
Agile Development with Security Engineering Activities

Dejan Baca
Blekinge Institute of Technology

SE-371 79
Sweden

dejan.baca@bth.se

Bengt Carlsson
Blekinge Institute of Technology

SE-371 79
Sweden

bengt.carlsson@bth.se

ABSTRACT
Agile software development has been used by industry to
create a more flexible and lean software development pro-
cess, i.e making it possible to develop software at a faster
rate and with more agility during development. There are
however concerns that the higher development pace and lack
of documentation are creating less secure software. We have
therefore looked at three known Security Engineering pro-
cesses, Microsoft SDL, Cigatel touchpoints and Common
Criteria and identified what specific security activities they
performed. We then compared these activities with an Agile
development process that is used in industry. Developers,
from a large telecommunication manufacturer, were inter-
viewed to learn their impressions on using these security ac-
tivities in an agile development process. We produced a se-
curity enhanced Agile development process that we present
in this paper. This new Agile process use activities from
already established security engineering processes that pro-
vide the benefit the developers wanted but did not hinder
or obstruct the Agile process in a significant way.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Security

Keywords
Agile Process, Software Engineering, Development process,
Security Engineering

1. INTRODUCTION
For the last years, large parts of industry have shifted soft-

ware development from a rigid waterfall to a more flexible
Agile software development process. This shift is performed
as and attempt to increase the effectiveness of software de-
velopment. This is done by having a flexible structure with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0580-8/11/05 ...$10.00.

short development increments that handle change and new
requirements that are easier than the older process. The Ag-
ile processes do impose limitations on the projects, it is no
longer possible to create a complete picture of a product
as all requirements are not yet known and no attempts are
made to acquire this information. As stated in other lit-
erature studies [1] [2] [3], that compare security engineering
(SE) [4] with Agile projects, this lack of a complete overview
makes it harder and outright prevents some common SE
practices from being performed in an Agile project. In this
paper we interview developers that work in an Agile develop-
ment process, with the basics of three mature SE processes
[7]. With the interviews as a base we want to identify what
parts of the SE processes are most compatible and benefi-
cial to the project and what security activities the developers
believe are not possible to perform in an Agile development
process.

The aim of this study is to, through industry experience,
identify what practices from mature SE processes are easily
integrated and also provide a benefit to Agile projects. A
suggested best practices based on the results will present
an enhanced Agile development process that will have some
of the security measures that SE processes relies on. We
are also interested in why developers believe some of the
practices do not work in an Agile process and what they
believe prevents the integration.

2. RELATED WORK
Previous works in this topic have focused on litterature

work and few studies have used industry experience and em-
pirical data for strengthen their results. Hossein Keramati et
al. [25] identify and evaluate security practices and activities
in two SE process, Microsoft SDL [14] and Comprehensive
Lightweight Application Security Process [24]. The paper
presents an algorithm, called Agility Degree, for rating ac-
tivities and its compatibility with an Agile process. Mikko
Siponen et al. [5] identify the problems with integrating se-
curity in agile and devised an agile friendly method to iden-
tify, track and implement security features. Their method
uses several known security engineering activities but is in
the need of more practical experimentation to fine-tune the
process. Beznosov & Kruchten [6] examined mismatches be-
tween security assurance techniques and agile development
methods. The paper is based on literature studies and the
authors identify some techniques that fit well with agile and
others that are clear mismatches. Jaana Wäyrynen et al. [1]
also conducted a theoretical analyses, comparing Common
Criteria with Agile and determined they would benefit from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP’11, May 21–22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0730-7/11/05 ...$10.00

149

more imperial data to asses their results and premises. Lau-
rie Williams et al. [8] devised a protection poker planning
game that uses developer interactions and common Agile
pratices to perform risk analyses during development. In the
paper the author performs a case study at Red Hat IT and
evaluates its risk analyses method.

3. BACKGROUND
In this section we briefly explain our generalization of the

three examined SE process; Cigatel Touchpoints, Common
Criteria and Microsoft SDL. The practices of these three
processes were extracted by the author and explained as ac-
tivities that should be performed in different phases of the
development process. Based on the recommendation from
the SE process each activity is also mapped to a specific
phase of process. Four phases where identified as distinct
steps, the boarders for these phases become vague in an Ag-
ile project but where well documented in the SE process.
In order, the project is expected to pass these phases: re-
quirements (Rq), design (D), Implementation (I), Test (T)
and Release (R). The same information as in this section
was presented to the interviews as explanations what a spe-
cific activity meant, what it provided and how it would be
integrated into the process.

3.1 Cigatel Touchpoints
Cigital Software Security Touchpoints[9] has often been

described as an lightweight SE process that integrates core
activities in an existing development process and improves
the quality and security aspect of the end product [10]. From
the process we can extrapolate the following activities and
claims within each phase:

• Security Requirements (Rq): Security Requirements cov-
er both overt functional security and emergent charac-
teristics that are best captured by Abuse Cases and
attack patterns.

• Abuse Cases (Rq): Abuse Cases describe the system’s
behavior under attack; building Abuse Cases requires
explicit coverage of what should be protected, from
whom, and for how long.

• Risk Analyses (D): Security analysts uncover and rank
architectural flaws so that mitigation can begin. Disre-
garding risk analysis at the early phases leads to costly
problems down the road.

• Assumption Documentation (D): Designers, architects
and analysts should clearly document assumptions and
identify possible attacks.

• Static Code Analyses (I): All software projects produce
at least one artifact: source code. At the code level,
the focus is on implementation bugs, especially those
that static analysis tools, that scan source code for
common vulnerabilities, can discover. Code review is
a necessary practice, but not sufficient for achieving
secure software.

• Penetration Testing (T): Penetration Testing provides
a good understanding of fielded software in its real en-
vironment. It does this by simulating real world work-
ing conditions and attack patterns.

• Red Team Testing (T): Manual testing security func-
tionality with standard functional testing techniques.

• Risk Based Testing (T): Manual risk-based security
testing based on attack patterns.

• External Review (R): External analysis (outside the
design team) that reviews existing touchpoints and
performs their own.

3.2 Common Criteria
Common Criteria [11] is mature and well used SE prin-

cipal that is ISO certified. A previous study has examine
Common Criteria from an Agile perspective and identified
activities similarly to ours [12].

• Security Requirements (Rq): Identifying and document-
ing security and functionality for a given software project.

• Agree on definitions (Rq): The first task for the organi-
zation is to define the stakeholders and to agree upon a
common set of security definitions, along with the def-
inition of the organizational security policies and the
security vision of the IS. It is in this activity when the
Vision Document artifact is created and should follow
one of the available ISO standards.

• Risk Analyses (D) Risk must normally be determined
from application to application. The final goal to achieve
is the 100% risk acceptance. This is captured in the
Risk Assessment Document, which is refined in subse-
quent iterations.

• Critical Assets (D): This is where the Security Readi-
ness Review (SRR) is used for the first time. It consists
of the identification of the different kinds of valuable
or critical assets as well as vulnerable assets by the
requirements engineer.

• UMLSec (D): Each asset is targeted by threat’s that
can prevent the security objective from being achieved.
First of all, it is necessary to find all the threats that
target these assets with the help of the SRR. In addi-
tion, it could be necessary to develop artifacts such as
misuse cases or attack trees diagrams or UMLSec use
cases and classes or sequence/state diagrams to devel-
op new specific or generic threats or requirements.

• Requirements Inspection (D): Requirements Inspection
is carried out in order to validate all the generated
artifacts and it is generated as a Validation Report.
Its aim is to review the quality of the team’s work and
deliverables as well as assess the security requirements
engineering process.

• Repository Improvement (R): The new model elements
found throughout the development of the previous ac-
tivities and which are considered as likely to be used in
forthcoming applications and with enough quality, ac-
cording to the Validation Report, are introduced into
the SRR. Furthermore, the model elements already in
the repository could be modified in order to improve
their quality. Thereby, all these new or modified mod-
el elements/artifacts, which have been introduced into
the SRR, altogether constitute a baseline.

150

3.3 Microsoft Security Development Lifecycle
Process

The Microsoft Security Development Lifecycle (SDL) [14]
is a software development process used and proposed by Mi-
crosoft to reduce software maintenance costs and increase
reliability of software concerning software security related
bugs. It is based on the classical spiral model but there are
attempts in making it more Agile friendly [15].

• Security Requirements (Rq): Identify and enumerating
security and privacy functionality for a given software
project.

• Role Matrix (Rq): Identifying all possible user roles
and their access level to the software.

• Design Requirements (Rq): Validate the technical de-
sign specifications and ensure they are appropriate rel-
ative to the Security Requirements for a given software
project.

• Quality Gates (D): Create appropriate security and
privacy quality measures, including activities that need
to be done for a fulfillment of requirement.

• Cost Analysis (D): Analyses the cost implications of
the different possible threats.

• Threat Modeling (D): Create new threat models or val-
idate existing threat models for correctness based on
the products design. The threat model should identify
security vulnerabilities.

• Attack Surface Reduction (D): Reduce the design and
end products attack surfaces, by limiting entry points
and simplifying interfaces.

• Security Tools (I): Use commercially available, open
source and inhouse developed security tools to assist
the project.

• Coding Rules (I): Clarify the rationale for the depre-
cation of unsafe functions and help identify and rec-
ommend alternatives for these unsafe functions

• Static Analysis (I): Have mandatory Static Code Anal-
yses with predefined rules and priorities.

• Dynamic Analysis (T): Use dynamic testing tools and
perform an evaluation, triage the output, explain the
results and develop a mitigation strategy for a given
software program.

• Fuzzy Testing (T): Use fuzzy test tools and perform
an evaluation, triage the output, explain the results
and develop a mitigation strategy for a given software
program.

• Code Review (T): Manual source code reviews of risk
components.

• Incident Response Planning (R): A response checklist
that provides clear guidelines of action in the event of
a security breach.

• Final Security Review (R): A final, before release, se-
curity review that; reviews all threat models, validates
security tool results, reviews all outstanding/deferred
security bugs, reviews all exception requests as part of
the security program.

3.4 Other
Besides the three SE processes there are some common

knowledge security activity that are often recommended but
are not distinct steps in any of the three SE process.

• Countermeasure Graphs (D): An risk analyses method
that focuses on identifying security features and prior-
itizing them [16].

• Diff. review (I): Performing source code reviews on
patches before the code change is committed to the
source code repository [17].

• Pair Programming (I): An Agile concept where devel-
opers code in a pairs. Solving and reviewing problems
directly as the code is written [19].

4. RESEARCH METHOD

4.1 Case Study Context
As a complement to the process model description, the

context of the study was as follows. Ericsson AB is a leading
global company offering solutions in the area of telecommu-
nication and multimedia. Such solutions include charging
systems for mobile phones, multimedia solutions and net-
work solutions. The company is ISO 9001:2000 certified. The
market in which the company operates can be characterized
as highly dynamic with high innovation in products and so-
lutions. The development model is market-driven, meaning
that the requirements are collected from a large base of po-
tential end-customers without knowing exactly who the cus-
tomer will be. Furthermore, the market demands highly cus-
tomized solutions, specifically due to differences in services
between countries.

4.2 Reseach Context
The process model used at the company is described and

thereafter its principles are mapped to the incremental and
iterative development; SCRUM, and Extreme Programming
(XP). The model is primarily described to set the context
for the case study, but the description also illustrates how a
company has implemented an incremental and agile way of
working. Due to the introduction of incremental and agile
development at the company the following company specific
practices have been introduced:

The first principle is to have small teams conducting short
projects lasting for three months. The duration of the project
determines the number of requirements selected for a re-
quirement package. Each project includes all phases of de-
velopment, from pre-study to testing. The result of one de-
velopment project is an increment of the system and projects
can be run in parallel.

The packaging of requirements for projects is driven by
requirement priorities. Requirements with the highest prior-
ities are selected and packaged to be implemented. Another
criterion for the selection of requirements is that they fit
well together and thus can be implemented in one coherent
project.

If a project is integrated with the previous baseline of the
system, a new baseline is created. This is referred to as the
latest system version (LSV). Therefore, only one product
exists at one point in time, helping to reduce the effort for
product maintenance. The LSV can also be considered as
a container where the increments developed by the projects

151

(including software and documentation) are put together.
On the project level, the goal is to focus on the development
of the requirements while the LSV sees the overall system
where the results of the projects are integrated. When the
LSV phase is completed, the system is ready to be shipped.

Figure 1: A quick overview of the Agile development
process.

The anatomy plan determines the content of each LSV
and the point in time when a LSV is supposed to be com-
pleted. It is based on the dependencies between parts of
the system developed which are developed in small projects,
thus influencing the time-line in which projects have to be
executed.

If every release is pushed onto the market, there are too
many releases used by customers that need to be supported.
In order to avoid this, not every LSV has to be released,
but it has to be of sufficient quality to be possible to release
to customers. LSVs not released to the customers are re-
ferred to as potential releases. The release project in itself is
responsible for making the product commercially available,
performing any changes required to alter a development ver-
sion into an release version.

In Figure 1 an overview of the development process is
provided. The requirements packages are created from high
priority requirements stored in the repository (1). These re-
quirements packages are implemented in projects resulting
in a new increment of the product. Such a project is ref-
ered to as a Small Project (3) and has a duration of ap-
proximately three months (time-boxed). When a project is
finished developing the increment, the increment is integrat-
ed with the latest version of the system, referred to as last
system version (LSV) (4). The LSV has a predefined cycle
(for example, projects have to drop their components with-
in a specific time frame to the LSV). From the LSV there
can be different releases (5) of the system. These are either
potential releases or customer releases.

4.3 Selection of Interviewees
The interviewees were selected so that the overall develop-

ment life cycle is covered, from requirements to testing and
product packaging. Furthermore, each role in the develop-

ment process should be represented by at least two persons
if possible. The following distinct roles were present:

• Unit manager, is responsible for distributing manpow-
er and is responsible for any out of product projects,
such as quality or process improvements.

• Project owner, has the overall responsibility of the prod-
uct and has a final say in anything that affects his
products projects.

• Requirements engineers, write the requirements and
are part of the prioritization process.

• Architects and experts, solve design issues in the prod-
uct and also participate in creating the anatomy plan.

• Developers, work in the small projects and implement
and test their requirements.

• Testers, are part of the LSV team and focus only on
verification and validation.

When selecting the interviewees we followed this procedure:

1. A complete list of people available for each subsystem
was provided by management.

2. For each role of development at least two people were
randomly selected for the study. An exception was
made for unit manager and project owner as these two
roles were occupied by one individual each.

3. The selected interviewees received an e-mail explaining
why they have been selected for the study. Further-
more, the mail contained information of the purpose
of the study and an invitation for the interview. Over-
all, 12 persons were contacted and participated in the
interview.

4.4 Interview Design
The interview was divided into five parts, divided by the

different phases of development; requirement, design, imple-
mentation, testing and release. The duration of the inter-
views was set to approximately one hour. Each part was
first explained by the interviewer based on the information
present in section 3. The interviewee could then ask more
specific questions on subjects he was not familiar with. The
interview was designed to collect issues and advantages from
the interviewees. In order to collect as many issues as pos-
sible, the questions were asked from two perspectives; inte-
grating an activity as part of core loop (cost) and the value of
continuously using the activity (benenfit). The interviewees
had to rate every activity in that phase, to rate an activity
the interviewee had 10 points per activity in that phase. He
could then distribute them freely between all activities. This
voting scheme has the benefit of clearly weighting activity
against each other instead of a more traditional rating each
activity individuality. Also, the interviewees always had to
state what their reason for their answer was and justify their
ranking of the activities.

4.5 Threats to Validity
Threats to the validity of the outcome of the study are

important to consider during the design of the study, allow-
ing actions to be taken mitigating them. Threats to validity
in case study research are reported in Yin [22]. The threats

152

to validity can be divided into four types: construct validity,
internal validity, external validity and reliability.

Construct validity: One threat was the selection of people
to obtain the appropriate sample for answering the research
questions. Therefore, experienced people from the company
selected a pool of interviewees as they know the persons and
organization best. From this pool the random sample was
taken. The selection by the representatives of the compa-
ny was done having the following aspects in mind: process
knowledge, roles, distribution across subsystem components,
and having a sufficient number of people involved (although
balancing against costs). Furthermore, it was a threat that
the presence of the researcher influenced the outcome of the
study. The threat was reduced as there has been a long coop-
eration between the company and university and the author
collecting the data is also employed by the company and
not viewed as being external. Construct validity was also
threatened if interview questions are misunderstood or mis-
interpreted. To mitigate the threat an initial trial interview
was conducted and the interview format was improved to be
better understood.

Internal validity: The ratings collected by the subjects
were construed with the internal validity in mind. By provid-
ing the subjects a fix number of points that they distribute
between the different actives, we assure that the rating is
actually comparing these specific activities and not other
that some subjects might be aware of depending on their
different experience levels.

External validity: The process studied was an adoption
of practices from different general process models. Care was
taken to draw conclusions and map results to these general
models, to draw general conclusions and not solely discussing
issues that are present due to the specific instantiation of
the process at the studied setting. However, if one maps the
general findings in this paper to other development process-
es their context must be taken into account. Furthermore,
a potential threat was that the actual case study was con-
ducted within one company. To minimize the influence of
the study being conducted at one company, the objective
was to map the findings from the company specific process-
es and issues to general processes. The characteristics of the
context and practices used in the process are made explicit
to ease the mapping.

Reliability: There is always a risk that the outcome of the
study is affected by the interpretation of the researcher. To
mitigate this threat, the study was designed so that data
was collected from different sources, i.e. to conduct trian-
gulation to ensure the correctness of the findings. The in-
terviews were recorded and the correct interpretation of the
data has been validated through workshops with representa-
tives of the company. The study will also be continued with
a practical study of the results. In the process of accepting
the practical study the company examined and validated the
results before coming to future studies.

5. RESULTS
First, project members grading of different security issues

are reported and then this result is compared to the function
of traditional software engineering processes.

5.1 Grading Security Issues
In all 12 professional project workers were asked to grade

security issues with respect to requirement, design, imple-

mentation, testing and release within a project. First a within-
subject analysis of variance, an F-test [18], was done for the
different issues comparing costs and benefits. For costs sig-
nificant differences were found within Requirement (0.001),
Design (0.001), Implementation (0.01), Testing (0.05) and
Release (0.001), i.e. there is a less than 0,1%/1%/5% chance
that the differences are the result of pure chance. For ben-
efit significant differences were found within Requirement
(0.001), Design (0.05), Testing (0.1) and Release (0.05). These
differences are further used for comparing the different issues
within each step of the Agile development process.

Figure 2: Above/below zero average for different re-
quirements measured as cost and benefit.

The requirement phase is at the beginning of a project
where the wishes of the stakeholder are gathered, analyzed,
understood and specified. Figure 2 indicates that Security
Requirement, Role Matrix and Abuse Cases are preferred
against the other issues. To be more precise, the visual differ-
ences above/below average are confirmed by a Bonnferroni-
Dunn [18] test showing statistical differences where above
average show preferred issues (and below show disliked is-
sues). The significant differences show that one (or more)
issues are compared, not all contradicting issues, i.e. this is
more of a guideline for further analysis.

Figure 3: Above/below zero average for different de-
sign issues measured as cost and benefit.

The Design phase was explained, to the subjects, as the
phase when the requirements are mapped into an architec-
ture. A plan for the rest of the project is also finalized during
this phase. Figure 3 indicates that Assumption Documenta-

153

tion Countermeasure Graphs, Requirement Inspection and
Critical Assets are preferred against Threat Modeling and
UMLSEC. Remark that all statistical differences originate
from the cost comparison, i.e. it seems more difficult to com-
pare benefits during the design phase. For the Critical Assets
issue the results are contradictory with benefit just outside
the (negative) 10% significant range.

Figure 4: Above/below zero average for different im-
plementations measured as cost and benefit.

During the implementation phase, see Figure 4, develop-
ers use the requirements and plan to write the source code
and create the end product. Ericsson uses test driven devel-
opment and as such does basic testing and test implementa-
tion during this phase. However, none of the examined SE
processes have any specific test-driven activities during this
phase. For cost Static Code Analyses and Coding Rules are
preferred against Security Tools. While for benefits, no over-
all significant differences (F-test) were found which was also
confirmed when the issues were individually examined.

Figure 5: Above/below zero average for different
testing issues measured as cost and benefit.

Testing includes all verification steps that are performed
by the LSV test team. This does not include any basic test-
ing the SP development teams perform as part of their small
project time-line. The testing phase can be seen at the bot-
tom of Figure 1. In Figure 5 Test Plan is preferred against
Fuzzy Testing from a cost perspective, while Dynamic Anal-
yses is preferred against Test Plan from the benefit point of
view. So Test Plan is both preferred (cost) and disliked (ben-
efit), i.e. it is cheap to introduce but gives little pay back.

Obviously this is not a preferable issue for further consider-
ation. Risk Based Testing is just outside the 10% scope for
benefit making it a candidate for preferred issues.

Figure 6: Above/below zero average for different re-
lease issues measured as cost and benefit.

In the release phase the product is completed for public
access. Here, see Figure 6, Repository Improvement is better
than all the other methods and contrary External Review is
worse than all other for cost. For benefit Repository Im-
provement is better than Incident Response Planning.

5.2 Feedback Discussion
Using the interviews as a base we can create the frame-

work of a new SE process that has the potential of being
Agile friendly and create secure software. It is therefore im-
portant to examine what benefit the security provide and
what is excluded from the process and why.

Writing Security Requirements was a strongly endorsed
activity for integrating both cost and benefit. Developers
believed that Security Requirements would identify what
the easy gains are and guide the project right. Both Role
Matrixes and Abuse Cases scored high and provided unique
benefits to the process. Developers did however have a reser-
vation with Role matrixes, some raised a concern that dur-
ing the requirement phase it is still too early to have a grasp
what roles will be in the end product. This concern applied
more to new products then already mature projects. Devel-
opers also suggested that Abuse Cases should not be written
during the requiriment phase but instead by the SP devel-
opment teams. The remaining activities were deemed non-
useful or to intrusive. Cost Analyses was the lowers ranked
activity and developers believed it to not provide useful in-
formation and require decisions that are not yet made in
an Agile project at the requirements phase. They also be-
lieved that nobody working with requirements would have
the necessary knowledge to perform a cost analyses.

In the design phase we presented three different threat
analyses methods, while the overall goal is the same. It
should be noted that the Countermeasure Graphs were de-
signed especially for Agile projects and in the same context
as the interviewed developers. As such, the threat analy-
ses value might be skewed. Threat modeling and UMLSec
were both deemed too hard to implement. The last step in
the Threat modeling activity, identifying vulnerabilities, was
seen as to hard or impossible in this phase by most devel-
opers. Compared to countermeasure graphs were the last

154

analyses part is to identify how the product could or is di-
rectly stopping the attack. Because of the lack of a finished
design, even after the design phase, developers believed that
UMLSec would not be possible to perform or it would hin-
der the project too much. Attack surface reduction was seen
as an effective concept but several developers raised con-
cerns with the added complexity and cost of encapsulating
and reducing the surface area at this stage of software de-
velopment and instead advocated an ad-hoc solution where
developers would raise the issue of attack surface reduction
during stand-ups if it was required.

During implementation there were concerns that even Stat-
ic Code Analyses do not provide any large benefit as few of
the warnings reported by the Static Code Analyses tools ac-
tually produce any real bug reports. Previous studies [23] in
the same company have shown that as low as 9% of the warn-
ings can result into a bug report and even less are security
related. Specialized security tools were seen as hard to inte-
grate and also against the intentions of the Agile manifesto.
Similarly Diff reviews where seen as hampering the projects
flow or not providing any benefit. Diff reviews outside the
team were seen as intrusive and cumbersome as the outside
review is not familiar with the code. So, Diff reviews should
be done within the team familiar with the code but devel-
opers now instead believed the code review to be ineffective
as both reviewers have worked with the code, i.e. blind to
defects in oneÂt’s own code. An third alternative, the open
source way, submitting patches to a component owner was
dismissed because it would severly hamper the Agile flow.
Pair programming, which is not a SE activity but instead
belongs to SCRUM activities, had mixed responses.

Looking at the interview answers supplement the under-
standing of the main problem involved with testing. Red
Team Testing was seen as too time intensive and would re-
move hours from the important LSV testing were the end
functionality is validated and verified. Penetration Testing
was hard to do because the project would not have a re-
liable environment to test the product in. This might be
more specific to Telecom products because they require a
more complex environment to operate compared to regu-
lar datacom products. Risk Based Testing made developers
skeptic to its requirement of a risk analyses that most likely
had been performed before the finished product had been
created and which might have changed in design since. For
fuzzy testing the developers were worried about the large
number of test results and verification that would be needed
after the automated fuzzing.

During the release phase it is clear that only Repository
Improvements or lessons learned fitted well with the process.
This is not surprising as the development process already
implements this step for the general success of the devel-
opment project. The other activities were not received well;
especially the External security review was heavily criticized
for interfering with the development process. The idea to not
ship a release before an external party has reviewed the work
is in harsh contrast to an Agile, quick communicating team.

5.3 Security Engineering and Agile
Comparison

All tools or testing issues described above are collected
from well known processes from Microsoft SDL (M), Cigatel
touchpoints (T), Common Criteria (CC) and in a few cas-
es from other processes used in the company environment

(O). Those traditional software engineering processes main-
ly concern large waterfall projects instead of the today more
common agile projects. In Table 1 significant differences in
all test cases are described where + and - are positive and
negative respectively. A + or - means any significance (0.001,
0.01 or 0.05) above or below zero average, i.e. the issue is
significant different to at least one other issue within the
investigated phase. Also, the comparison is based on a rel-
ative measurement separating one issue from other issues.
If no significance is present among the involved issues, as in
most benefit requirements, it is hard to draw any conclusions
at all about the involved issues. Therefore, our conclusions
mostly concern the cost aspects of the agile process. This
is probably due to the interviewed subjects, because they
work in a agile environment they are capable in estimating
the cost of using an activity. However, because they are not
security experts their knowledge in security is more diverse
and therefore their answer divert so much that no answer is
significant.

Requirement Cost Benefit
Security requirm. (T,M,CC) + +
Role Matrix (M) + +
Abuse Cases (T) +
Design requirem. (M) - -
Quality gates (M) -
Cost analyses (M) - -
Agree on definitions (CC) - -

Design Cost Benefit
Assumpt. Document. (T) +
UMLSec (CC) -
Requirem. Inspec. (CC) +

Implementation Cost Benefit
Static Code Analyses (T, M) +
Coding Rules (M) +
Security tools (M) -

Testing Cost Benefit
Test plan (T) +
Fuzzy Testing (M) -

Release Cost Benefit
External Review (T) -
Incident resp. planning (M) +
Repository improvem. (CC) +

Table 1: Grading security issues within a project cy-
cle. M - Microsoft SDL, T - Cigatel touchpoints, CC
- Common Criteria and O - Others

6. DISCUSSION
In the discussion we will first compare how the developers

believed the existing SE processes could integrate with Agile.
This is followed by our own suggested processes that is based
on the developers recommendations and our own judgment
of required activities.

155

6.1 Evaluating Software Engineering
Processes

Microsofts’s SDL had the largest negative effect on an
Agile development process. Developers where particularly
negative to Cost analyses and the purpose of a Cost anal-
yses is to focus the security push on the area that creates
potentially the greatest cost and damage. However, devel-
opers did not believe that it would be possible to perform a
sound Cost analyses at that early stage of development and
that the benefit is no longer as good at the later phases of
development. The lack of a Cost analyses is partly mitigated
by having a more complex Risk Analyses and by the short
iterations of a Agile process. Even if a development project
has the wrong focus the sprint is short and the focus can
be realigned after feedback from early customers or from
retrospect meetings. Microsoft’s Threat modeling (a form
of Risk Analyses) was seen as too costly and a more solu-
tion based analyses was recommended instead. The concept
of writing specific secure tools is a direct contradiction to
the Agile manifesto [26] that states that collaboration and
small teams should be prioritized instead of advanced tools.
During testing the Dynamic analyses was seen as favorable.
However, both fuzzy testing and a specific component code
review where seen as costly too implement in the process.
The code review is not as important for Agile teams be-
cause they collaborate more and have informal code reviews
and feedback during daily stand-ups. The fuzzy testing does
not have any equal improvement in the Agile process. Even
though it is seen as a hamper to the process, projects will
have to decide by them selves if Fuzzy Testing is an option.
Lastly, Microsofts Incident response planning was not seen
as a hinder but according to the developers it lacked the
benefit for the work required.

Cigatel’s Touchpoints did not have any negative activ-
ities during requirement, design or implementation phase.
The basic Risk Analyses recommend by Cigatel can instead
be replaced with a more Agile friendly alternative like Coun-
termeaure Graphs [16]. However, during testing there are
several test methods that raise the cost without providing a
large benefit. The project in this study relies on test driven
development and a large suit of automated tests for regres-
sion. The new automated test cases are also written at the
same time as the implementation code. The Touchpoints
testing methods all relies on having a ready product and
then conduct a, mostly manual, test phase where the imple-
mentation code is not changed. This requirement by the tests
methods makes them very Agile unfriendly, more specifically
test driven unfriendly. An alternative would be to adapt or
device a new test method that has the same benefit but uses
test-driven and a large automated test suit instead of man-
ual after release test methods. Lastly the concept of having
an external, out of project, review is very hostile to a pro-
cess that is depended on no bottlenecks or other blocking
issues. An Agile retrospective meeting can in some sense re-
place a review but does not fulfill the requirement of being
independent, e.g. external.

Common Criteria that is more of a metrics and mea-
surements scheme does not have any implementation or test-
ing activities. However, its activities for the products archi-
tecture assumes that there is an initial and final design cre-
ated and then resulting in a implementation phase. For Agile
projects the design phase if often very short and any design
problems are solved during implementation by the team in

a group effort. The group collaboration and daily stand-ups
could replace the concept of a final architectural design.

6.2 An Agile Security Process

Product Owner
Requirement

Security Requirements Role Matrix

SP Development Team
Design Implementation

Countermeasure graphs Static Code Analyses
Assumption Documentation Coding Rules
Abuse Cases
Requirement Inspection

Release
Repository Improvement (retrospect meeting)

LSV Test Team
Testing

Dynamic analyses

Table 2: Agile Security a basic Agile process with
the most compatible SE activities.

If we combine the most compatible and beneficial activi-
ties, shown in Table 2, with an Agile process we can create an
Agile security process that implements the most cost effec-
tive benefits from the three SE process. As we have discussed
above some activities are not present at all but we have
shown how an Agile process can cope without this activities
but still have a high security standard. To better integrate
the SE activities we have to move them from there recom-
mended phase and placed them with the development team
so the activity can be performed during a work package.
Abuse Cases where moved to the design phase and the cod-
ing developers should write them instead of the requirement
engineers. Also the release phase, Repository Improvement
fits very well with the retrospect meeting that development
team perform at the end of a work sprint. Integrating these
two activities is made easier by moving them to a more de-
veloper heavy phase. An Agile process is a small team pro-
cess that should focus its efforts on the Small Project teams
and not have heavy pre- or post-coding phases. Comparing
to Figure 1 most of the activities and security focus will be
done by the development teams in step 3 of the process,
the small project teams. During requirement the security
enhanced Agile process primary focus is to write specific re-
quirements for security goals, these will aid both program-
mers and tests to know what goals are required and need
verification. A Role matrix aids the writing of user stories
that programmers use to write the code. Having better secu-
rity specified user stories makes it easier to write design safe
software. The main focus for the improvements are with the
developers teams and their work sprints. The design phase
has several small planning and analyses steps that together
create better security, while implementation focuses on au-
tomated tools that provide quick but rough code reviews.
During the design phase the Agile process creates user sto-
ries and use cases to keep track of planned activities. Sim-
ilarly Abuse Cases could be written for scenarios that may

156

not happen. Developers can then keep track on how they
prevent the scenario or verify with basic test cases that it
is not possible. The testing phase is performed by the LSV
team and consists of other developers then the person that
have written the code. Most of the test methods recommend-
ed by the SE process focus on manual testing. As such only
the dynamic analyses scored high, since it does not require
manual testing and uses the automated test suit.

7. CONCLUSION
Project developers from Ericsson AB, a global company

offering telecom solutions, were asked to grade security im-
provement activities with respect to requirement, design, im-
plementation, testing and release within a project using agile
development methods. These security activities were chosen
from three leading software development processes (Cigatel
Touchpoints, Common Criteria and Microsoft SDL) in or-
der to compare traditional large scale waterfall development
security benefits with a smaller, more flexible, agile software
development process.

All three traditional processes scaled badly to the chosen
agile security processes because of too high costs or not be-
ing enough beneficial for the agile conditions, i.e. time con-
straints and reiterated increments of the product. Prelimi-
nary findings, based on the interviews, show that especially
the design and testing phase scaled badly. Instead a new
agile security process is proposed, integrating selected ac-
tivities from the other traditional security development pro-
cesses mainly into the development team but also to product
owner and test team. In a future work these proposed secu-
rity processes will be integrated and tested in a practical
experiment with the existing development process.

8. ACKNOWLEDGMENTS
The authors want to thank Martin Hylerstedt for proof-

reading the text and Niklas Lavesson for valuable comments
about the statistical analysis. We would also like to thank
Ericsson AB for the opportunity to perform this study.

9. REFERENCES
[1] Wäyrynen, J.; Boden, M. Boström, G. Security

Engineering and eXtreme Programming: an Impossible
Marriage?, Extreme Programming and Agile Methods,
Calgary, Canada, August 15-18, 2004

[2] Gustav Bostrom, Jaana Wayrynen, Marine Boden,
Konstantin Beznosov and Phillippe Kruchten,
Extending XP practices to support Security
Requirements Engineering, ACM SESS 06, pp. 11-17,
Shanghai, China, May 20-21, 2006

[3] Hossein Keramati, Seyed-Hassan Mirian-Hosseinabadi,
Integrating software development security activities
with agile methodologies, Computer Systems and
Applications, ACS/IEEE International Conference on,
pp. 749-754, 2008 IEEE/ACS International Conference
on Computer Systems and Applications, 2008

[4] Davis, N., Secure Software Development Life Cycle
Processes, CMU/SEI-2005-TN-024. Software
Engineering Institute. Carnegie Mellon University,
2005.

[5] Siponen M., Baskerville, R., Kuivalainen, T.,
Integrating Security into Agile Development Methods,

Proc. of the 38th Hawaii International Conference on
System Science, 2005

[6] K. Beznosov, P. Kruchten, Towards agile security
assurance, Proceedings of the 2004 Workshop on New
Security Paradigms, September 2004.

[7] Bart De Win, Riccardo Scandariato, Koen Buyens,
Johan Gregoire, and Wouter Joosen: On the Secure
Software Development Process: CLASP, SDL and
Touchpoints Compared, Preprint submitted to Elsevier,
16 January 2008.

[8] Laurie Willlliams, Andrew Meneely and Grant Shipley,
Protection Poker: The New Software Security Game”,
Security & Privacy vol 8 no 3, 2010

[9] McGraw, G. Software Security: Building Security In,
Addison-Wesley, 2006

[10] Steven, J., Adopting an enterprise software security
framework. IEEE Security and Privacy, Vol. 4, No. 2,
pp. 84- 87, 2006

[11] Feisal Keblawi, Dick Sullivan, Applying the Common
Criteria in Systems Engineering, IEEE Security and
Privacy, vol. 4, no. 2, pp. 50-55, Mar./Apr. 2006

[12] Mellado, D., Fernandez-Medina, E., Piattini, M., A
comparison of the Common Criteria with proposals of
information systems Security Requirements, The First
International Conference Availability, Reliability and
Security, 2006. ARES ’06. 20-22 April 2006

[13] Beznosov, K., and P. Kruchten, Towards Agile
Security Assurance, Proceedings of The New Security
Paradigms Workshop ,White Point Beach Resort, Nova
Scotia, Canada, 20-23 September 2004

[14] M. Howard and S. Lipner. The Security Development
Lifecycle. Microsoft Press, 2006

[15] Bryan Sullivan, Streamline Security Practices For
Agile Development, MSDN Magazine, November, 2008

[16] Baca, D. Petersen, K. Prioritizing Countermeasures
through the Countermeasure Method for Software
Security (CM-Sec), 11th International Conference on
Product-Focused Software Process Improvement,
PROFES 2010

[17] P. Rigby, D. German, and M.-A. Storey, Open source
software peer review practices: A case study of the
apache server, in Proc. of the International Conference
on Software Engineering, 2008

[18] Ugarte, M. D., Militino, A. F., & Arnholt, A. T.
Probability and Statistics with R. Boca Raton:
Chapman & Hall/CRC, 2008

[19] L. Williams et al., Strengthening the case for pair
programming, IEEE Software, vol. 17, No. 4, 19-25,
2000

[20] Schwaber, K., Beedle, M. Agile Software Development
with Scrum. Prentice Hall, New Jersey, 2001

[21] K. Beck, Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley, 2000

[22] Yin RK. 1997. Case study evaluations: a decade of
progress? See Rog Fournier, pp. 69-78 1997

[23] D. Baca, B. Carlsson, and L. Lundberg, Evaluating
the cost reduction of static code analysis for software
security, 3rd ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security
2008, PLAS’08, June 8, 2008 - June 8, 2008, Tucson,
AZ, United states: Association for Computing
Machinery, pp. 79-88, 2008

157

[24] Secure Software Inc., CLASP: Comprehensive
Lightweight Application Security Process,
http://www.securesoftware.com/process, Version
2.0, 2006

[25] Keramati, H.; Mirian-Hosseinabadi, S.-H.; ,
Integrating software development security activities

with agile methodologies, Computer Systems and
Applications, 2008. AICCSA 2008. IEEE/ACS
International Conference on , vol., no., pp.749-754,
March 31 2008-April 4, 2008

[26] Manifesto for Agile Software Development,
http://agilemanifesto.org/

158

