
Model-Based Collaborative Filtering as a Defense
Against Profile Injection Attacks ∗

Bamshad Mobasher and Robin Burke and JJ Sandvig
Center for Web Intelligence

School of Computer Science, Telecommunication and Information Systems
DePaul University, Chicago, Illinois

{mobasher, rburke, jsandvig}@cs.depaul.edu

Abstract

The open nature of collaborative recommender systems al-
lows attackers who inject biased profile data to have a sig-
nificant impact on the recommendations produced. Standard
memory-based collaborative filtering algorithms, such as k-
nearest neighbor, have been shown to be quite vulnerable to
such attacks. In this paper, we examine the robustness of
model-based recommendation algorithms in the face of pro-
file injection attacks. In particular, we consider two recom-
mendation algorithms, one based on k-means clustering and
the other based on Probabilistic Latent Semantic Analysis
(PLSA). These algorithms aggregate similar users into user
segments that are compared to the profile of an active user
to generate recommendations. Traditionally, model-based al-
gorithms have been used to alleviate the scalability problems
associated with memory-based recommender systems. We
show, empirically, that these algorithms also offer significant
improvements in stability and robustness over the standard k-
nearest neighbor approach when attacked. Furthermore, our
results show that, particularly, the PLSA-based approach can
achieve comparable recommendation accuracy.

Introduction
Recent research has begun to examine the vulnerabilities of
different recommendation techniques, such as collaborative
filtering, in the face of what has been termed “shilling” at-
tacks (Burke et al. 2005; Burke, Mobasher, & Bhaumik
2005; Lam & Reidl 2004; O’Mahony et al. 2004). We use
the more descriptive phrase “profile injection attacks”, since
promoting a particular product is only one way such an at-
tack might be used. In a profile injection attack, an attacker
interacts with a collaborative recommender system to build
within it a number of profiles associated with fictitious iden-
tities with the aim of biasing the system’s output.

It is easy to see why collaborative filtering is vulnerable to
these attacks. A user-based collaborative filtering algorithm
collects user profiles, which are assumed to represent the
preferences of many different individuals, and makes rec-
ommendations by finding peers with like profiles. If the pro-
file database contains biased data (for example, a number of

∗This research was supported in part by the National Science
Foundation Cyber Trust program under Grant IIS-0430303.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

profiles that assign high ratings to a particular item), these
biased profiles may be considered peers for genuine users
and result in biased recommendations. This is precisely the
effect found in (Lam & Reidl 2004) and (O’Mahony et al.
2004).

A widely accepted approach to user-based collaborative
filtering is the k-nearest neighbor algorithm. However,
memory-based algorithms such as k-NN do not scale well to
commercial recommender systems. For such data-intensive
systems, model-based algorithms provide a scalable solu-
tion. Building a model of the dataset allows off-line process-
ing for the most rigorous similarity calculations. However,
in some cases, this is at the cost of lower recommendation
accuracy (O’Conner & Herlocker 1999).

A potentially positive side-affect of a model-based ap-
proach is that it may provide improved robustness against
profile injection attacks. Previous work has shown the vul-
nerability of the basic k-nearest neighbor algorithm to at-
tack (Burke et al. 2005). However, a model-based approach
is an abstraction of the detailed user profiles. We hypothe-
size that this abstraction will minimize the influence of an
attack, because the attack profile is not directly used in rec-
ommendation.

In our study, we have focused on two model-based algo-
rithms that cluster similar users into segments. Each seg-
ment represents an aggregate profile that is used for recom-
mendation, rather than the original user data. Our bench-
mark standard applies k-means clustering to create the user
segments. In (O’Conner & Herlocker 1999) a similar ap-
proach was used to improve scalability of k-NN, but resulted
in somewhat lower prediction accuracy. We present a more
successful approach based on probabilistic latent semantic
analysis (PLSA) to infer hidden relationships among groups
of users. PLSA is a “fuzzy” approach, in that each user has a
degree of association with every user segment. This allows
particularly authoritative users to exercise greater influence
on recommendation.

The primary contribution of this paper is to demonstrate
that model-based algorithms, and in particular the PLSA-
based algorithm, offer significant improvement in robust-
ness against profile injection attacks when compared with
the standard memory-based k-NN. In addition, this improve-
ment in robustness does not come at a significant cost in
terms of recommendation accuracy.

1388

Figure 1: General form of an attack profile

Attack Types
A profile injection attack against a collaborative recom-
mender system consists of a number of attack profiles added
to the database of real user profiles. The goal of a push at-
tack is to increase the system’s predicted rating on a target
item for a given user (or group of users). An attack type is
an approach to constructing attack profiles, based on knowl-
edge about the recommender system, its rating database, its
products, and/or its users.

The generic form of an attack profile is depicted in Fig-
ure 1. Specific attack types define the method for assigning
ratings to the set of filler items and the target item. The set of
filler items represent a group of randomly selected items in
the database that are assigned ratings within the attack pro-
file. In certain attack types, a subset of filler items may be
pre-selected for a precise impact. The target item in a push
attack is generally given the maximum allowed rating.

The random attack and average attack are basic attack
types introduced in (Lam & Reidl 2004) and further general-
ized in (Burke, Mobasher, & Bhaumik 2005). In both cases,
filler items of an attack profile are assigned random ratings.
For a random attack, the ratings are distributed around the
global rating mean. For an average attack, the ratings are
distributed around the individual mean for each filler item.

In practice, an average attack is much more effective than
a random attack. However, it requires greater knowledge
about the system’s rating distribution. This knowledge cost
is minimized by the fact that an average attack can be quite
successful with a small filler item set, whereas a random at-
tack usually must have a rating for every item in the database
in order to be effective.

An extension of the random attack, the bandwagon at-
tack (Burke et al. 2005; Burke, Mobasher, & Bhaumik
2005) is nearly as effective as the average attack. The goal
of a bandwagon attack is to associate the target item with a
small number of frequently rated items. This takes advan-
tage of the Zipf ’s law distribution: a small number of items
will receive the lion’s share of ratings. In a bandwagon at-
tack, a small set of frequently rated items are selected along
with the set of random filler items. Attack profiles give
maximum rating to those items that have high visibility, and
therefore have a good probability of being similar to a large
number of users.

Random, average, and bandwagon attack types are not
particularly effective against item-based collaborative filter-
ing. In response, the segment attack was introduced (Burke
et al. 2005; Burke, Mobasher, & Bhaumik 2005). It turns
out that a segment attack is also quite effective against user-

based algorithms. A segment attack attempts to target a
specific group of users who may already be predisposed to-
ward the target item. For example, an attacker that wishes to
push a fantasy book might want the product recommended
to users expressing interest in Harry Potter and Lord of the
Rings.

A typical segment attack profile consists of a number of
selected items that are likely to be favored by the targeted
group of users, in addition to the random filler items. This
differs from a bandwagon attack in that the selected items
are expected to be highly rated within the targeted user
group, rather than frequently rated. The selected segment
items are assigned the maximum rating value along with the
target item. To provide the greatest impact on item-based
algorithms, all remaining filler items are given the minimum
allowed rating.

Recommendation Algorithms
In general, user-based collaborative filtering algorithms at-
tempt to discover a neighborhood of user profiles that are
similar to a target user. A rating value is then predicted for
all missing items in the target user’s profile, based on ratings
given to the item within the neighborhood. We begin with
background information on the standard memory-based k-
NN. We then present two model-based recommendation al-
gorithms that cluster user profiles into user segments. The
first is based on k-means clustering and the second on Prob-
abilistic Latent Semantic Analysis.

k-Nearest Neighbor
k-nearest neighbor is a memory-based algorithm dependent
on direct user-to-user similarity (Herlocker et al. 1999). It
operates by selecting the k most similar users to a target user,
and formulates a prediction for a target item by combining
the preferences of these users. k-NN is widely used and rea-
sonably accurate. The similarity between the target user, u,
and a neighbor, v, is computed using the standard Pearson’s
correlation coefficient:

simu,v =

∑
i∈I

(ru,i − r̄u) ∗ (rv,i − r̄v)
√∑

i∈I

(ru,i − r̄u)2 ∗
√∑

i∈I

(rv,i − r̄v)2

where ru,i and rv,i are the ratings of some item i for u and
v, respectively; and r̄u and r̄v are the average of the ratings
of u and v over I , respectively.

Once similarities are calculated, the k most similar users
that have rated the target item are selected as the neighbor-
hood. Note that this implies a target user may have a dif-
ferent neighborhood for each target item. We also filter out
all neighbors with a similarity below a specified threshold.
This prevents predictions being based on very distant or neg-
ative correlations. After identifying a neighborhood, we use
Resnick’s algorithm to compute the prediction for a target
item i and target user u:

pu,i = r̄u +

∑
v∈V

simu,v(rv,i − r̄v)

∑
v∈V

|simu,v|

1389

where V is the set of k similar neighbors; rv,i is the rating
of i for neighbor v; r̄u and r̄v are the average ratings over
all rated items for u and v, respectively; and simu,v is the
Pearson correlation described above.

The formula in essence computes the degree of preference
for all neighbors, weighted by their similarity, and then adds
this to the target user’s average rating: the idea being that
different users may have different “baselines” around which
their ratings are distributed. Note that if the denominator of
the above equation is zero, the prediction is simply the target
user’s average rating.

k-Means Clustering
A standard model-based collaborative filtering algorithm
uses k-means to cluster similar users into segments. Given a
set of user profiles, the space can be partitioned into k groups
of users that are close to each other based on a measure of
similarity. We have used the Pearson correlation described
above. The discovered user segments are then applied to
the user-based neighborhood formation task, rather than in-
dividual profiles.

In order to determine similarity between a target user and
a user segment, we must aggregate each cluster into a com-
parable form with the target user. Profile Aggregation based
on Clustering Transactions (PACT) provides an effective
method for the derivation of aggregate representations from
the user profile clusters (Mobasher, Dai, & T. Luo 2002).
For each cluster Ck, we compute the mean vector �vk of com-
mon item ratings corresponding to each user segment:

�vk =
1

|Ck|
∑

�un

where �un is the rating vector for a user profile un ∈ Ck.
To make a recommendation for a target user u and target

item i, we select a neighborhood of user segments that have
a rating for i and whose aggregate profile vk is most similar
to u. This neighborhood represents the set of user segments
that the target user is most likely to be a member. Given
the aggregate profile of a user segment contains the average
rating for each item within the segment, we can make a pre-
diction for item i as described in the previous section, where
the neighborhood V is the set of user segment aggregate pro-
files most similar to the target user.

Probabilistic Latent Semantic Analysis
Probabilistic latent semantic analysis (PLSA) models (Hof-
mann 1999) provide a probabilistic approach for charac-
terizing latent or hidden semantic associations among co-
occurring objects. In (Jin, Zhou, & Mobasher 2004) PLSA
was applied to the creation of user segments based on web
usage data. We have adapted this approach to the context of
collaborative filtering.

The process of discovering user segments via PLSA is as
follows. Given a set of n users, U = {u1, u2, · · · , un}, and
a set of m items, I = {i1, i2, · · · , im} the PLSA model as-
sociates an unobserved factor variable Z = {z1, z2, · · · , zl}
with observations in the rating data. For a target user u and a
target item i, the following joint probability can be defined:

P (u, i) =
l∑

k=1

Pr(zk) • Pr(u|zk) • Pr(i|zk)

In order to explain a set of ratings (U, I), we need to esti-
mate the parameters Pr(zk), Pr(u|zk), and Pr(i|zk), while
maximizing the following likelihood L(U, I) of the rating
data:

L(U, I) =
∑

u∈U

∑

i∈I

ru,i • log Pr(u, i)

where ru,i is the rating of user u for item i.
The Expectation-Maximization (EM) algorithm (Demp-

ster, Laird, & Rubin 1977) is used to perform maximum
likelihood parameter estimation. Based on initial values of
Pr(zk), Pr(u|zk), and Pr(i|zk), the algorithm alternates
between an expectation step and maximization step. In the
expectation step, posterior probabilities are computed for la-
tent variables based on current estimates:

Pr(zk|u, i) =
Pr(zk) • Pr(u|zk) • Pr(i|zk)

∑l
k′=1 Pr(z′k) • Pr(u|z′k) • Pr(i|z′k)

In the maximization step, Lagrange multipliers (Hofmann
2001) are used to obtain the following equations for re-
estimated parameters:

Pr(zk) =
∑

u∈U

∑
i∈I ru,i • Pr(zk|u, i)∑
u∈U

∑
i∈I ru,i

Pr(u|zk) =
∑

i∈I ru,i • Pr(zk|u, i)∑
u′∈U

∑
i∈I ru′,i • Pr(zk|u′, i)

Pr(i|zk) =
∑

u∈U ru,i • Pr(zk|u, i)∑
u∈U

∑
i′∈I ru,i′ • Pr(zk|u, i′)

Iterating the expectation and maximization steps mono-
tonically increases the total likelihood of the observed data
L(U, I), until a local optimum is reached.

We can now identify segments of users that have similar
underlying interests. For each latent variable zk, we create
a user segment Ck and select all users having probability
Pr(u|zk) exceeding a certain threshold µ. If a user does not
exceed the threshold for any latent variable, it is associated
with the user segment of highest probability. Thus, every
user profile will be associated with at least one user seg-
ment, but may be associated with multiple segments. This
allows authoritative users to have broader influence over pre-
dictions, without adversely affecting coverage in sparse rat-
ing data.

For each user segment Ck, we can aggregate the associ-
ated user profiles into a weighted profile vector �vk:

�vk =
∑

�un • Pr(un|zk)∑
|Pr(un|zk)|

where �un is the rating vector for a user profile un ∈ Ck.
To make a recommendation for a target user u and target

item i, we select a neighborhood of user segments that have

1390

a rating for i and whose aggregate profile vk is most similar
to u. This neighborhood represents the set of user segments
that the target user is most likely to be a member, based on
a measure of similarity. For this task, we use Pearson’s cor-
relation coefficient. We can now make a prediction for item
i as described in previous sections, where the neighborhood
V is the set of user segment aggregate profiles most similar
to the target user.

Evaluation Metrics

There has been considerable research in the area of recom-
mender system evaluation focused on accuracy and perfor-
mance (Herlocker et al. 2004). Our goal, on the other hand,
is to measure the effectiveness of an attack, i.e., the “win”
for the attacker. In the experiments reported below, we fol-
low the lead of (O’Mahony et al. 2004) in measuring sta-
bility via prediction shift. In addition, we measure hit ratio
for a push attack. Hit ratio measures the average likelihood
that a top N recommender will recommend a pushed item,
compared to all other items (Sarwar et al. 2001).

Prediction shift measures the change in an item’s pre-
dicted rating after being attacked. Let U and I be the sets
of test users and attacked items, respectively. For each user-
item pair (u, i) the prediction shift denoted by ∆u,i, can be
measured as ∆u,i = p′u,i − pu,i, where p and p′ represent
the prediction before and after attack, respectively. A posi-
tive value means that the attack has succeeded in raising the
predicted rating for the item. The average prediction shift
for an item i over all users in the test set can be computed
as

∑
u∈U

∆u,i/ |U |. The average prediction shift is then com-

puted by averaging over individual prediction shifts for all
attacked items.

Note that a strong prediction shift does not guarantee an
item will be recommended - it is possible that other items’
scores are also affected by an attack, or that the item score
is so low that even a prodigious shift does not promote it to
“recommended” status.

Hit ratio measures the effectiveness of an attack on a
pushed item compared to other items. Let Ru be the set
of top N recommendations for user u. For each push attack
on item i, the value of a recommendation hit for user u de-
noted by Hui, can be evaluated as 1 if i ∈ Ru; otherwise
Hui is evaluated to 0. We define hit ratio as the number of
hits across all users in the test set divided by the number of
users in the test set. The hit ratio for a pushed item i over
all users in a set can be computed as

∑
u∈U

Hui/ |U |. Aver-

age hit ratio is calculated as the sum of the hit ratio for each
push attack on item i across all pushed items divided by the
number of pushed items.

Hit ratio is useful for evaluating the pragmatic effect of
a push attack on recommendation. Typically, a user is only
interested in the top 20 to 50 recommendations. An attack
on an item that significantly raises the hit ratio, regardless
of prediction shift, can be considered effective. Indeed, an
attack that causes a pushed item to be recommended 80% of
the time has achieved the desired outcome for the attacker.

Experimental Evaluation
To evaluate the robustness of the model-based k-means and
PLSA algorithms, we compare the results of push attacks
using different parameters. In each case we report the rela-
tive improvement over the standard k-nearest neighbor ap-
proach.

Data and Test Sets
In our experiments, we have used the publicly-available
Movie-Lens 100K dataset1. This dataset consists of 100,000
ratings on 1682 movies by 943 users. All ratings are integer
values between one and five, where one is the lowest (dis-
liked) and five is the highest (liked). Our data includes all
users who have rated at least 20 movies.

To conduct attack experiments, the full dataset is split into
training and test sets. Generally, the test set contains a sam-
ple of 50 user profiles that mirror the overall distribution of
users in terms of number of movies seen and ratings pro-
vided. An exception is made for segment attacks when eval-
uating in-segment users. In this case, the test set contains
only user profiles that have rated every segment movie with
a four or five. If there are more than 50 in-segment users, a
random sample of 50 is used as the test set. The remainder
of user profiles after removing the test set is designated as
the training set. All collaborative filtering models and attack
profiles are built from the training set, in isolation from the
test set.

The set of attacked items consists of 50 movies whose
ratings distribution matches the overall ratings distribution
of all movies. Each movie is attacked as a separate test, and
the results are aggregated. In each case, a number of attack
profiles are generated and inserted into the training set, and
any existing rating for the attacked movie in the test set is
temporarily removed.

Results
We first compare the accuracy of k-NN versus the model-
based algorithms. To monitor accuracy, and to assist in tun-
ing the recommendation algorithms, we use the mean ab-
solute error (MAE) metric. MAE is a statistical measure
for comparing predicted values to actual user ratings (Her-
locker et al. 1999). In all cases, 10-fold cross-validation
is performed on the entire dataset and no attack profiles are
injected.

In neighborhood formation, we achieved optimal results
using k = 20 users for the neighborhood size of the k-NN
algorithm. For the model-based algorithms, we obtained the
most favorable results using k = 10 user segments for the
neighborhood size. In all cases, we filter out neighbors with
a similarity score less than 0.1. For PLSA, we observed an
optimum threshold of µ = 0.035.

As Figure 2 shows, k-means and PLSA are not remark-
ably less accurate than k-NN, with PLSA being somewhat
more accurate than k-means. For the remainder of the ex-
periments, we apply 30 user segments for both k-means and
PLSA. Although a greater number of user segments result in

1http://www.cs.umn.edu/research/GroupLens/data/

1391

Figure 2: Comparison of MAE

improved MAE, 30 seems to be the point of diminishing re-
turns. Larger segments require considerably more process-
ing time in order to build a model, with marginal improve-
ment for our purposes.

For every profile injection attack, we track attack size and
filler size. Attack size is the number of injected attack pro-
files, and is measured as a percentage of the pre-attack train-
ing set. There are approximately 1000 users in the database,
so an attack size of 1% corresponds to about 10 attack pro-
files added to the system. Filler size is the number of filler
ratings given to a specific attack profile, and is measured as
a percentage of the total number of movies. There are ap-
proximately 1700 movies in the database, so a filler size of
10% corresponds to about 170 filler ratings in each attack
profile. The results reported below represent averages over
all combinations of test users and attacked movies. We use
the metrics of prediction shift and hit ratio to measure the
relative performance of various attack models.

To evaluate the sensitivity of filler size, we have tested
5%, 10%, 25%, and 100% filler items on each attack type.
The 100% filler is included as a benchmark for the potential
influence of an attack. However, it is not likely to be practi-
cal from an attacker’s point of view. Collaborative filtering
rating databases are often extremely sparse, so attack pro-
files that have rated every product are quite conspicuous. Of
particular interest are smaller filler sizes. An attack that per-
forms well with few filler items is less likely to be detected.

Figure 3 presents the prediction shift results of an aver-
age attack at different attack sizes using a 5% filler. Both
k-means and PLSA show notable improvement in stability
over k-NN. However, the performance of PLSA is superior
to k-means at larger attack sizes. At a 15% attack, prediction
shift for PLSA is 0.8 - less than half that of k-means (1.7),
and one third that of k-NN (2.6).

Figure 4 presents hit ratio for an average attack using a 5%
filler size and 15% attack size. Clearly, PLSA is more robust
than k-means or k-NN. Even at a top 50 recommendation,
PLSA includes an attacked item just over 25% of the time,
compared to nearly 100% for each of the other algorithms.

Figure 5 depicts prediction shift for an average attack at
different filler sizes using a 15% attack size. Although less
remarkable, PLSA continues to outperform k-means and k-

Figure 3: Average attack prediction shift at 5% filler

Average Attack: 15% Attack, 5% Filler

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15 20 30 40 50

Top N Recommendations

H
it

R
a
ti

o

k-nn k-means plsa no attack

Figure 4: Average attack hit ratio at 5% filler and 15% attack

NN at larger filler sizes. At 25% filler, prediction shift for
PLSA is just over 1.0, compared to 1.9 and 2.1 for k-means
and k-NN, respectively. In fact, it is not until 100% filler that
either of the other algorithms are able to match the perfor-
mance of PLSA. Note that as filler size is increased, k-NN
prediction shift goes down. This is because an attack profile
with many filler items has greater chance of being dissimilar
to the active user.

We have shown results for average attack because it is
more effective than random or bandwagon attacks; however,
PLSA has also exhibited improved robustness over k-means
and k-NN against these attacks. We next present results for
segment attack.

The segment attack is designed to have particular impact
on likely buyers, or “in-segment” users. These users have
shown a disposition towards items with particular charac-
teristics, such as movies within a particular genre. For our
experiments, we selected popular horror movies (Alien, Psy-
cho, The Shining, Jaws, and The Birds) and identified users
who had rated all of them 4 or 5. This would be an ideal tar-
get market to which other horror movies could be promoted,
and so we measure the impact of the attack on recommen-
dations made to them. Note that in-segment in context of
a segment attack should not be confused with a “user seg-
ment”, which we use as a model for prediction.

1392

Figure 5: Comparison of filler size for an average attack

Figure 6: Segment attack prediction shift at 5% filler (for
in-segment users)

Figure 6 depicts prediction shift for a segment attack us-
ing a 5% filler. Clearly, the attack is extremely effective
against the k-NN algorithm. A minimal 1% attack shows
a prediction shift of almost 2.5 - the same result as a 15%
average attack. Although not displayed, our hit ratio results
confirm these findings.

By contrast, k-means and PLSA are less affected by a seg-
ment attack. Even at 100% filler size, k-means continues
to hold at 0.5 and PLSA never surpasses a prediction shift
of 1. Although k-means is slightly more robust than PLSA
against a segment attack, this is offset by the poor perfor-
mance against the other attack types.

Conclusions
Recent research has shown the vulnerability of the standard
memory-based k-nearest neighbor algorithm to profile in-
jection attacks. An attacker is able to bias a memory-based
recommendation by building a number of profiles associ-
ated with fictitious identities. In this paper, we have demon-
strated the relative robustness and stability of model-based
algorithms over the memory-based approach. In particular,
we have focused on a recommendation algorithm based on
Probabilistic Latent Semantic Analysis in order to discover
segments of similar users that are compared to the profile

of an active user to generate recommendations. This level
of abstraction from the original user profiles allows PLSA
to make recommendations that are relatively accurate, while
removing much of the influence of biased attack profiles.

References
Burke, R.; Mobasher, B.; Zabicki, R.; and Bhaumik, R.
2005. Identifying attack models for secure recommenda-
tion. In Beyond Personalization: A Workshop on the Next
Generation of Recommender Systems.
Burke, R.; Mobasher, B.; and Bhaumik, R. 2005. Limited
knowledge shilling attacks in collaborative filtering sys-
tems. In Proceedings of the 3rd IJCAI Workshop in In-
telligent Techniques for Personalization.
Dempster, A.; Laird, N.; and Rubin, D. 1977. Max-
imum likelihood from incomplete data via the em algo-
rithm. Journal of Royal Statistical Society B(39):1–38.
Herlocker, J.; Konstan, J.; Borchers, A.; and Riedl, J. 1999.
An algorithmic framework for performing collaborative fil-
tering. In Proceedings of the 22nd ACM Conference on
Research and Development in Information Retrieval (SI-
GIR’99).
Herlocker, J.; Konstan, J.; Tervin, L. G.; and Riedl, J.
2004. Evaluating collaborative filtering recommender sys-
tems. ACM Transactions on Information Systems 22(1):5–
53.
Hofmann, T. 1999. Probabilistic latent semantic analysis.
In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence.
Hofmann, T. 2001. Unsupervised learning by probabilis-
tic latent semantic analysis. Machine Learning Journal
42(1):177–196.
Jin, X.; Zhou, Y.; and Mobasher, B. 2004. A unified ap-
proach to personalization based on probabilistic latent se-
mantic models of web usage and content. In Proceedings of
the AAAI 2004 Workshop on Semantic Web Personalization
(SWP’04).
Lam, S., and Reidl, J. 2004. Shilling recommender systems
for fun and profit. In Proceedings of the 13th International
WWW Conference.
Mobasher, B.; Dai, H.; and T. Luo, M. N. 2002. Discovery
and evaluation of aggregate usage profiles for web person-
alization. Data Mining and Knowledge Discovery 6:61–82.
O’Conner, M., and Herlocker, J. 1999. Clustering items for
collaborative filtering. In Proceedings of the ACM SIGIR
Workshop on Recommender Systems.
O’Mahony, M.; Hurley, N.; Kushmerick, N.; and Sil-
vestre, G. 2004. Collaborative recommendation: A robust-
ness analysis. ACM Transactions on Internet Technology
4(4):344–377.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In Proceedings of the 10th International World
Wide Web Conference.

1393

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial
 /ArialBlack
 /ArialBold
 /ArialBoldItalic
 /ArialItalic
 /ArialMTBlack
 /ArialMTCondensedLight
 /ArialNarrow
 /ArialNarrowBold
 /ArialNarrowBoldItalic
 /ArialNarrowItalic
 /ArialRoundedMTBold
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY7
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMDUNH10
 /CMEX10
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB7
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNew
 /CourierNewBold
 /CourierNewBoldItalic
 /CourierNewItalic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /MSAM10
 /MSAM5
 /MSAM7
 /MSBM10
 /MSBM5
 /MSBM7
 /MT-Extra
 /MTEX
 /MTSY
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /NimbusMonAntL-Regu
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomD-Bold
 /NimbusRomD-BoldItal
 /NimbusRomD-ExtrBold
 /NimbusRomD-ExtrBoldItal
 /NimbusRomD-Regu
 /NimbusRomD-ReguItal
 /NimbusRomModComD
 /NimbusRomNo2T-Regu
 /NimbusRomNo9DCD-Regu
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusRomNo9SCT-Regu
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldCond
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-ExtrBold
 /NimbusRomNo9T-Medi
 /NimbusRomNo9T-MediItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguCond
 /NimbusRomNo9T-ReguCondItal
 /NimbusRomNo9T-ReguItal
 /NimbusRomanD-BoldItalicOu1
 /NimbusRomanD-BoldOu1
 /NimbusRomanD-ExtraBoldItalicOu1
 /NimbusRomanD-ExtraBoldOu1
 /NimbusRomanD-RegularItalicOu1
 /NimbusRomanD-RegularOu1
 /RMTMI
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRoman
 /TimesNewRomanBold
 /TimesNewRomanBoldItalic
 /TimesNewRomanItalic
 /TimesNewRomanMTExtraBold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfDingbats
]
 /NeverEmbed [true
 /Geneva
 /HelveticaLTMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

