

IS 2620: Developing Secure Systems Secure Software Development **Models/Methods** Lecture 1 **Jan 8, 2013** James Joshi, Associate Professor

Objective

- Understand/Familiarize with various process models for secure software development and assurance
 - Capability Maturity Models
 - CMMI, iCMM, SSE-CMM
 - TSP
 - Secure software development life cycle models

Process Models

• Secure Process

- Set of activities performed to develop, maintain, and deliver a secure software solution
- Activities could be concurrent or iterative

Process model

- provides a reference set of best practices that can be used for both
 - process improvement and process assessment.
- defines the characteristics of processes
- usually has an architecture or a structure

Process Models

- Process Models
 - Identify technical and management practices
 - good software engineering practices to manage and build software
 - Establishes
 - common measures of organizational processes throughout the software development lifecycle (SDLC).
 - But ... no guarantees product is bug free

Process Models

- Typically also have a *capability* or *maturity* dimension used for
 - assessment and
 - evaluation purposes.
- Assessments, evaluations, appraisals includes
 - comparison of a process being practiced to a reference process model or standard
 - understanding process capability in order to improve processes
 - determining if the processes being practiced are
 - adequately specified, designed, and implemented

Software Development Life Cycle (SDLC)

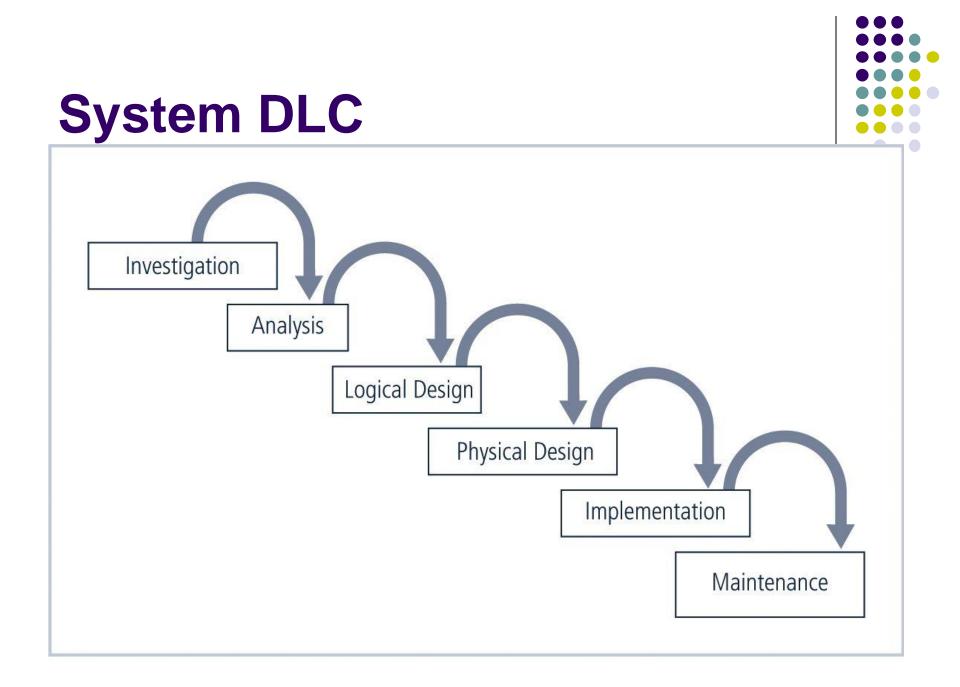
- A survey of existing processes, process models, and standards seems to identify the following four SDLC focus areas for secure software development
 - Security Engineering Activities
 - Security Assurance
 - Security Organizational and Project Management Activities
 - Security Risk Identification and Management Activities

SDLC

 activities needed to engineer a secure solution. security requirements elicitation and definition, secure design based on design principles for security, use of static analysis tools,

reviews and inspections, security testing, etc..

Security Assurance Activities


verification, validation, expert review, artifact review, and evaluations.

SDLC

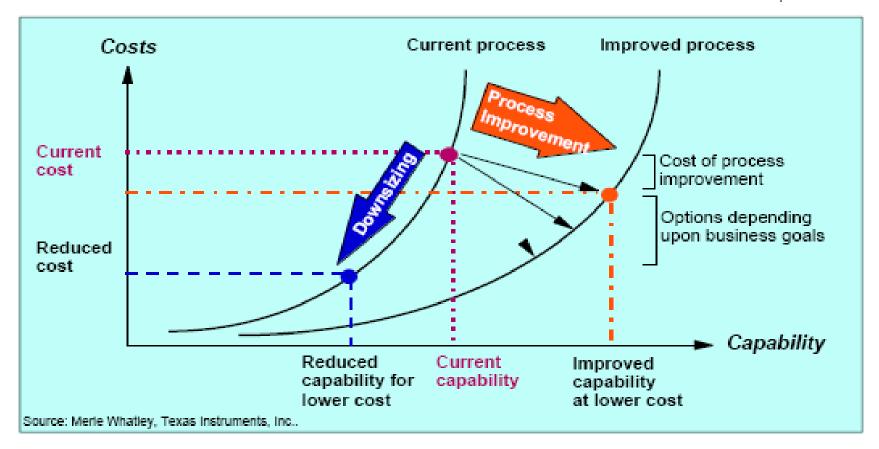
- Security Organizational and Project Management Activities
 - Organizational management
 - organizational policies, senior management sponsorship and oversight, establishing organizational roles,
 - Project management
 - project planning and tracking,
 - resource allocation and usage
- Security Risk Identification and Management Activities
 - Cost-based Risk analysis
 - Risk mitigation ..

Capability Maturity Models (CMM)

• CMM

- Provides reference model of mature practices
- Helps identify the potential areas of improvement
- Provides goal-level definition for and key attributes for specific processes
- No operational guidance !!
- Focuses on/Defines process characteristics

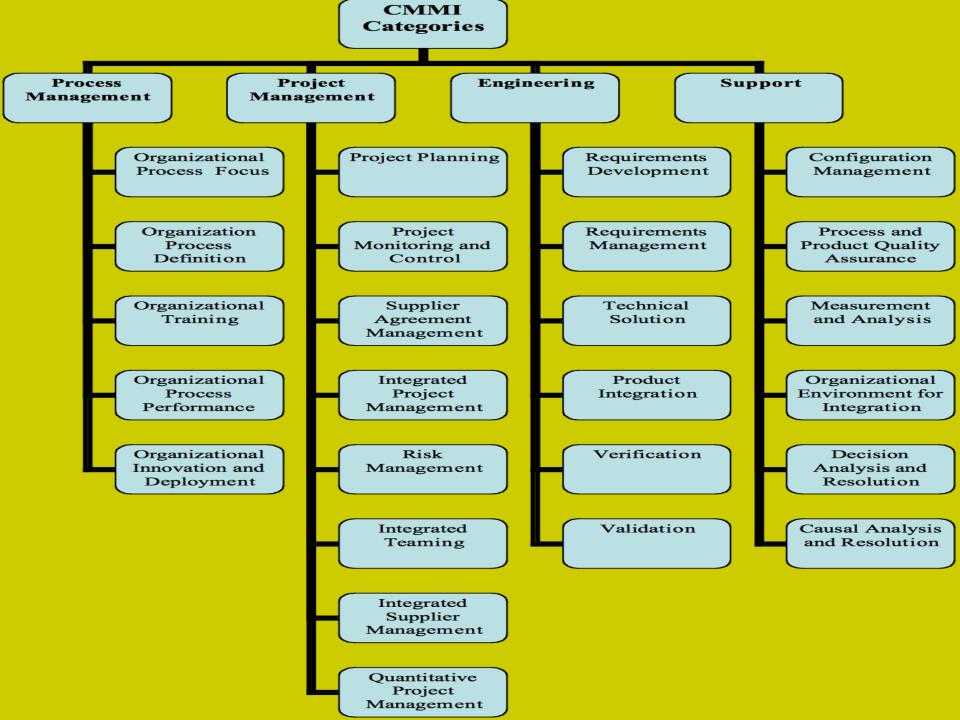
CMM



• Three CMMs

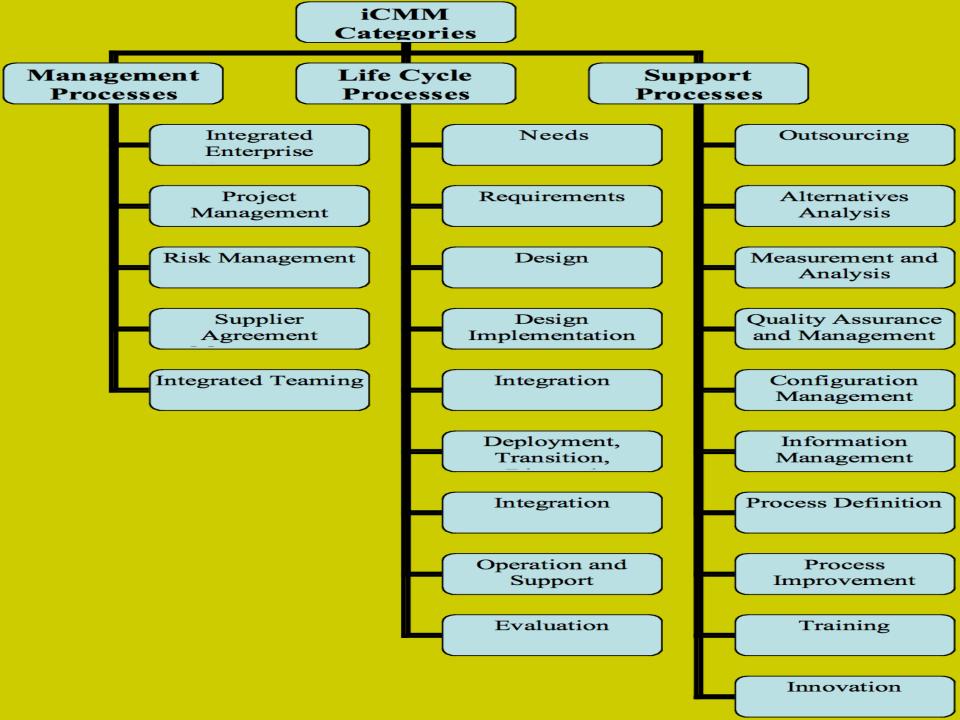
- Capability Maturity Model Integration® (CMMI®),
- The integrated Capability Maturity Model (iCMM), and the
- Systems Security Engineering Capability Maturity Model (SSE-CMM)
 - Specifically to develop secure systems

Why CMM?



Source: http://www.secat.com/download/locked_pdf/SSEovrw_lkd.pdf

CMMI


- CMM Integration (CMMI) provides
 - the latest best practices related to -
 - development, maintenance, and acquisition,
 - Includes
 - Mechanisms to improve processes and
 - Criteria for evaluating process capability and process maturity.
- As of Dec 2005, the SEI reports
 - 1106 organizations and 4771 projects have reported results from CMMI-based appraisals
- its predecessor, the software CMM (SW-CMM)
 - Since 80s Dec, 2005
 - 3049 Organizations + 16,540 projects

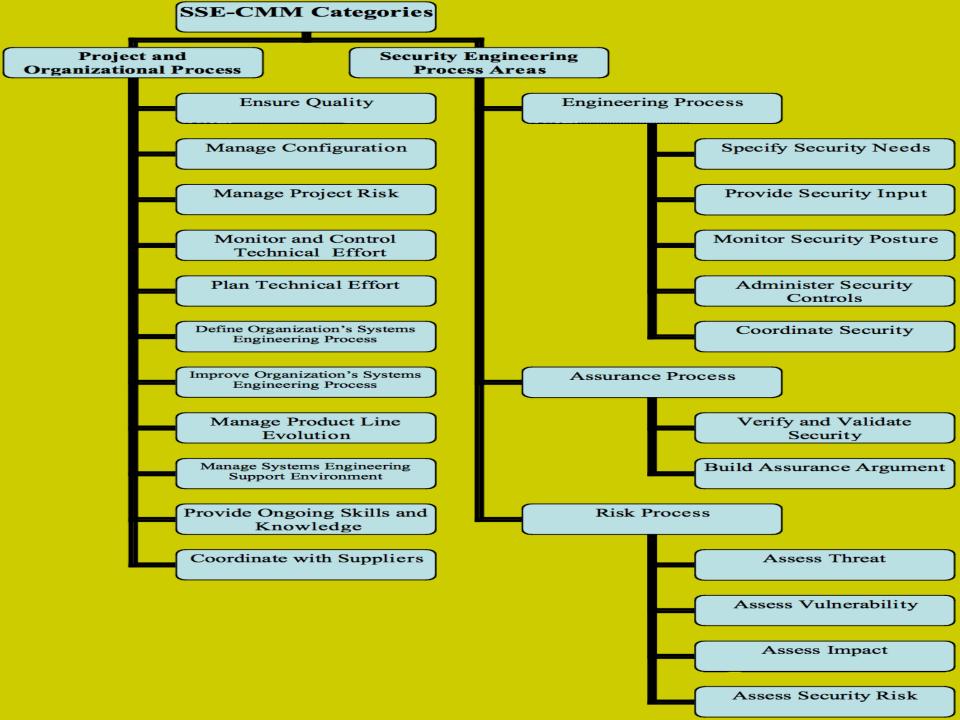
Integrated CMM

- iCMM is widely used in the Federal Aviation Administration (FAA-iCMM)
 - Provides a single model for enterprise-wide improvement
 - integrates the following standards and models:
 - ISO 9001:2000, EIA/IS 731,
 - Malcolm Baldrige National Quality Award and President's Quality Award criteria,
 - CMMI-SE/SW/IPPD and
 - CMMI-A, ISO/IEC TR 15504, ISO/IEC 12207, and ISO/IEC CD 15288.

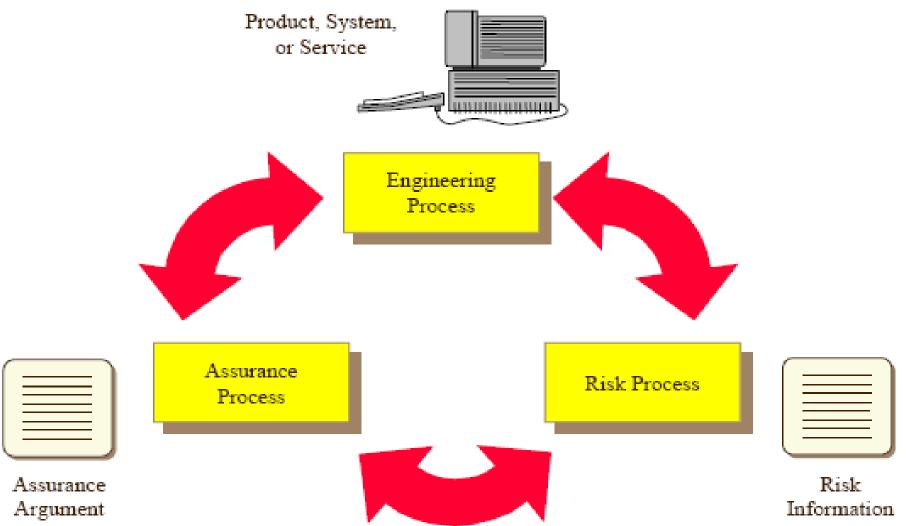
Trusted CMM

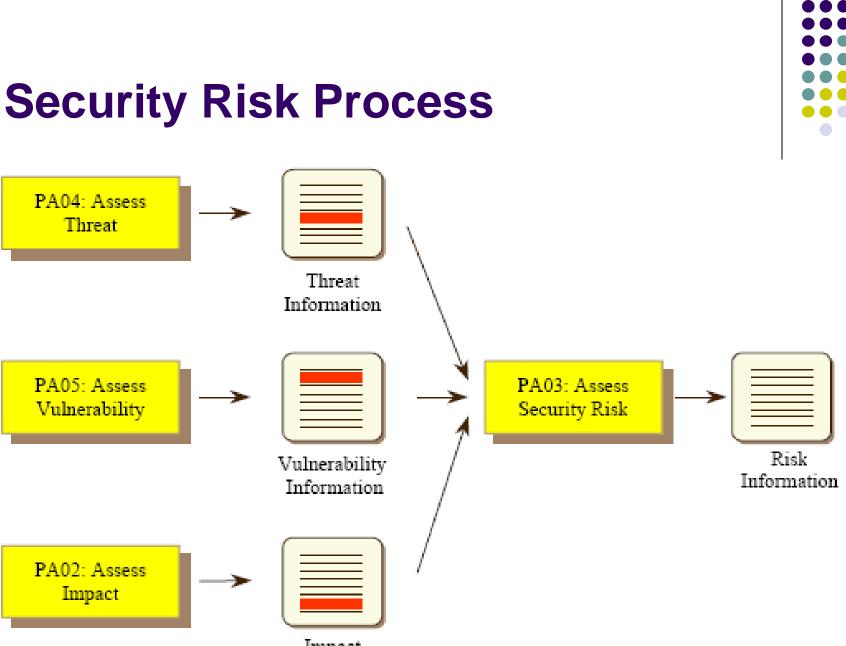
- Trusted CMM
 - Early 1990 -Trusted Software Methodology (TSM)
 - TSM defines trust levels
 - Low emphasizes resistance to unintentional vulnerabilities
 - High adding processes to counter malicious developers
 - TSM was later harmonized with CMM
 - Not much in use

Systems Security Engineering CMM

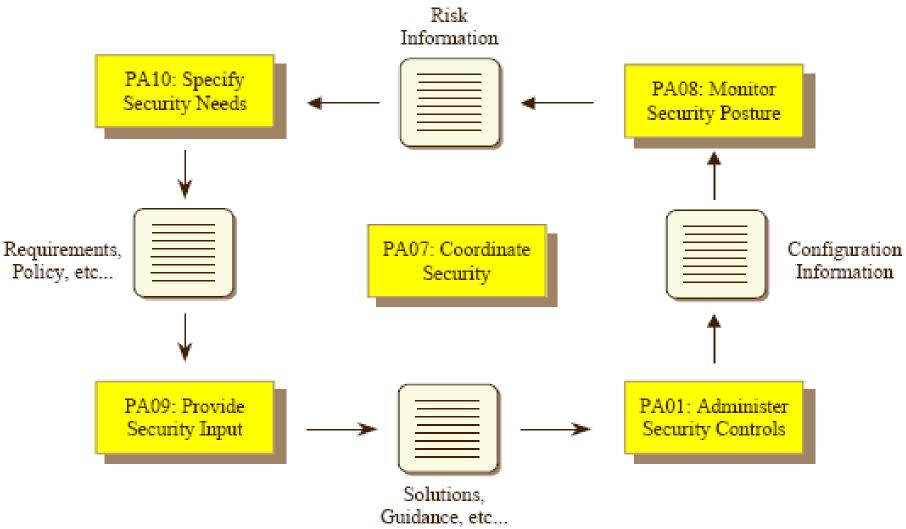

- The SSE-CMM
 - To improve and assess the security engineering capability of an organization
 - provides a comprehensive framework for
 - evaluating security engineering practices against the generally accepted security engineering principles.
 - provides a way to
 - measure and improve performance in the application of security engineering principles.

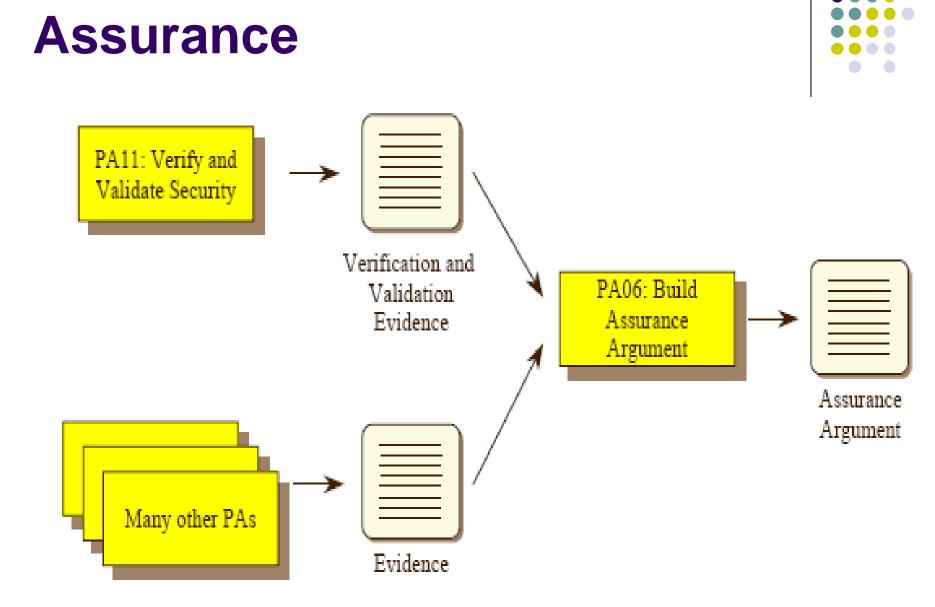
SSE-CMM


• Purpose for SSE-CMM

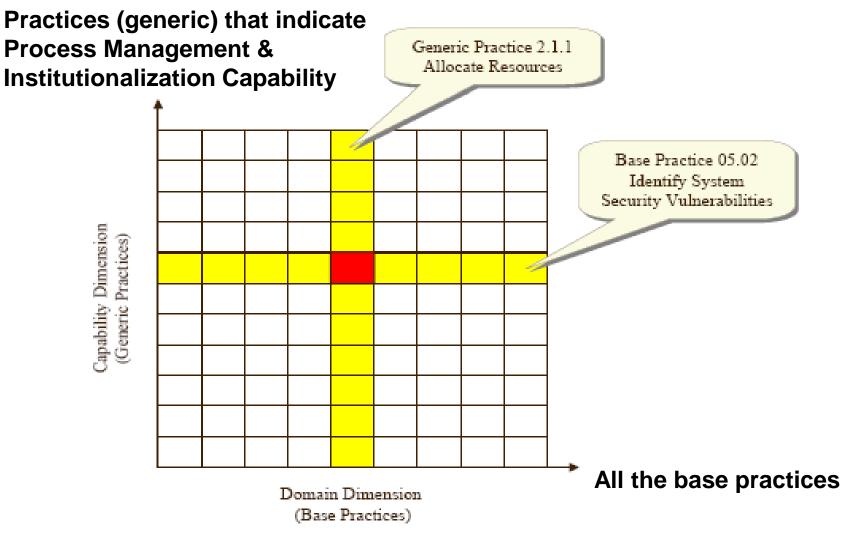

- To fill the lack of a comprehensive framework for evaluating security engineering practices against the principles
- The SSE-CMM also
 - describes the essential characteristics of an organization's security engineering processes.
 - The SSE-CMM is now ISO/IEC 21827 standard (version 3 is available)

Security Engineering Process





Impact Information


Security is part of Engineering

SSE-CMM Dimensions

SSE-CMM

• 129 base practices Organized into 22 process areas

- 61 of these, organized in 11 process areas, cover all major areas of security engineering
- Remaining relates to project and organization domains
- Base practice
 - Applies across the life cycle of the enterprise
 - Does not overlap with other base practices
 - Represents a "best practice" of the security community
 - Does not simply reflect a state of the art technique
 - Is applicable using multiple methods in multiple business context
 - Does not specify a particular method or tool

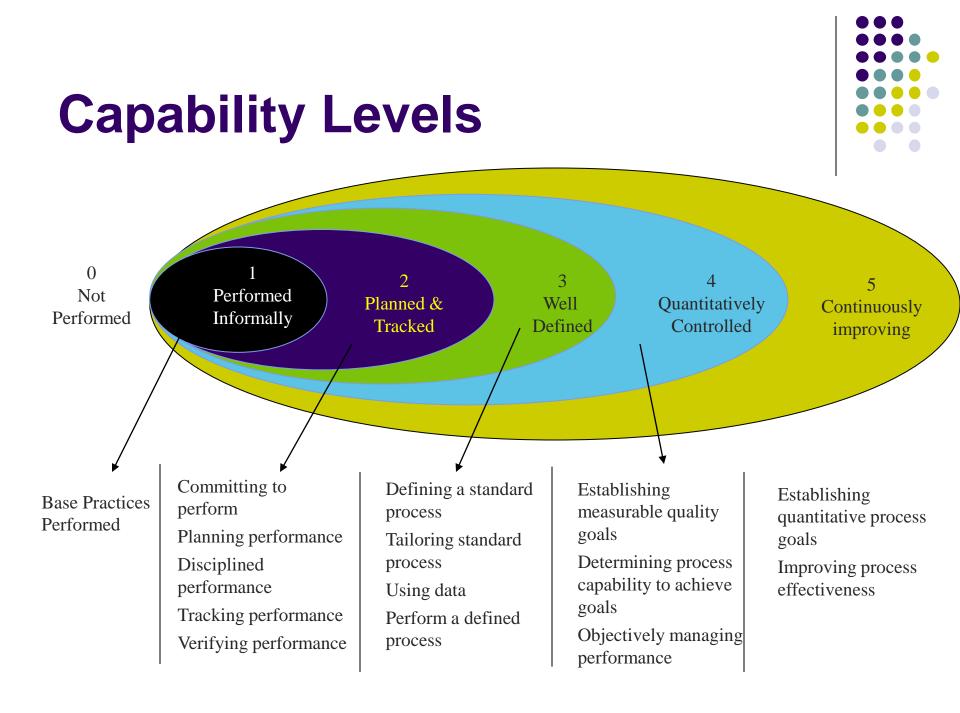
Process Area

- Assembles related activities in one area for ease of use
- Relates to valuable security engineering services
- Applies across the life cycle of the enterprise
- Can be implemented in multiple organization and product contexts
- Can be improved as a distinct process
- Can be improved by a group with similar interests in the process
- Includes all base practices that are required to meet the goals of the process area

Process Areas

Process Areas related to Security Engineering process areas

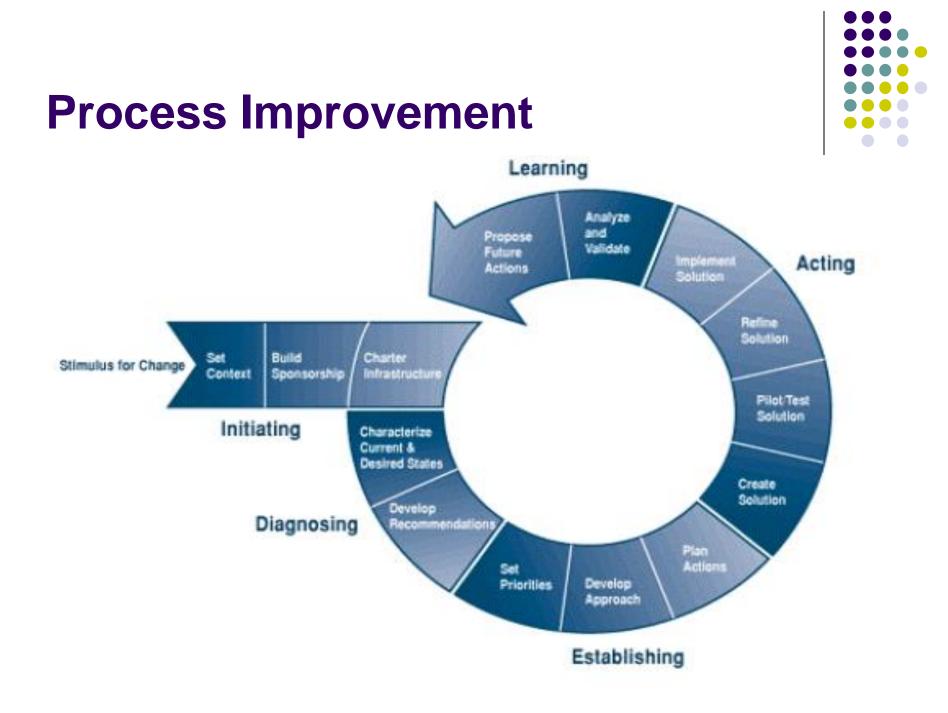
- PA01 Administer Security Controls
- PA02 Assess Impact
- PA03 Assess Security Risk
- PA04 Assess Threat
- PA05 Assess Vulnerability
- PA06 Build Assurance Argument
- PA07 Coordinate Security
- PA08 Monitor Security Posture
- PA09 Provide Security Input
- PA10 Specify Security Needs
- PA11 Verify and Validate Security


Process Areas related to project and Organizational practices

- PA12 Ensure Quality
- PA13 Manage Configuration
- PA14 Manage Project Risk
- PA15 Monitor and Control Technical Effort
- PA16 Plan Technical Effort
- PA17 Define Organization's Systems Engineering Process
- PA18 Improve Organization's Systems Engineering Process
- PA19 Manage Product Line Evolution
- PA20 Manage Systems Engineering Support Environment
- PA21 Provide Ongoing Skills and Knowledge
- PA22 Coordinate with Suppliers

Generic Process Areas

- Activities that apply to all processes
- They are used during
 - Measurement and institutionalization
- Capability levels
 - Organize common features
 - Ordered according to maturity



5.2 Improving Proc. Effectiveness																						Π
5.1 Improving Org. Capability																						-+
4.2 Objectively Managing Perf.										_												\neg
4.1 Establish Meas. Quality Goals																						\neg
3.3 Coordinate Practices																						\neg
3.2 Perform the Defined Process																						\neg
3.1 Defining a Standard Process																						\neg
2.4 Tracking Performance										_												\neg
2.3 Verifying Performance																						\neg
2.2 Disciplined Performance																						\neg
2.1 Planned Performance																						\neg
1.1 Base Practices Are Performed																						\neg
Common Features	PA01 – Administer Security Controls	PA02 – Assess Impact	PA03 – Assess Security Risk	PA04 – Assess Threat	PA05 – Assess Vulnerab≣ty	PA06 – Build Assurance Argument	PA07 – Coordinate Security	PA08 – Monitor Security Posture	PA09 – Provide Security Input	PA10 – Specify Security Needs	PA11 – Verify and Validate Security	PA12 – Ensure Quality	PA13 – Manage Configuration	PA14 – Manage Project Risk	PA15 – Monitor and Control Technical Effort	PA16 – Plan Technical Effort	PA17 – Define Org. Systems Eng. Process	PA18 – Improve Org. Systems Eng. Process	PA19 – Manage Product Line Evolution	PA20 – Manage Systems Eng. Support Env.	PA21 – Provide Ongoing Skills and Knldge	PA22 - Coordinate with Suppliers
	Security Engineering Process Areas							Project and Organizational Process Areas														

Using SSE-CMM

- Can be used in one of the three ways
 - Process improvement
 - Facilitates understanding of the level of security engineering process capability
 - Capability evaluation
 - Allows a consumer organization to understand the security engineering process capability of a provider
 - Assurance
 - Increases the confidence that product/system/service is trustworthy

Capability Evaluation

- No need to use any particular appraisal method
- SSE-CMM Appraisal (SSAM) method has been developed if needed
- SSAM purpose
 - Obtain the baseline or benchmark of actual practice related to security engineering within the organization or project
 - Create or support momentum for improvement within multiple levels of the organizational structure

SSAM Overview

- Planning phase
 - Establish appraisal framework
- Preparation phase
 - Prepare team for onsite phase through information gathering (questionnaire)
 - Preliminary data analysis indicate what to look for / ask for
- Onsite phase
 - Data gathering and validation with the practitioner
 - interviews
- Post-appraisal
 - Present final data analysis to the sponsor

Capability Evaluation

Level 5																							
Level 4																							
Level 3																							
Level 2																							
Level 1																							
Capability Levels	Process Areas	PA01	PA02	PA03	PA04	PA05	PA06	PA07	PA08	PA09	PA10	PA11	PA12	PA13	PA14	PA15	PA16	PA17	PA18	PA19	PA20	PA21	PA22
			Security Engineering Process Areas									Project and Organizational Process Areas											

Assurance

- A mature organization
 - more likely to create a product or system with appropriate assurance
- Process evidence
 - to support claims for the product trustworthiness
- It is conceivable that
 - An immature organization could produce high assurance product.

CMI/iCMM/SSE-CMM

- CMMI / iCMM used by more organizations than the SSE-CMM
 - Because of the integration of process disciplines and coverage of enterprise issues,
- One weakness CMMI and iCMM
 - have gaps in their coverage of safety and security.
- Joint effort sponsored by FAA and the DoD
 - to identify best safety and security practices for use in combination with the iCMM and the CMMI.

Safety/Security additions

- The proposed Safety and Security additions include the following four goals:
 - Goal 1 An infrastructure for safety and security is established and maintained.
 - Goal 2 Safety and security risks are identified and managed.
 - Goal 3 Safety and security requirements are satisfied.
 - Goal 4 Activities and products are managed to achieve safety and security requirements and objectives.

Goal 1 related practices

- 1. Ensure safety and security awareness, guidance, and competency.
- 2. Establish and maintain a qualified work environment that meets safety and security needs.
- 3. Ensure integrity of information by providing for its storage and protection, and controlling access and distribution of information.
- 4. Monitor, report and analyze safety and security incidents and identify potential corrective actions.
- 5. Plan and provide for continuity of activities with contingencies for threats and hazards to operations and the infrastructure

Goal 1 – An infrastructure for safety and security is established and maintained.

Goal 2 related practices

- 1. Identify risks and sources of risks attributable to vulnerabilities, security threats, and safety hazards.
- 2. For each risk associated with safety or security, determine the causal factors, estimate the consequence and likelihood of an occurrence, and determine relative priority.
- For each risk associated with safety or security, determine, implement and monitor the risk mitigation plan to achieve an acceptable level of risk.

Goal 2 – Safety and security risks are identified and managed.

Goal 3 related practices

- 1. Identify and document applicable regulatory requirements, laws, standards, policies, and acceptable levels of safety and security.
- 2. Establish and maintain safety and security requirements, including integrity levels, and design the product or service to meet them.
- 3. Objectively verify and validate work products and delivered products and services to assure safety and security requirements have been achieved and fulfill intended use.
- 4. Establish and maintain safety and security assurance arguments and supporting evidence throughout the lifecycle.

Goal 3 – Safety and security requirements are satisfied.

Goal 4 related practices

- 1. Establish and maintain independent reporting of safety and security status and issues.
- 2. Establish and maintain a plan to achieve safety and security requirements and objectives.
- 3. Select and manage products and suppliers using safety and security criteria.
- 4. Measure, monitor and review safety and security activities against plans, control products, take corrective action, and improve processes.

Goal 4 – Activities and products are managed to achieve safety and security requirements and objectives.

Team Software Process for Secure SW/Dev

• TSP

- provides a framework, a set of processes, and disciplined methods for applying software engineering principles at the team and individual level
- TSP for Secure Software Development (TSP-Secure)
 - focus more directly on the security of software applications.

Team Software Process for Secure SW/Dev

- TSP-Secure addresses secure software development (three ways).
 - 1. Secure software is not built by accident,
 - Plan: TSP-Secure addresses planning for security.
 - Self-direct: Since schedule pressures and people issues get in the way of implementing best practices, TSP-Secure helps to build self-directed development teams, and then put these teams in charge of their own work.

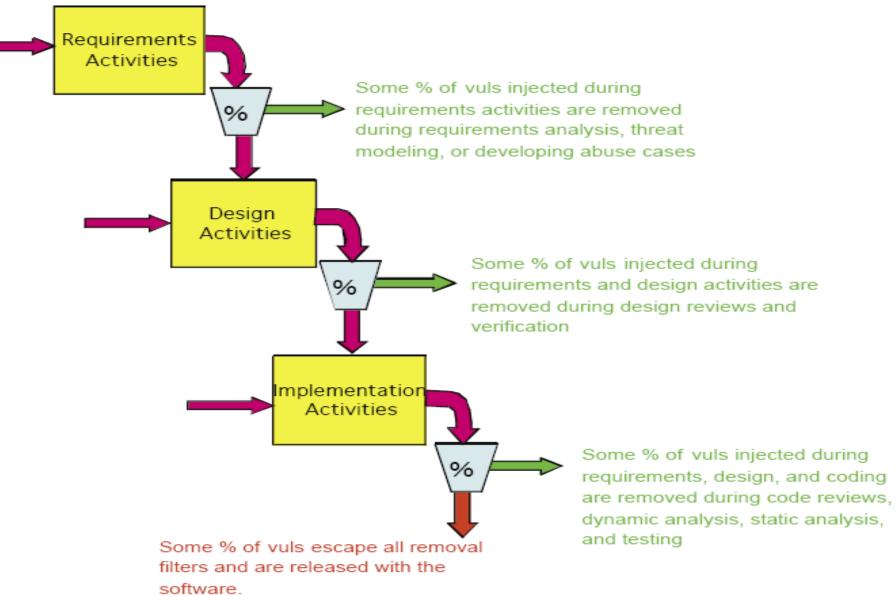
- 1. Since security and quality are closely related,
 - TSP-Secure helps manage quality throughout the product development life cycle.
- 2. Since people building secure software must have an awareness of software security issues,
 - TSP-Secure includes security awareness training for developers.

Teams

- Develop their own plans
- Make their own commitments
- Track and manage their own work
- Take corrective action when needed

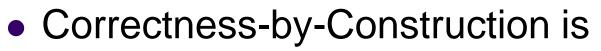
- Initial planning "project launch" (3-4 days)
 - Tasks include
 - identifying security risks,
 - eliciting and defining security requirement, secure design, and code reviews,
 - use of static analysis tools, unit tests, and Fuzz testing.
- Next, the team executes its plan, and ensures all security related activities are taking place.
 - Security status is presented and discussed during every management status briefing.

Basis

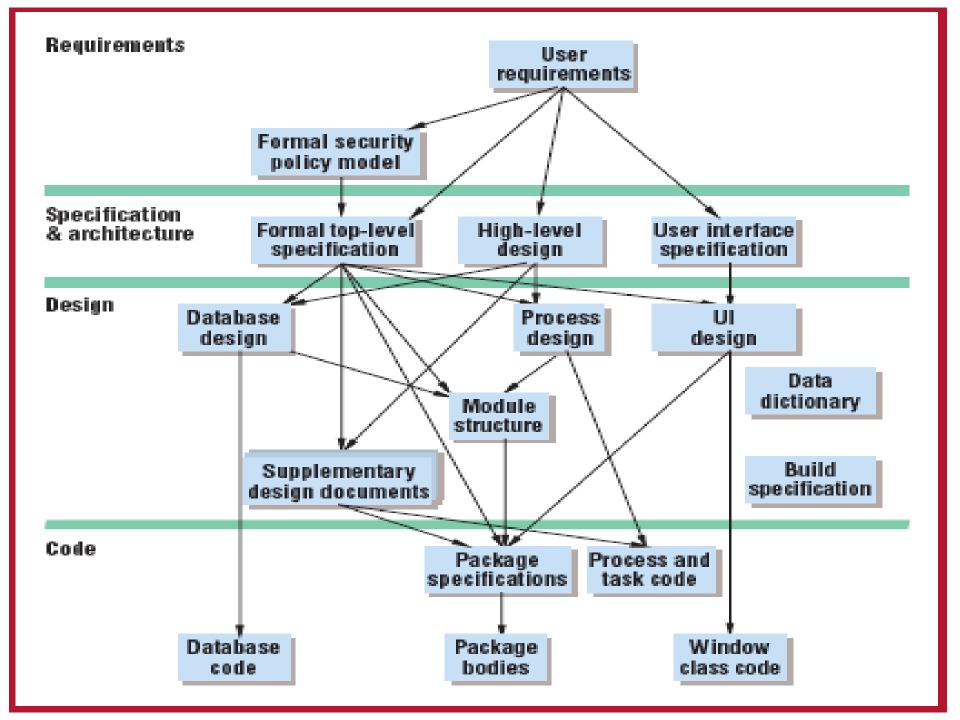

- Defective software is seldom secure
- Defective software is not inevitable
 - Consider cost of reducing defects
 - Manage defects throughout the lifecycle
- Defects are leading cause of vulnerabilities
 - Use multiple defect removal points in the SD
 - Defect filters

- Key questions in managing defects
 - What type of defects lead to security vulnerabilities?
 - Where in the software development life cycle should defects be measured?
 - What work products should be examined for defects?
 - What tools and methods should be used to measure the defects?
 - How many defects can be removed at each step?
 - How many estimated defects remain after each removal step?
- TSP-Secure includes training for developers, managers, and other team members.

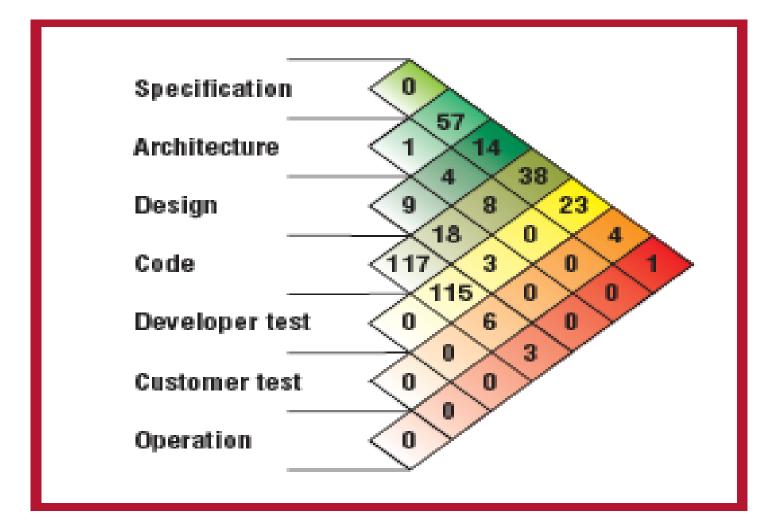
Correctness by Construction


- CbC Methodology from Praxis Critical Systems
 - Process for developing high integrity software
 - Has been successfully used to develop safetycritical systems
 - Removes defects at the earliest stages
 - uses formal methods to specify behavioral, security and safety properties of the software.

Correctness by Construction


- The seven key principles of Correctness-by-Construction are:
 - Expect requirements to change
 - Know why you're testing (debug + verification)
 - Eliminate errors before testing
 - Write software that is easy to verify
 - Develop incrementally
 - Some aspects of software development are just plain hard
 - Software is not useful by itself

Correctness by Construction



- one of the few secure SDLC processes that incorporate formal methods into many development activities.
- Requirements are specified using Z, and verified.
- Code (in Spark) is checked by verification software.

Correctness by Construction Defect detection/Correction

Effort and Defect Rate

Table 1

Distribution of effort.

Activity	Effort (%)	
Requirements	2	
Specification and architecture	25	
Code	14	
Test	34	
Fault fixing	6	
Project management	10	
Training	3	
Design authority	3	
Development- and target-environment	3	

Correctness by Construction defect rates compared to **Capability Maturity Model data** 8 Defects/kloc 5 3 2 0 CMM Level 3 CMM Level 5 CMM Level 2 by Construction CMM Level Correctness CMM Level CMM data from Jones, Capers [9]

Agile Methods

- Agile manifesto
 - "We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:
 - Individuals and interactions over processes and tools
 - Working software over comprehensive documentation
 - Customer collaboration over contract negotiation
 - Responding to change over following a plan

Agile manifesto principles

- Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
- Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.
- Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
- Business people and developers work together daily throughout the project.
- Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
- The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
- Working software is the primary measure of progress.
- Agile processes promote sustainable development. The sponsors, developers and users should be able to maintain a constant pace indefinitely.
- Continuous attention to technical excellence and good design enhances agility.
- Simplicity—the art of maximizing the amount of work not done—is essential.
- The best architectures, requirements and designs emerge from self-organizing teams.
- At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

Agile Processes

- Among many variations
 - Adaptive software development (ASP)
 - Extreme programming (XP)
 - Crystal
 - Rational Unified Process (RUP)

TSP Revisited - How TSP Relates to Agile ..

- Individuals and interactions over processes and tools
- TSP holds that the individual is key to product quality and effective member interactions are necessary to the team's success.
 - Project launches strive to create gelled teams.
 - Weekly meetings and communication are essential to sustain them.
 - Teams define their own processes in the launch.

How TSP Relates

- Working software over comprehensive documentation
- TSP teams can choose evolutionary or iterative lifecycle models to deliver early functionality—the focus is on high quality from the start. TSP does not require heavy documentation.
 - Documentation should merely be sufficient to facilitate effective reviews and information sharing.

How TSP Relates

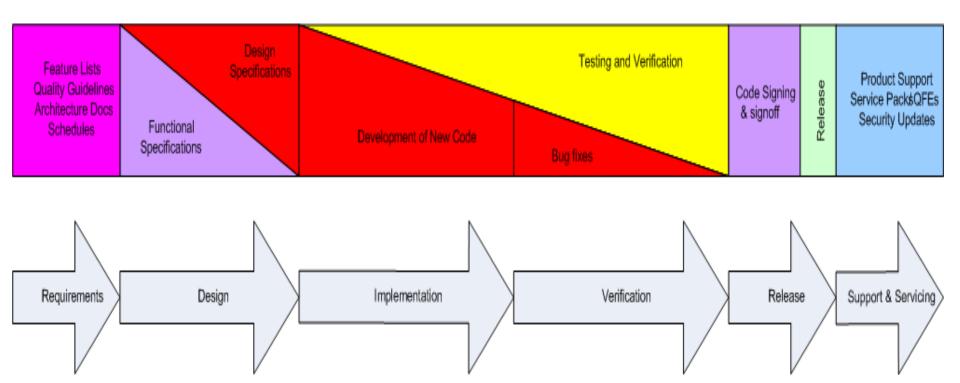
- Customer collaboration over contract negotiation
- Learning what the customer wants is a key focus of the "launch". Sustaining customer contact is one reason for having a customer interface manager on the team.
 - Focus on negotiation of a contract is more a factor of the organization than of whether TSP is used.

How TSP Relates

- Responding to change over following a plan
- TSP teams expect and plan for change by:
 - Adjusting the team's process through process improvement proposals and weekly meetings.
 - Periodically re-launching and re-planning whenever the plan is no longer a useful guide.
 - Adding new tasks as they are discovered; removing tasks that are no longer needed.
 - Dynamically rebalancing the team workload as required to finish faster.
 - Actively identifying and managing risks.

Security assurance method or technique		Match (2)	X dent (8)	(semi)- automated (4)	Mis-match (12)
Re- quire- ments	Guidelines		х		
	Specification analysis				х
	Review				х
Design	Application of specific architectural approaches		х		
	Use of secure design principles		х		
	Formal validation				x
	Informal validation				x
	Internal review	X			
	External review				x
Implementation	Informal correspondence analysis				x
	Requirements testing			х	
	Informal validation				x
	Formal validation				x
	Security testing			х	
	Vulnerability and penetration testing			Х	
	Test depth analysis				x
	Security static analysis			х	
	High-level programming languages and tools		х		
	Adherence to implementation standards		х		
	Use of version control and change tracking		х		
	Change authorization				x
	Integration procedures		х		
	Use of product generation tools		х		
	Internal review	X			
	External review				x
	Security evaluation				x

Besnosov Comparison

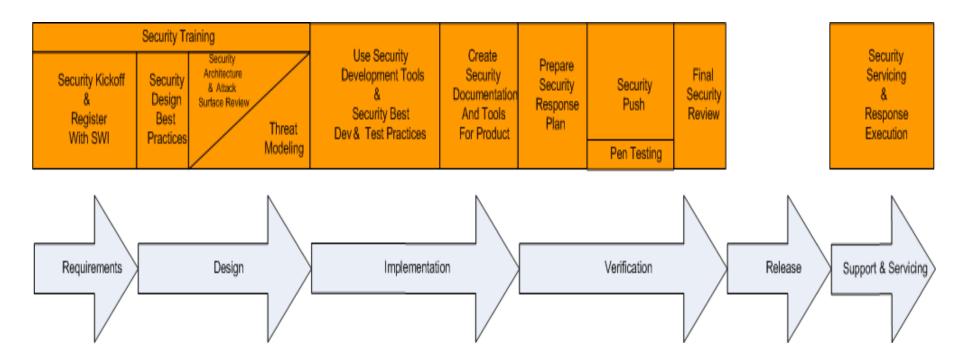


- 50% of traditional security assurance activities are not compatible with Agile methods (12 out of 26),
- less than 10% are natural fits (2 out of 26),
- about 30% are independent of development method, and
- slightly more than 10% (4 out of 26) could be semiautomated and thus integrated more easily into the Agile methods.

Microsoft Trustworthy Computing SDLC

- Generally accepted SDL process at MS
- (actually spiral not "waterfall" as it indicates)

SDL Overview


- MS's SD³ + C paradigm
 - Secure by Design
 - Secure by Default
 - Secure by Deployment
 - Communications
 - software developers should be prepared for the discovery of product vulnerabilities and should communicate openly and responsibly
 - The SDL is updated as shown next

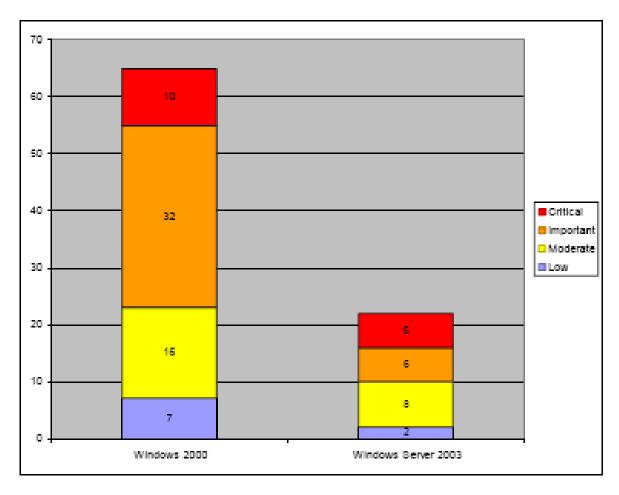
SDL at MS

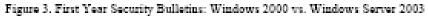
• Add the SD³ + C praradigm

Design Phase

- Define Security architecture and design guidelines
 - Identify tcb; use layering etc.
- Document the elements of the software attack surface
 - Find out default security
- Conduct threat modeling
- Define supplemental ship criteria

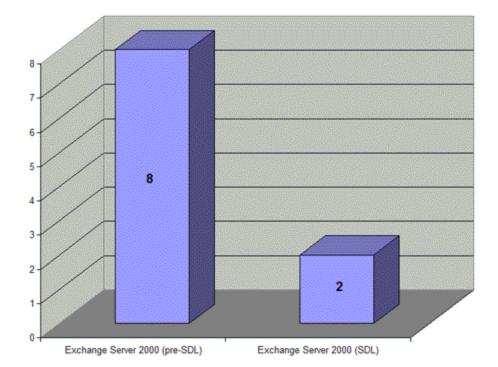
Implementation phase


- Apply coding and testing standards
- Apply security testing tools including fuzzing tools
- Apply static analysis code scanning tools
- Conduct code reviews


Verification Phase

- "Security push" for Windows server 2003
 - Includes code review beyond those in implementation phase and
 - Focused testing
- Two reasons for "security push"
 - Products had reached the verification phase
 - Opportunity to review both code that was developed or updated during the implementation phase and "legacy code" that was not modified

Results



Results

• Topic to be continued ...