
Model-checking Driven Security Testing of Web-based Applications

Alessandro Armando, Roberto Carbone
DIST, University of Genova

Genova, Italy
{armando, carbone}@dist.unige.it

Luca Compagna, Keqin Li, Giancarlo Pellegrino
SAP Research

Mougins, France
{luca.compagna, keqin.li, giancarlo.pellegrino}@sap.com

Abstract—Model checking and security testing are two ver-
ification techniques available to help finding flaws in security-
sensitive, distributed applications. In this paper, we present an
approach to security testing of web-based applications in which
test cases are automatically derived from counterexamples
found through model checking. We illustrate our approach
by discussing its application against of the SAML-based Single
Sign-On for Google Apps.

Keywords-model checking; security testing; web-based appli-
cations;

I. INTRODUCTION

We are witnessing a major paradigm shift in the way
ICT systems and applications are designed, implemented
and deployed: systems and applications are no longer the
result of programming components in the traditional sense,
but are built by composing services that are distributed
over the network and aggregated in a demand-driven and
flexible way. However, the new opportunities opened by this
paradigm shift will only materialize if concepts, techniques,
and tools for security and trust will be provisioned to ensure
trustworthiness. A number of verification techniques are
already available to help finding flaws in security-sensitive,
distributed applications at the different phases of the service
life-cycle:

• Model checking and related automated reasoning tech-
niques have proved effective to detect subtle flaws in
the logic of distributed applications. They can be fully
automatic, but since the analysis is carried out on a
formal model of the system (as opposed to the actual
system) their applicability is usually confined to the
design phase.

• Security testing, unlike model checking, can be used
to check the behavior of the actual system. It has
been successfully applied to authorization and simi-
lar application-level policies. A special form of secu-
rity testing, namely penetration testing, is effective in
finding low-level vulnerabilities in on-line applications
(e.g., cross-site scripting), but heavily relies on the
guidance and expertise of the user. Security testing is
normally applied in later stages of the service life-cycle,
i.e., during the deployment or even the consumption
phase.

(We do not consider techniques based on code analysis here
as the availability of source code cannot be always assumed.)
These techniques are already routinely used to unveil serious
vulnerabilities and are therefore going to play a central
role in improving the security of web-based applications.
However, there is an enormous potential in using these
technologies in combination rather than in isolation. In fact,
state-of-the-art security verification technologies, if used in
isolation, do not provide automated support to the discovery
of important vulnerabilities and of the associated exploits
that are already plaguing complex, web-based, security-
sensitive applications. On the one hand, while model check-
ing is a key to the discovery of the subtle vulnerabilities due
to unexpected interleavings of service executions, it provides
no support to testing the actual services. On the other hand,
penetration testing tools—by supporting the analysis of a
single service at a time—lack the global view and the
automated reasoning capabilities necessary to discover the
kind of vulnerabilities found by model checkers, but provide
both infrastructure and repertoires of testing techniques that
are very useful to find exploits related to the high-level
vulnerabilities found by model checkers. Also, the work
on application-level security testing has been so far focused
on access and authorization policies rather than on security
properties in their generality. Therefore, security testing
approaches, though they may serve as a good starting point,
are not directly applicable to test key security properties
(e.g., authentication) of web-applications.

In this paper we present an approach to security testing of
web-based applications in which test cases are automatically
derived from counterexamples found through model check-
ing. Given a description of (i) the protocol used by the web-
application to coordinate the component services and of the
expected security properties and (ii) the testing environment
including the specification of the System Under Test (SUT),
our approach (cf. Figure 1) consists of the following steps:

1) Modeling. An abstract model, amenable to formal
analysis, of the protocol is formulated, and message
mapping information is specified.

2) Model Checking. The abstract model is automatically
analyzed via model checking. If one of the expected
security properties is violated, a counterexample is dis-

Third International Conference on Software Testing, Verification, and Validation Workshops

978-0-7695-4050-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSTW.2010.54

361

��
��
��

��
��
��

��
��
��

��
��
��

Model Checking
Test Sequence

Generation

Modeling

Control Point

Test Execution

Engine

SUT

Observation Point

Counterexample

Informal Protocol Spec.

Test Sequence

Protocol Spec. Message Mappings

Result
Test

Figure 1. Approach Overview

covered and returned. If no counterexample is found,
the procedure terminates.

3) Test Sequence Generation. An abstract test sequence
is generated from the counterexample.

4) Test Execution. A concrete test sequence is generated
from the abstract test sequence and then used to probe
the SUT. The feedbacks from SUT are observed.
Finally, test verdict is obtained.

We illustrate the applicability of the approach through
its application on the SAML-based Single Sign-On (SSO)
for Google Apps (http://www.google.com/apps/). As a case
study we consider the version of the protocol used by Google
until June 2008. This is particularly interesting as in May
2008 we found (with the help of a model checker) that the
protocol was vulnerable to a serious authentication flaw that
allowed a malicious service provider to impersonate a user
on the Google Apps [1].1 At that time we verified that the
vulnerability could be exploited by manually probing the
SSO service offered by Google. The approach presented
in this paper shows that also this testing activity can be
automated.

1We promptly informed both Google and US-CERT (http://www.kb.cert.
org/vuls/id/612636) of the problem and Google released a new, patched
version of the protocol in June 2008 (http://groups.google.com/group/
google-apps-apis/browse thread/thread/8183040d7980a2e0).

Structure of the paper. The SAML-based SSO for Google
Apps is briefly presented in the next section (Section II).
In Section III we describe the modeling activity. The model
checking activity is presented in Section IV and the gener-
ation of abstract test sequences from the counterexamples
returned by the model checker is illustrated in Section V.
In Section VI, we discuss how concrete test sequences are
obtained and executed against SUT. The related work is
discussed in Section VII. We conclude in Section VIII with
some final remarks.

II. CASE STUDY: SAML-BASED SSO FOR GOOGLE
APPS

Our case study is inspired by a real-world situation in
which a Hospital takes advantage of the popular web-based
Google Apps to handle its IT basic services like email,
calendar, etc. The Hospital wants to keep the control of its
identity management and not to add burden on its employees
when they are using these services. The SAML-based SSO
for Google Apps provides a solution to these requirements
by allowing the Hospital to provide their employees a direct
and transparent access to external services. As the name
itself suggests, the SAML-based SSO for Google Apps is
based on the SAML 2.0 Web Browser SSO Profile [2]
(SAML SSO, for short), the de-facto standard for SSO for
web-based applications.

The Hospital is required by health-care privacy regulations
and directives (e.g., Data Protection Directive, 95/46/EC,
supplemented with the Directive on privacy and electronic
communications, 2002/58/EC) to ensure that patients’ med-
ical and data records are not disclosed to unauthorized
entities. This high-level requirement is obviously violated if
a Doctor’s email or calendar can be accessed by some non
authorized user by exploiting a flaw in the SSO mechanism.

A. SAML-based SSO services for Google Apps

SAML SSO defines an XML-based format for encoding
security assertions as well as a number of protocols and
bindings that prescribe how assertions should be exchanged
in a variety of applications and/or deployment scenarios.

Many large software vendors have designed and devel-
oped SSO services based on SAML SSO. Hereafter we focus
on the SAML-based SSO services released by Google for
its Google Apps until June 2008. This version deviates from
the SAML SSO standard in a few, but critical points that are
detailed at the end of this section. The SAML-based SSO for
Google Apps used the authentication protocol of Figure 2.
Three roles take part in the protocol: a client (C), an identity
provider (IdP) and a service provider (SP). C, typically a
web browser guided by a user, aims at getting access to a
service or a resource provided by SP . IdP authenticates C
and issues corresponding authentication assertions. Finally,
SP uses the assertions generated by IdP to give C access
to the requested service.

362

SAML Authentication Protocol

C IdP SP

S1. GET URI

A1. HTTP302 IdP?SAMLRequest=AuthReq(ID, SP, II, PN)&RelayState=URI

A2. GET IdP?SAMLRequest=AuthReq(ID, SP, II, PN)&RelayState=URI

IdP builds an authentication assertion
AuthAssert(IDAA, IdP, IIAA, NB,NA, AI)A3. HTTP200 Form(. . .)

A4. POST SP,RelayState=URI&SAMLResponse=Response(IDR, IIR, S,AuthAssert(. . .))

S2. HTTP200 Resource(URI)

Figure 2. SAML-based SSO for Google Apps

Initially, C asks SP to provide the resource located at the
address URI . SP then initiates the SAML Authentication
Protocol by sending C a redirect response of the form
HTTP/1.1 302 Object MovedLocation: IdP?SAMLRequest=

AuthReq(ID, SP, II, PN)&RelayState=URI

where AuthReq(ID, SP, II, PN) abbreviates the XML ex-
pression:
<samlp:AuthnRequest
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="ID"
Version="2.0"
IssueInstant="II"
ProtocolBinding="urn:oasis:names.tc:SAML:2.0:bindings:

HTTP-Redirect"
ProviderName="PN"
AssertionConsumerServiceURL="SP"
/>

Here ID is a string uniquely identifying the request, II
is the instant in which the authentication request is gen-
erated (e.g., "2008-05-02T08:49:40Z"), and PN is
the service provider name (e.g., "google.com") that
may slightly differ from the assertion consumer service
URL (e.g., "https://www.google.com/a/example
.com/acs") that is the most important entity at the service
provider side and is indicated by SP .

IdP then challenges C to provide valid credentials and,
if the authentication succeeds, IdP builds an authentication
assertion AuthAssert(IDAA, IdP, C, IIAA, NB,NA, AI)
of the form:
<Assertion ID="IDAA"

IssueInstant="IIAA"
Version="2.0">
<Issuer>IdP</Issuer>
<Subject>
<NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-

format:emailAddress">C</NameID>
<SubjectConfirmation Method="urn:oasis:names:tc:SAML

:2.0:cm:bearer"/>
</Subject>
<Conditions NotBefore="NB" NotOnOrAfter="NA">
</Conditions>
<AuthnStatement AuthnInstant="AI">
<AuthnContext>
<AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:

classes:Password
</AuthnContextClassRef>

</AuthnContext>
</AuthnStatement>

</Assertion>

where IDAA is a string uniquely identifying the authen-
tication assertion, IIAA and AI are the instants in which
the authentication assertion is generated and the authentica-
tion with C is completed respectively, NA and NB are
timestamps establishing the validity of the authentication
assertion.

IdP places the authentication assertion into a response
message and then makes C (usually through client-side
scripting) send this message to SP :
POST SP
HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: xyz
RelayState = URI & SAMLResponse=

Response(IDR, IIR, S, AuthAssert(. . .))

where Response(IDR, IIR, S,AuthAssert(. . .)) is the re-
sult of encoding the following XML expression:
<samlp:Response
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
ID="IDR"
IssueInstant="IIR"
Version="2.0">
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>...</SignedInfo>
<SignatureValue>S</SignatureValue>
<KeyInfo>...</KeyInfo>

</Signature>
<samlp:Status>
<samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:

status:Success"/>
</samlp:Status>
AuthAssert(IDAA, IdP, C, IIAA, NB, NA, AI)
</samlp:Response>

Here IDR is a string uniquely identifying the response, IIR

is the instant in which the response is generated, and S is
the digital signature of the authentication assertion made by
IdP , denoted by {AuthAssert(. . .)}K−1

IdP
.

The above protocol deviates from the standard SAML
SSO protocol as follows:

• ID and SP are not included in the authentication
assertion, and

363

• ID, SP and IdP are not included in the authentication
response.

The first one is particularly dangerous as it makes authen-
tication assertions generated by the IdP usable for other
resources on different SP s [1].

B. The Hospital’s federated environment

Figure 3 depicts the federated environment the Hospital
would like to deploy. The Hospital acts as IdP authenti-
cating and issuing authentication assertions for its Doctors
(which play as Cs). These assertions are consumed by
various service providers: besides Google that provides its
Google Apps services, other SP s can take part in this
landscape. For instance, we can imagine a Medical Insurance
service provider and many others.

It suffices that the Hospital deploys the SAML-based
SSO IdP service provided by Google and its Doctors could
start taking advantage of SSO: they could thus authenticate
once with the Hospital and get transparent access to all the
services offered by the available providers. (In Figure 3 this
is represented by the Doctor opening the Hospital’s door
with his key to get all the other doors opened.)

Figure 3. Hospital outsources basic IT services through federation.

III. MODELING

A. Protocol Specification

In order to specify the protocol we use HLPSL [3], the
specification language of the AVISPA Tool [4]. HLPSL is a
role-based language, meaning that the actions of each kind
of participant are specified in a module, called a basic role.
Basic roles are then instantiated and “glued” together into a
composed role called session.

An excerpt of the HLPSL specification of our case
study is given in Figure 4. The specification contains
three basic roles: client, serviceProvider, and
identityProvider. Notice that SP2C_1, C2SP_1,
SP2C_2, and C2SP_2 are variables of type channel, i.e.,

role serviceProvider(C,IdP,SP:agent,
KIdP:public_key,
SP2C_1,C2SP_1,SP2C_2,C2SP_2: channel,
URI: protocol_id) played_by SP def=

local State:nat, ID:text, Resource:text
const sent, rcvd:channel

init State:=1

transition
1. State=1 /\ rcvd(C2SP_1,C,C.SP.URI)

=|>
State’:=3 /\ ID’:=new() /\
sent(SP2C_1,C,C.IdP.ID’.SP.URI)

2. State=3 /\
rcvd(C2SP_2,C,SP.{C.IdP}_inv(KIdP).URI)
=|>
State’:=5 /\ Resource’:=new()
/\ sent(SP2C_2,C,Resource’.URI)
/\ request(SP,C,sp_c_uri,URI)
/\ witness(SP,C,c_sp_resource,Resource’)
/\ secret(Resource’,c_sp_response,{C,SP})

end role

role client(...)
...
end role

role identityProvider (...)
...
end role

role session(C,IdP,SP:agent,
KIdP:public_key,
C2SP_1,SP2C_1,C2IdP,IdP2C,
C2SP_2,SP2C_2:channel,
URI:protocol_id)

def=
init confidential(IdP,C2IdP)

/\ weakly_authentic(C,C2IdP)
/\ authentic(IdP,IdP2C)
/\ confidential(C,IdP2C)
/\ link(C2IdP,IdP2C)
/\ unilateral_conf_auth(C,SP,C2SP_2,SP2C_2)
/\ dy(C2SP_1) /\ dy(SP2C_1)

composition
client(C,IdP,SP,KIdP,C2SP_1,SP2C_1,C2IdP,IdP2C,C2SP_2

,SP2C_2,URI)
/\ serviceProvider(C,IdP,SP,KIdP,SP2C_1,C2SP_1,SP2C_2,

C2SP_2,URI)
/\ identityProvider(C,IdP,SP,KIdP,IdP2C,C2IdP)

end role

role enviroment()
def=
const sp_c_uri,c_sp_resource:protocol_id,

c,idp,sp:agent, ...

intruder_knowledge={c,sp,idp,kidp,ki,uri_sp,inv(ki),...}

composition
session(c,idp,i,kidp,c2i_1,i2c_1,c2idp,idp2c,c2i_2,

i2c_2,uri_i)
/\ session(c,idp,sp,kidp,c2sp_1,sp2c_1,c2idp,idp2c,

c2sp_2,sp2c_2,uri_sp)
end role

goal
secrecy_of c_sp_resource
authentication_on c_sp_resource
end goal

Figure 4. HLPSL Specification of the SAML-based SSO for Google Apps

364

they represent the communication channels used to exchange
messages.

The transition section of a HLPSL specification
contains a set of transitions. A transition consists of a set
of preconditions (left hand side) and a set of effects that
occur upon execution (right hand side). For example, the first
transition in Figure 4 specifies that if the value of State is
equal to 1 and a message is received on channel C2SP_1
from agent C which contains values C, SP, and URI, the
transition may fire and—when this happens—the value of
State is set to 3, a new value of ID is generated, and
a message C.IdP.ID’.SP.URI is sent to C on channel
SP2C_1. Here, ID’ denotes the new value of variable ID.

A session is a parallel composition of several basic roles.
A session has no transition section, but rather a composition
section in which the basic roles are instantiated. At the same
time, one usually declares all the channels used by the basic
roles. Security properties of channels, such as confidentiality
and authenticity, are specified. For example, in our case
study, there are two channels C2SP_2 and SP2C_2 between
instances of basic roles client and serviceProvider.
The security properties of these two channels are declared
to be unilateral_conf_auth(C, SP, C2SP_2,
SP2C_2) which means that C2SP_2 is confidential to SP
and weakly authentic, SP2C_2 is weakly confidential and
authentic for SP, and that the principal sending messages on
C2SP_2 is the same principal that receives messages from
SP2C_2. Please refer to [1] for the definitions of channel
properties. A channel of type dy, is a channel which is under
complete control of the intruder.

Finally, a top-level role environment is defined. This
role contains global constants and a composition of one or
more sessions, where the intruder may play some roles as a
legitimate user. There is also a statement which describes the
knowledge possessed by the intruder. Typically, this includes
the names of all agents, all public keys, his own private
key, any keys he shares with others, and all publicly known
functions. The constant i is used to refer to the intruder.

In the SSO case study, three agents c, idp and sp,
representing a client, an identity provider, and Google,
respectively, are defined.

In order to perform model checking, we still need to
specify the expected security properties. In the SSO case
study, the following two security properties are considered:
(i) SP authenticates C, i.e., at the end of its protocol run
SP believes it has been talking with C; and (ii) Resource
must be kept secret between C and SP . In HLPSL, with
the help of predefined macros, these two properties are
specified as “authentication_on c_sp_resource”
and “secrecy_of c_sp_resource”, respectively.

B. Message Mappings

Messages are specified abstractly in the HLPSL specifi-
cation. For example, in our case study, the authentication

request message sent by the SP is represented as C.IdP.
ID’.SP.URI. This level of abstraction is essential for
analyzing the protocol using a model checker.

When a violation of an expected security property is
identified by the model checker, a counterexample is re-
turned as a sequence of abstract messages exchanged by
the agents involved in the protocol. In order to generate
the corresponding test sequence, abstract messages must be
mapped to concrete ones. Thus, in the modeling step, in
addition to specifying the behavior of the protocol, we need
to describe how abstract messages correspond to concrete
ones. In our approach, the message mapping information
is organized in three tables: a message format table, an
abstraction mapping table, and a concretisation mapping
table.

An example of message format table is given in Ta-
ble I. In this table, the message format column is a struc-
tured description of the concrete message format, in which
we use <value id="id" type="type"/> to denote a
field whose value needs to be filled when generating a
concrete message, where id is the identifier of the field
and type its type. Possible types include nonce, to de-
note freshly generated strings, and timestamp, to de-
note timestamps. Elements of the form <encode type
="type">...</encode> and <encrypt type="type
">...</encrypt> denote those fragments of the mes-
sage which are encoded and encrypted respectively, where
”type” denotes the corresponding encoding or encryption
type. A complete specification of the language used to
specify the concrete format is out of the scope of this paper.
In the table, the column labeled by “#” denotes the relative
position of the message in the HLPSL specification.

During the modeling step, concrete messages are inves-
tigated, relevant information for the analysis is abstracted
into abstract fields in HLPSL messages. This mapping
information is used while (i) generating concrete messages
from abstract messages in order to probe the SUT and
(ii) extracting abstract messages from concrete messages in
order to check the feedback of the SUT. We record the
mapping information in the concretisation mapping table
and the abstraction mapping table for these two usages
respectively.

The structure of the concretisation mapping table is
depicted in Table II. As before, the column labeled by
“#” refers to the position of the message in the HLPSL
specification. The column “Concrete Field” refers to exactly
one message element defined by the <value .../> tag
in the message format table, while the column “Abstract
Fields” refers to one or more elements in the corresponding
HLPSL message. The way to obtain the concrete field from
these abstract fields is specified in the column “Mapping
Function”. For example, the message at position 5 is the Au-
thentication Response message sent to SP . The correspond-
ing abstract message is SP.{C.IdP}_inv(KIdP).URI.

365

Table I
MESSAGE FORMAT TABLE

Format
1 ...

2

HTTP1.1 302 Object Moved
Location: <value id="IdP" type="string"/>?
SAMLRequest=
<encode type="base64">
<samlp:AuthnRequest
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:

protocol"
ID=<value id="ID" type="nonce"/>
Version="2.0"
IssueInstant=<value id="II" type="timestamp"/>
ProtocolBinding="urn:oasis:names.tc:SAML:2.0:

bindings:HTTP-Redirect"
ProviderName=<value id="PN" type="string"/>
AssertionConsumerServiceURL=<value id="SP"

type="string"/>
</encode> &
RelayState=<encode type="base64"><value id="URI"

type="string"/></encode>

... ...

5

POST <value id="IdP" type="string"/> HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: <value id="Length" type="length"/>
RelayState = <value id="URI" type="string"/> &
SAMLResponse =
<encode type="base64">
<samlp:Response
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:

protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
ID=<value id="ID_R" type="nonce"/>
IssueInstant=<value id="II_R" type="timestamp"/>
Version="2.0">
<Signature xmlns="http://www.w3.org/2000/09/

xmldsig#">
<SignedInfo>...</SignedInfo>
<SignatureValue><value id="S" type="signature

"/></SignatureValue>
<KeyInfo>...</KeyInfo>
</Signature>
<samlp:Status>
<samlp:StatusCode Value="urn:oasis:names:tc:

SAML:2.0:status:Success"/>
</samlp:Status>
<Assertion ID=<value id="ID_AA" type="nonce"/>
IssueInstant=<value id="II_AA" type="timestamp

"/>
Version="2.0">
<Issuer><value id="IdP" type="string"/></Issuer

>
<Subject>
<NameID Format="urn:oasis:names:tc:SAML:1.1:

nameid-format:emailAddress">
<value id="C" type="string"/> </NameID>
<SubjectConfirmation Method="urn:oasis:names:

tc:SAML:2.0:cm:bearer"/>
</Subject>
<Conditions NotBefore=<value id="NB" type="

timestamp"/> NotOnOrAfter=<value id="NA"
type="timestamp"/> />

<AuthnStatement AuthnInstant=<value id="AI"
type="timestamp"/>>

<AuthnContext>
<AuthnContextClassRef>urn:oasis:names:tc:SAML

:2.0:ac:classes:Password
</AuthnContextClassRef>
</AuthnContext>

</AuthnStatement>
</Assertion>
</samlp:Response>

</encode>

... ...

Table II
CONCRETISATION MAPPING TABLE

Concrete Field Abstract Fields Mapping Function
...
5 SP SP λx.x
5 URI URI λx.x
5 IdP IdP λx.x
5 C C λx.x
...

Table III
ABSTRACTION MAPPING TABLE

Abstract Field Concrete Fields Mapping Function
...
2 IdP IdP λx.x
2 ID’ ID λx.x
2 SP SP λx.x
2 URI URI λx.x
...

In this case, all the values of four concrete message fields can
be obtained from the corresponding abstract message fields
using simple functions. Although in the example described
all the mapping functions are identity functions, please note
that in general more complex functions could be used.

The structure of abstraction mapping table is depicted
in Table III. In this table, the column “Abstract Field”
refers to exactly one message element in HLPSL message,
while the column “Concrete Fields” refers to one or more
fields defined by the <value .../> tag in the message
format table. The way to obtain the abstract field from
these concrete fields is specified in the column “Mapping
Function”. The message at position 2 is the Authentication
Request message sent by SP . The corresponding abstract
message is C.IdP.ID’.SP.URI. In this case, all the
values of four abstract message fields can be obtained from
the corresponding concrete message fields using simple
functions.

C. Testing Environment

An important issue in specifying the testing environment
is to decide what the System Under Test (SUT) is. In
other words, we need to decide which agents in the system
belong to the SUT and which are simulated by the tester.
We call the first set of agents SUT agents and the others
tester agents. This decision depends on the specific security
protocol analysis and testing problem. In the SSO case study,
the SUT is the service provider provided by Google, which
is represented by the agent sp in the system model. The
agents c, idp, and the intruder i are all simulated by the
tester.

In addition to the SUT, we must define the Control Point,
i.e., where input can be fed to the SUT, and the Observation
Point, i.e., where the output of the SUT can be observed. In
the SSO case study, the Internet connection with the Google

366

Step 0: sent(c, c, i, c.i.uri_i, c2i_1)
Step 1: sent(i, i, c, c.idp.id(i).i.uri_i, i2c_1)
Step 2: rcvd(c, i, i, c.idp.id(i).i.uri_i, i2c_1)
Step 3: sent(c, c, idp, c.idp.id(i).i.uri_i, c2idp)
Step 4: rcvd(idp, c, c, c.idp.id(i).i.uri_i, c2idp)
Step 5: sent(idp, idp, c, i.crypt(inv(pk(kidp)), c.idp).

uri_i, idp2c)
sent(i, c, sp, c.sp.uri_sp, c2sp_1)

Step 6: rcvd(sp, i, c, c.sp.uri_sp, c2sp_1)
rcvd(c, idp, idp, i.crypt(inv(pk(kidp)), c.idp).

uri_i, idp2c)
Step 7: sent(sp, sp, c, c.idp.id(sp).sp.uri_sp, sp2c_1)

sent(c, c, i, i.(crypt(inv(pk(kidp)), c.idp).uri_i
, c2i_2)

Step 8: rcvd(i, c, c, i.(crypt(inv(pk(kidp)), c.idp).uri_i
, c2i_2)

Step 9: rcvd(c, sp, sp, c.idp.id(sp).sp.uri_sp, sp2c_1)
Step 10: sent(i, c, sp, sp.(crypt(inv(pk(kidp)), c.idp).

uri_sp, c2sp_2)
Step 11: rcvd(sp, i, c, sp.(crypt(inv(pk(kidp)), c.idp).

uri_sp, c2sp_2)
Step 12: sent(sp, sp, c, resource(sp).uri_sp, sp2c_2)

Figure 5. Counterexample in the SSO Case Study

service provider is both the control point and the observation
point.

IV. MODEL CHECKING

When the model does not satisfy the expected secu-
rity property, a counterexample is generated by the model
checker.2 The counterexample consists of a sequence of
steps. Each step includes one or more message sending
or receiving actions. There is no temporal order among
actions within a step. Message sending is represented as
sent(sender, as-is, target, m, ch), meaning that an agent
sender sent message m on channel ch to agent target pre-
tending to be agent as-is. Message reception is denoted by
rcvd(receiver, sender, as-is, m, ch), meaning that message
m, sent by agent sender, has been received on channel ch
by agent receiver and receiver considers the message as if
it were sent by agent as-is.

By running SATMC against the HLPSL specification in
Figure 4 the counterexample in Figure 5 is returned. A
pictorial description of the attack is depicted in Figure 6.

In the attack, c initiates a session of the protocol to access
a resource located at the address uri_i, provided by the
(malicious) service provider i that in parallel starts a new
session of the protocol with Google (sp) pretending to be c
and that mischievously reuses the authentication assertion re-
ceived by c to trick Google into believing he is c. The attack
completes with the delivery of the resource(sp) (whose
access should be reserved to c) to i. This attack represents
a violation of the two security properties (authentication and
secrecy) that the protocol is expected to enjoy.

2For our experiments we used the SATMC model checker, one of the
back-ends of the AVISPA Tool.

c idp

Intruder

i i(c)

Google

sp

S1. c.i.uri_i
c2i_1

S1. c.sp.uri_sp
c2sp_1

A1. c.idp.id(sp).sp.uri_sp
sp2c_1

A1. c.idp.id(i).i.uri_i
i2c_1

A2. c.idp.id(i).i.uri_i
c2idp idp builds an authentication assertion

A3. i.crypt(inv(pk(kidp)),c.idp).uri_i
idp2c

A4. i.crypt(inv(pk(kidp)),c.idp).uri_i
c2i_2

A4. sp.crypt(inv(pk(kidp)),c.idp).uri_sp
c2sp_2

S2. resource(sp).uri_sp
sp2c_2

Legend:

A
M
ch B: A sends M to B over the confidential channel ch

A
M
ch B: A sends M to B over the authentic channel ch

A
M
ch B: A sends M to B over the authentic and confidential

channel ch

Figure 6. Attack on the SAML-based SSO for Google Applications

V. ABSTRACT TEST SEQUENCE GENERATION

When a counterexample is found, we need to check
whether the corresponding security vulnerability exists also
in the actual implementation. As the first step toward that
purpose, an abstract test sequence is derived from the
counterexample generated by the model checker. This is
done by checking the actions in the counterexample one by
one. In each message sending action from a tester agent to a
SUT agent, the sender and target fields are replaced by tester
and the SUT, respectively. In each message sending action
from a SUT agent to a tester agent, the sender and target
fields are replaced by the SUT and the tester, respectively.
All other actions are removed. In the SSO case study, the
abstract test case obtained is as follows:

sent(tester,c,SUT,c.sp.uri_sp,c2sp_1) (1)
sent(SUT,sp,tester,c.idp.id(sp).sp.uri_sp,sp2c_1) (2)

sent(tester,c,SUT,sp.crypt(. . .).uri_sp,c2sp_2) (3)
sent(SUT,sp,tester,resource(sp).uri_sp,sp2c_2) (4)

where (1) is obtained from the second sent action of Step 5
in Figure 5, (2) is obtained from the first action of Step 7, (3)
is obtained from the action in Step 10, and (4) is obtained
from the action in Step 12.

In the abstract test case, the message sending actions from
the tester to the SUT are used to probe the SUT. The message
sending actions from SUT to tester are expected outputs of
SUT in the following sense:

• During the testing procedure, if the message received
from SUT is not consistent with the expectation, this
means the system implementation does not conform to
the system model, this fault is reported, and the testing
procedure is terminated.

• Otherwise, if it is not the last message receiving step,
the testing procedure is continued.

367

• If it is the last message receiving step, this means
the vulnerability identified in the system model does
exist in the system implementation. This observation is
reported, and the testing procedure is terminated.

VI. TEST CASE CONCRETIZATION AND EXECUTION

After obtaining the abstract test case, the next activity
is to concretize and execute the test case. This could be
performed automatically by a test execution engine. To this
end, besides the abstract test case, information about the
testing configuration is necessary. This information includes
the names and addresses of the involved agents, the keys
used, etc.

In the test execution engine, two are the main components:
message generator and message checker.

A. Message Generation

The message generator takes an HLPSL message and a
group of corresponding values as input, performs the fol-
lowing operations, and generates concrete HTTP messages
as output. As an example, we suppose the HLPSL message is
SP.{C.IdP}_inv(KIdP).URI, and the corresponding
Authentication Response message needs to be generated.

• The message generator locates the HLPSL message in
the protocol specification to obtain the message number.
In the example, the message number is 5.

• The message generator looks up the Message Format
Table to obtain the concrete message format using the
message number. In the example, the message format
can be seen in Table I.

• The message generator generates the concrete HTTP
message as follows:

– For the fixed structure and field values of the
message, generate as it is. In the example,
“<samlp:Response...” is such a fixed part.

– For fields being referred to in the Concretisation
Mapping Table, the message generator looks up
in the Concretisation Mapping Table, identifies
the corresponding abstract elements, calculates the
concrete value according to the mapping function
specified, and puts the value into the concrete
message. In the example, “<value id="IdP"
type="string">” is such a field.

– For fields that must be calculated at runtime
but not depending directly on abstract ele-
ments, such as timestamps, the values are gen-
erated according to the time of test execu-
tion. In the example, “<value id="II_R"
type="timestamp">” is such a field.

– For parts of the concrete message that need
to be calculated according to directives,
such as <encode>...</encode> and <
encrypt>...</encrypt>, the parts are
calculated according to encoding type or

encryption type specified. In the example,
the part from “<samlp:Response...” to
“</samlp:Response>” needs to be encoded.

Since the message format and the way to generate all
the parts of the concrete message are specified in the
Message Format Table and Concretisation Mapping Table,
the message generator is protocol independent and can be
automated.

B. Message Checker

The message checker takes a concrete message and an
expected HLPSL message as inputs, and extracts values
of abstract elements in the HLPSL message as outputs.
The outline of its operation is described as follows. As an
example, we suppose the expected HLPSL message is C.
IdP.ID’.SP.URI, which is the Authentication Request
message.

• The message checker locates the HLPSL message in
the protocol specification to obtain message number.
In the example, the message number is 2.

• The message checker looks up the Message Format
Table to obtain the concrete message format using the
message number. In the example, the message format
can be seen in Table I.

• The message checker parses the incoming concrete
message according to the expected concrete message
format. During parsing, the message checker verifies
the message format and extracts the values of message
fields.

– If the message format does not match the expecta-
tion, or certain values are wrong according to the
way of calculation specified in the message format
table, an error is reported.

– Otherwise, the values of the abstract elements in
the HLPSL message are calculated according to the
mapping functions specified in Abstraction Map-
ping Table. In the example, the abstract element
“ID’” is obtained from the string after “ID=” and
before “Version="2.0"”.

Similar to the message generator, with the help of the
Message Format Table and Abstraction Mapping Table,
the message checker is protocol independent and can be
automated.

C. Test Execution Engine

With all this information and software modules, the test
execution engine processes the abstract test case action by
action. For each message sending action to the SUT, the test
execution engine passes HLPSL message and corresponding
concrete values obtained from testing configuration and
stored values to the message generator, obtains concrete
message as feedback, and sends the message to SUT. For
a message sending action from SUT, the test execution

368

engine waits for receiving a message from the SUT, passes
the received message and expected HLPSL message to the
message checker, and stores the received values for future
usage. If an error is reported by the message checker, it is
treated as described in Section V.

The test execution engine is specific to model checker
but protocol independent. This means it could be applied
generally to the analysis of different security protocols.

D. Before Test Execution

From the abstract test case, the channels connecting the
tester and SUT are identified. From the model, we can see
the security properties of the channels. In order to execute
the test case, some configuration and message exchange
need to be performed to establish the communication chan-
nels. For example, in order to make the channel C2SP_2
confidential and authentic, an SSL/TLS channel must be
preliminarily established between the tester and SUT. In the
SSO case study, in addition to channel configuration, we also
need to register an IdP to Google to make Google trusts it
and sends Authentication Request redirecting to it.

In [1], after identifying the vulnerability by model check-
ing, we reproduced manually the identified attack in an
actual deployment of the SAML-based SSO for Google
Applications. By using the approach presented in this paper
the testing has been carried out automatically by the test
execution engine. Since Google updated its implementation
of SAML-based SSO after the discovery reported in [1], the
test execution engine reports that the system implementation
does not conform to the system model. However, the HTTP
messages generated by the test execution engine are equiv-
alent to the ones we used when we manually probed the
flawed version of the SAML-based SSO for Google Apps.

VII. RELATED WORK

In the past fifteen years, automated analysis of security
protocols has been widely studied and several analysis tools
with different degrees of automation have been developed
(see e.g., [5], [6], [7], [4]). There have also been many
applications of model checking to the formal analysis of
security aspects of Web Services (e.g., [8], [9], [10], [11],
[12]). These approaches however mostly focus on design
time verification, and fall short in validating whether the
actual implementations satisfy the desired properties at de-
ployment and consumption time.

There has been recent interest in combining ideas from
formal verification and testing in the program analysis com-
munity [13]. The respective algorithms target static analysis
of program source, and mostly focus on reachability proper-
ties defined as undesirable states in programs. These results
are however not applicable to the problems we are facing:
source code is not always available in validating security
protocols, and, due to concurrency, security properties often
cannot be expressed simply as local states.

Model-based testing has been applied to security-relevant
systems in the past, e.g., [14], [15], [16], [17], [18]. The
fundamental problem of translating specified (universal)
security properties to test case specifications has, however,
not been solved yet. The problem of relating the abstract and
concrete levels continues to be solved in an ad-hoc manner
only [19]. Moreover, these approaches do not propose a
coherent generic methodology for security testing.

VIII. CONCLUSIONS

In this paper, we have presented an approach to security
testing of web-based applications in which test cases are
automatically derived from counterexamples found through
model checking. With message format and message mapping
information properly specified and the test execution engine,
test case generation and execution could be automated to
check whether security flaws identified by model checking
exist in the actual implementation. This approach has been
applied successfully in the SSO case study.

ACKNOWLEDGMENT

This work was partially supported by the FP7-ICT-2007-1
Project no. 216471, “AVANTSSAR: Automated Validation
of Trust and Security of Service-oriented Architectures”
(www.avantssar.eu).

REFERENCES

[1] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and
L. T. Abad, “Formal Analysis of SAML 2.0 Web Browser
Single Sign-On: Breaking the SAML-based Single Sign-On
for Google Apps,” in Proceedings of the 6th ACM Workshop
on Formal Methods in Security Engineering (FMSE 2008),
V. Shmatikov, Ed. ACM Press, 2008, pp. 1–10.

[2] OASIS Consortium, “Security Assertion Markup Lan-
guage V2.0 Technical Overview,” http://wiki.oasis-open.org/
security/Saml2TechOverview, Mar. 2008.

[3] Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma,
J. Mantovani, S. Mödersheim, and L. Vigneron, “A High
Level Protocol Specification Language for Industrial Security-
Sensitive Protocols,” in Proc. SAPS’04. Austrian Computer
Society, 2004.

[4] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-
pagna, J. Cuellar, P. Hankes Drielsma, P.-C. Heám, J. Man-
tovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron, “The
AVISPA Tool for the Automated Validation of Internet Se-
curity Protocols and Applications,” in Proceedings of the
17th International Conference on Computer Aided Verifica-
tion (CAV’05). Springer-Verlag, 2005, available at www.
avispa-project.org.

[5] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and
B. Roscoe, Modelling and Analysis of Security Protocols.
Addison Wesley, 2000.

369

[6] B. Blanchet, “Automatic verification of cryptographic pro-
tocols: A logic programming approach (invited talk),” in
Proceedings of PPDP’03. ACM Press, 2003, pp. 1–3.

[7] J. K. Millen and G. Denker, “Capsl and mucapsl,” Journal of
Telecommunications and Information Technology, vol. 4, pp.
16–27, 2002.

[8] M. Backes and T. Gross, “Tailoring the dolev-yao abstrac-
tion to web service realities,” in ACM Secure Web Services
Workshop (SWS), 2005, pp. 65–74.

[9] M. Backes, S. Mödersheim, B. Pfitzmann, and L. Vi-
ganò, “Symbolic and Cryptographic Analysis of the Secure
WS-ReliableMessaging Scenario,” in Proceedings of FOS-
SACS’06, ser. LNCS 3921. Springer, 2006, pp. 428–445.

[10] X. Fu, T. Bultan, and J. Su, “Analysis of interacting bpel web
services,” in WWW ’04: Proceedings of the 13th international
conference on World Wide Web. ACM Press, 2004, pp. 621–
630.

[11] M. Hondo, N. Nagaratnam, and A. Nadalin, “Securing web
services,” IBM Systems Journal, vol. 41, no. 2, pp. 228–241,
2002.

[12] G. Salaün, L. Bordeaux, and M. Schaerf, “Describing and
reasoning on web services using process algebra,” in Proceed-
ings of the IEEE International Conference on Web Services
(ICWS’04). IEEE Computer Society, 2004.

[13] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,
and S. K. Rajamani, “Synergy: a new algorithm for property
checking,” in SIGSOFT ’06/FSE-14: Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of
software engineering. New York, NY, USA: ACM, 2006,
pp. 117–127.

[14] P. A. P. Salas, P. Krishnan, and K. J. Ross, “Model-based se-
curity vulnerability testing,” Australian Software Engineering
Conference, vol. 0, pp. 284–296, 2007.

[15] E. Martin and T. Xie, “A fault model and mutation testing
of access control policies,” in WWW ’07: Proceedings of the
16th international conference on World Wide Web. New
York, NY, USA: ACM, 2007, pp. 667–676.

[16] J. Jürjens, “Model-based security testing using umlsec: A case
study,” Electr. Notes Theor. Comput. Sci., vol. 220, no. 1, pp.
93–104, 2008.

[17] P. P. Salas and P. Krishnan, “Testing privacy policies us-
ing models,” in SEFM ’08: Proceedings of the 2008 Sixth
IEEE International Conference on Software Engineering and
Formal Methods. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 117–126.

[18] M. Zulkernine, M. F. Raihan, and M. G. Uddin, “Towards
model-based automatic testing of attack scenarios,” in
SAFECOMP, ser. Lecture Notes in Computer Science,
B. Buth, G. Rabe, and T. Seyfarth, Eds., vol. 5775.
Springer, 2009, pp. 229–242. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-04468-7

[19] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing,” University of Waikato, New Zealand,
Tech. Rep. 04/2006, April 2006.

370

