-facto industry standard (OMG)

 standard extension mechanisms

Summary of UML Components

 Use case diagram
 discuss requirements of

the system

 Class diagram
 data structure of the

system

 Statechart diagram
 dynamic component

behavior

 Activity diagram
 flow of control between

components

• Sequence diagram
– interaction by message

exchange

• Deployment diagram
– physical environment

• Package/Subsystem
– collect diagrams for system

part

Current: UML 1.5 (as of 210)

[http://www.omg.org/spec/UML/2.3/]

UML Extension mechanisms

 Stereotype

 specialize model element using «label».

 Adds security relevant information to model elements

 Tagged value

 attach {tag=value} pair to stereotyped element

 Constraint

 refine semantics of stereotyped element.

 Profile:

 gather above information.

Stereotypes

 Central idea – stereotypes

 Add security relevant information to model

elements of three kinds

 Security assumptions on the physical level of the

systems: e.g., «Internet»

 Security requirements on the logical structure of

the system, e.g.,

 «secrecy» or

 On specific data values, e.g., «critical»

Stereotypes

 Security policies that the system parts are supposed

to obey; e.g.

 «fair exchange», «secure links», «data security», «no

down-flow»

 First two cases

 Simply add some additional information to a model

 Third one

 Constraints are associated that needs to be

satisfied by the model

UML run-through: Class

diagrams

 Class structure of system.

 Classes with attributes and operations/signals;

 relationships between classes.

UML run-through:

Dependency

subtype

supertype dependency

UML run-through: Statecharts

 Dynamic behavior of individual component.

 Input events cause state change and output

actions.
event[guard]/action e[g]/a

UML run-through: Sequence

Diagrams

 Describe interaction between objects or
components via message exchange.

’

UML run–through: Activity

diagrams

 Specify the control flow between components
within the system, at higher degree of abstraction
than state-charts and sequence diagrams.

For each

component or

object

action state

Sub-activity

UML Deployment diagrams

 Describe the physical layer on which the

system is to be implemented.

Logical

(connections)

UML Package

 May be used to organize model elements into
groups within a physical system

Basic Security Requirements

Secrecy

Information

Integrity

Availability

Information

Information

Basic Security Requirements II

Information

Authenticity

Sender

Sender

Nonrepudiability

Information

UMLsec profile

UMLsec profile

<<Internet>> , <<encrypted>> ,

…

 Kinds of communication links (resp. system

nodes)

 For adversary type A, stereotype s, have

 ThreatsA (s) ⊆ {delete, read, insert, access} of

actions that adversaries are capable of.

Stereotype Threatsdefault()

•Internet

•encrypted

•LAN

•smart card

{delete, read, insert}

{delete}





Directly access

a physical node

For links

Default

attacker

Insider

attacker?

Requirements with use case

diagrams

 Capture security requirements in use case
diagrams.

 Constraint:
 need to appear in corresponding activity diagram.

Customer

Sales application

Business

sells goods

buys goods

<<fair exchange>>

«fair exchange»

 Ensures generic fair exchange condition

 Avoid cheating

 Constraint:

 after a {start} state in activity diagram is reached,

eventually reach {stop} state.

 Cannot be ensured for systems that an

attacker can stop completely.

«fair exchange»

 Customer buys a good
from a business.

 Fair exchange means:

 after payment,
customer is
eventually either
delivered good or
able to reclaim
payment.

“Pay” may be «provable»

<<secure links>>

 Example

 Ensures that physical layer meets security

requirements on communication.

 Constraint:

 for each dependency d with stereotype s in {

<<secrecy>> , <<integrity>>, <<high>>} between

components on nodes n, m, have a communication

link l between n and m such that

 if s = <<high>> : have ThreatsA (l) is empty.

 if s = <<secrecy>> : have read ∉ ThreatsA (l).

 if s = <<integrity>> : have insert ∉ ThreatsA (l).

<<secure links>>

 Example

 Given default adversary type, is <<secure
links>> provided ?

<<secure links>>

 Example

 Given default adversary type, constraint
for stereotype <<secure links>> violated:
 According to the Threatsdefault(Internet) scenario

 (read Threatsdefault(Internet)),

 <<Internet>> link does not provide secrecy against default
adversary.

<<secure dependency>>

 Ensure that <<call>> and <<send>>

dependencies between components respect

security requirements on communicated data

given by tags {secrecy}, {integrity} and {high}.

 Constraint:

 for <<call>> or <<send>> dependency from C to D (for

{secrecy}):

 Msg in D is {secrecy} in C if and only if also in D.

 If msg in D is {secrecy} in C, dependency is stereotyped

<<secrecy>>.

Example

<<secure dependency>>

<<secure dependency>> provided ?

C

D

Example

<<secure dependency>>

Violates <<secure dependency>> : Random
generator and <<call>> dependency do not give
security level for random() to key generator.

<<no down–flow>>

 Enforce secure information flow.

 Constraint:

 Value of any data specified in {high} may

influence only the values of data also specified in

{high}.

 Formalize by referring to formal behavioral

semantics.

Example

<<no down-flow>>

<<no down–flow>> provided ?

Example

<<no down-flow>>

 <<no down–flow>> violated: partial information
on input of high wm() returned by non-high rx().

<<data security>>

 Behavior of Subsystem with this tag respects

 Security requirements of data marked <<critical>>

enforced against A from deployment diagram.

 Constraints:
 Secrecy {secrecy} of data preserved against A

 Integrity {integrity} of (v, E) preserved against A

 Authenticity {integrity} of (a, o) preserved against A

 Freshness {fresh} : data in Data U Keys should be

fresh

Assumption: A does not know data being protected

Default (E is not mentioned):

A should not be able to

make the variable v take on

a value previously known

only to him

Notation

Example

<<data security>>

Variant of TLS
(INFOCOM`99):

<<data security>>
against default

adversary provided ?

TLS goals: Secure

channel between client

and server
-Secrecy and Server Authenticity

Example

<<data security>>

 Violates
{secrecy} of si
against default

adversary.

Example

<<data security>>

Surprise

 Add knows(KA) knows(KA
-1) (general

previous knowledge of own keys).

 Then can derive knows(s) (!).

 That is: C||S does not preserve secrecy of s

against adversaries whose initial knowledge

contains KA, KA
-1.

 Man-in-the-middle attack.

The attack

The fix

Include K’ in signed part

<<guarded access>>

 Ensures that in Java, <<guarded>> classes

only accessed through {guard} classes.

 Constraints:

 References of <<guarded>> objects

remain secret.

 Each <<guarded>> class has {guard}

class.

Application

 Web-based financial application
 Internet Bank: BankEasy

 Financial advisor: Finance

 A local client needs to provide applets from these

certain privileges
 Access to local financial data: using GuardedObjects

 Guarded objects: StoFi, FinEx, MicSi

 Example: applets that are signed by the bank can read and write the

financial data stored in local database, but only between 1 – 2PM

 Enforced by FinGd guard object

 Slot is fulfilled iff time is 1-2PM

Example <<guarded

access>>

 Provides <<guarded
access>> :
Access to MicSi protected by
MicGd.

slot could be “between 1

and 2PM

Does UMLsec meet requirements?

 Security requirements: <<secrecy>> ,…

 Threat scenarios: Use Threatsadv(ster).

 Security concepts: e.g. <<smart card>> .

 Security mechanisms: e.g. <<guarded
access>>.

 Security primitives: Encryption built in.

 Physical security: Given in deployment
diagrams.

 Security management: Use activity diagrams.

 Technology specific: Java, CORBA security.

Design Principles

 How principles are enforced

 Economy of mechanism
 Guidance on employment of sec mechanisms to developers – use

simple mechanism where appropriate

 Fails-safe defaults
 Check on relevant invariants – e.g., when interrupted

 Complete mediation
 E.g., guarded access

 Open design
 Approach does not use secrecy of design

Design Principles

 Separation of privilege
 E.g. guarded objects that check for two signatures

 Least privilege
 Basically meet the functional requirements as specified; includes an

algorithm to determine least privilege given a functional specification

 Least Common Mechanism
 Based on the object oriented approach

 Psychological acceptability
 Emphasis on ease of development through a standard tool extension

