
Formal Verification of Business Workflows and

Role Based Access Control Systems

Arnaud Dury
1
, Sergiy Boroday

1
, Alexandre Petrenko

1
, Volkmar Lotz

2

1
 Computer Research Institute of Montreal (CRIM),

2
SAP Labs France

FirstName.LastName@crim.ca, FirstName.LastName@sap.com

Abstract

An approach for combined modeling of role-based

access control systems (RBAC) together with business

workflows is presented. The model allows to model

check various security properties. Several techniques

to confine the state explosion, which may occur during

model checking are presented and experimentally

evaluated using the model checker Spin. The

techniques allow the verification of the business

workflow and associated RBAC for a reasonable

number of users of a medium sized company.

1. Introduction

Role Based Access Control (RBAC) is an

increasingly popular and efficient security solution. A

major advantage of RBAC is its ability to constraint

malicious or erroneous user behavior, typically using

the concept of separation of duties (SoD), allowing

several persons to complete a critical task without

anyone having excessive control. Currently, RBAC

design and maintenance of RBAC security policies are

challenging problems as company structure, roles, user

pools, business workflows, internal and external (legal)

security requirements are always changing. In this

context, automated RBAC verification techniques can

contribute both to product integrity and time to market.

While early RBAC verification methodologies rely on

visualization of constraints [3] and graph

transformation [4], modern, more formal and powerful

approaches are usually based on automated reasoning

techniques, such as model checking.

In this work, we aim at model checking of RBAC in

the context of workflows of business applications. We

first present a short overview of previously developed

approaches to RBAC and workflow verification. We

then describe our approach that is based on model

checking of business workflow considered together

with a RBAC. Since a major issue with model checking

is usually state explosion, we pay a special attention to

simplification (abstraction) methods. We model RBAC

in conjunction with workflow processes, in a setting

derived from a real application context. We check

compatibility of RBAC with a given workflow and

validate security properties against the given RBAC

constraints set and workflow. Our work differs from the

“light-weight” set-theoretic model checking efforts [5],

[6], [7], [8], [9] by considering the workflow on which

the RBAC is imposed and order-dependent constraints.

Unlike most work on full-scale model checking with

Spin [10], [11], [12], [13], we elaborate several

techniques which fight the state explosion problem (we

refer to our technical report for more details [1]).

The paper is organized as follows. In Section 2, we

provide a short overview of existing results related to

RBAC and workflow verification. In Section 3, an

approach for modeling RBAC together with business

workflows using Extended FSM (EFSM) is presented.

Section 4 describes a case study of Procure to Stock

Workflow. In Section 5, we consider various

techniques, which alleviate state explosion in model

checking RBAC on a given workflow. In Section 6, we

provide the results of experimental evaluation and

comparison of the proposed techniques.

2. Related Work

2.1. Workflow Model Checking

Workflows reflect organizational aspects of a work

procedure, such as structure, synchronization and

ordering (flow) of tasks, information flow, etc.

Workflow notation and languages, such as EPC/ARIS

[28] are supported in business software, notably by

SAP. Security properties of business applications result

not only from access control mechanisms, but also

from business workflow implementations. For example,

if the authorization of a purchase request may precede

(in all or some executions) its actual filing in a given

International Conference on Emerging Security Information, Systems and Technologies

0-7695-2989-5/07 $25.00 © 2007 IEEE
DOI 10.1109/SECURWARE.2007.30

201

workflow, then the purchase request can be approved

with some field left blank (violation of a so-called “no

carte blanche” security property). Usually workflow

modeling is based on graphs, automata, Kripke

structures, Petri Nets, and more rarely on constraint

solving, data-flow pointer analysis, BDD, propositional

and temporal logic [14].

However, despite active research and development,

available workflows verification tools are not numerous

and do not always support data [15] or cycles [16]. A

great deal of research is devoted to workflow model

checking related to web service verification [17].

Among available specialized web service/workflow

model checking tools we could mention WSAT tool

[18], that supports several web service languages,

including BPEL4WS and could use both Spin and

NuSMV as a backend. Since suspension of workflows

is often difficult and undesirable, the problem of

dependable introduction of policy changes without

interrupting currently executed workflows arises [19].

The proposed solution is based on Spin model

checking of workflows against properties such as “jobs

are billed if and only if they are shipped” [19].

Thus, there exist supporting tools that translate

workflow models into input languages of model

checking tools (usually automata or Petri net based), so

in this work we assume an automata model of a

workflow is already available.

2.2. RBAC Model Checking

Even a relatively simple case of verification of static

SoD policies (such as “at least n user are required to

perform a given task”) from static role mutual

exclusion constrains (such as a given user cannot be

assigned to more than a certain number of roles from a

given set of allowed roles) is computationally difficult

(coNP-complete) [20]. Thus, “heavy artillery” of model

checking that involves sophisticated optimization

techniques to cope with hard problems (SAT-solvers,

BDD, partial order reduction etc…) is justified for

RBAC verification. Most of known work apply model

checking to RBAC policies, abstracting from

implementation details and control mechanisms.

In [11], authors verify application and organization

specific RBAC “policy implementations” against

selected security properties that represent a high level

enterprise security policy. Security policies may be of a

higher level and evolve independently of their RBAC

implementations. Among verified properties are static,

dynamic (for one or all sessions), operational, object,

history based SoD, prerequisite, cardinality, and user-

user1 constraints. Some of the verified history based

properties appear to be more relevant to business logic

than to security (e.g., a recorded invoice is eventually

verified). The RBAC implementation model consists of

four concurrent processes: the first process selects user,

the second selects a role, the third – a permission, and

the fourth verifies relevant constraints, and, if no

constraint is violated, models the operation, associated

with the permissions by recording the user id into a

designated “history” array. While history array does

not scale well, alternative approaches, such as using a

blacklist [21] of operations for each user or enabled

and disabled states for each permission assigned to a

role are proposed.

Ahmed and Tripathi [10] verify Computer

Supported Cooperative Work System, CSCW, using

the model checker Spin against various security

properties. While manual specification of CSCW

security properties in LTL might be difficult,

“conversion functions” that facilitate the translation of

SoD constraints to LTL are developed. Property

specific abstraction is used to fight state space

explosion. Four different Spin models are developed to

verify four different aspects, namely, task flow (e.g.,

each operation could be executed), role constraints

(e.g., each role could have a member), information

flow (e.g., non inference), and administrative role

assignment. To cope with state explosion, following

measures are suggested: some operations could be

excluded; verification based on a specific user often

can be generalized to verification of global properties

(user symmetry); abstraction of internal data structure

(for example, in many cases, the model does not need

to maintain the count of the events in the precondition

that contributes to a property; instead, a bit signifying

that the precondition is satisfied is maintained); for a

faster verification, role constraints could be specified in

LTL.

Specification language cTLA, derived from

Lamport’s Temporal Logic of Action (TLA), is used to

formalize and after translation to Promela to verify

RBAC [12]. Spin and temporal logic could be used for

goal-elaborating policy refinement of a higher level

policy to a low level policy [22]. Nguyen and Rathke

[13] use Spin to verify multithreaded functional

programs (rather than workflows or management

systems) against security policies, expressed in form of

a “policy automaton” which, generally speaking, could

be used to express RBAC policies [23].

1
 A user-user constraint usually prevents two users

from activating or being assigned the same role

202

A popular open-source model checker NuSMV is

used to solve so-called safety analysis problem

(whether only trusted users could violate a given

security property) [24]. Furthermore, a more general

Administrative Insider Threat Assessment Problem

(AITAP) is formulated and verified. Access control

schemes are formally defined as state-transition

systems (i.e., labeled Kripke structures). The NuSMV

model of RBAC is straightforward, except for an

efficient model abstraction, based on pruning of

irrelevant rules and role activations. In the reported

case studies, the model checking approach is compared

with the logic–programming approach, based on a

Prolog like language. Experimental data favor the

model checking approach. While state space explosion

persists, RBACs with tens of roles and rules are

verified.

A popular RBAC analysis tool is Alloy Analyzer, a

model checker that supports a light-weight structural

specification language Alloy, based on the first order

logic [6], [7], [5], [8]. While language features are

limited, and modeling of complex history based

properties or workflows is difficult, it is perfectly

appropriate for describing organizational structures and

simple SoD constraints. A designated policy

verification model checker RW is developed [25], [31].

Besides model checking, RBAC schema/policy

verification could be performed using theorem proving

[32], graphs, binary decision diagrams (BDD) [33],

constraints solvers, and integer programming.

Summarizing the above, we notice that there are few

reports on applying the model checking technology for

verifying RBAC on workflows. Even when a workflow,

on which a RBAC is imposed, is somehow modeled,

technical details and experimental data are rarely

reported. Here we try to elaborate this idea in detail.

More specifically, we suggest an approach for verifying

a set of properties (typically related to separation of

duties and reachability concerns) over a Business

Workflow and a given RBAC, using the model of

Extended Finite State Machine (EFSM), which is often

used in input languages of model checking tools.

EFSM includes a set of states, actions, and guarded

transitions along with optional variables and

parameters. Several techniques alleviating state

explosion caused by a growing number of users are

experimentally evaluated.

3. An Approach for Modeling RBAC with

Business Workflows

We formalize in this section the notions of roles,

rules and properties. Then, the EFSM model of RBAC

and Business Workflow is proposed.

3.1. Roles, Rules, and Properties of RBAC

The central notion of RBAC is the notion of role.

Each role is associated with a non-empty set of user

actions. In a formal set-theoretic RBAC definition,

permission to role assignment relation is usually

defined [30]. Every user action of the Business

Workflow is associated to at least one role, though one

user action can be associated to several roles at the

same time. A user to role assignment defines which

roles each user could activate during the execution of

Business Workflow. Role activation can be allowed

either in any state of the workflow, in specific states of

the workflow (such as only in the initial state for

instance), or can be constrained by a more elaborate

restriction. Between those two extremes (activation in

any or only in initial state), one meaningful role

activation mode is to allow activation of a role only in

Business Workflow states that have an emanating

transition, labeled by an action of the role. This

activation mode is assumed in this work from this point

on. A user can activate several roles at the same time,

but no deactivation is allowed.

Additional constraints could restrict role activation

and assignment. We distinguish two types of RBAC

constraints: dynamic and static. Static ones are imposed

on the actions of the administrator, who assigns roles to

users. Dynamic constraints are imposed on role

activation during Business Workflow execution. Thus,

dynamic ones could be in conflict with a user to role

assignment. Since static constraints are well supported

by existing tools, we focus on dynamic constraints. Our

approach is related to rule-based RBAC systems, such

as OASIS (Open Architecture for Securely

Interworking Services) [29] in which role activation is

governed a set of preconditions Contrary to OASIS, we

support negative preconditions (such as “Role 1 is not

active”), which are needed to implement separation of

duties constraints. Conditions that are not based on

roles (e.g., temporal or user specific conditions) are not

considered in this work. The approach targets state

reachability and simple separation of duties properties.

While various preconditions could occur in rules of the

RBAC, we consider only role based, i.e., related to

previous activation (or non-activation) of other roles or

propositional logic formulas that use negation,

conjunction, or disjunction over atomic propositions

denoting activity of certain roles.

203

Figure 1 Procure to Stock Business Workflow

204

3.2. EFSM Modeling of RBAC on Workflow

Figure 2 Model Overview

We considered at first three alternative EFSM

models: a first one in which RBAC related variables,

guards and transitions are added into the Business

Workflow EFSM; a second one in which three separate

EFSM are defined for, respectively, the Business

Workflow, the non-deterministic choice of a user to

execute an action, and the roles activations; and a third

one using one single state EFSM per user. The last one

was chosen for the reasons of compactness of the

representation (role activation transition appears only

once in the model specification), reduction of the

number of explored states (no state is explicitly created

when a user unable to perform any action is selected),

and simplicity of implementation in the Spin model

checker. Further details are given in [1]. In the chosen

approach, each state of the Business Workflow is

represented by a corresponding value of a designated

variable shared among the users’ EFSMs (see

Figure 2). The transformation from the original

Business Workflow EFSM to the single state Business

Workflow EFSM is first explained, and then the

derivation of the users’ EFSM from such single state

EFSM is presented.

A variable State is defined and contains the

identifier of the current state of the Business Workflow.

Each transition of the Business Workflow from state si

into state sj with the guard g and action a is represented

by a loop of the single state EFSM with the guard g and

State = si and action a′ which combines the action a

and assignment State = sj.

The user EFSM is derived from the single state

Business Workflow EFSM described above. For each

existing role R that can be assigned to the user U we

define a corresponding Boolean Activated(R, U), which

is true when the role R is currently activated for the

user U and false otherwise. For a given role and a state,

in which the role can be activated a new looping

transition is created in the EFSM. The action of the

transition represents the activation of the role, while the

guard is a predicate expressing the RBAC rules defined

for this role. As an example, consider the following

RBAC rule: “A user U can only activate Role 5 if and

only if he previously did not activate Role 3 and Role

4”. For such rule a new looping transition would be

created in the EFSM. The guard of the transition would

be the predicate “If Activated(3,U) = false and

Activated(4,U) = false” and the action would be

“Activated(5,U) = true”. We represent a mutual

exclusion of roles (SoD constraint) by the two

following rules: A user U can only activate Role 2 if

and only if he did not activate Role 1, and a user U can

only activate Role 1 if and only if he did not activate

Role 2. Modeling of role cardinality and user

cardinality constraints is detailed in [1]. The choice of

the user to execute a next action of the Business

Workflow is performed by the model checker. The

variable State, shared by all EFSMs (as well as

workflow variables and parameters) enforces EFSM

synchronization.

4. The Procure to stock workflow and

RBAC

4.1. Procure to Stock Business Workflow

The Business Workflow used as a running example

is called “Procure to Stock” and describes the

procurement of goods from the creation of the purchase

request, up to the delivery of the goods or the

termination of the workflow in one of several

unsuccessful end states. Figure 1 shows the Business

Workflow EFSM. Message receives are used to model

exceptions during the execution of the Workflow. For

instance, there is an exception called

PriceVarianceException, which occurs whenever the

price received on the invoice differs from the price that

was settled between the buyer and the seller, when the

purchase order was placed. User actions are CreatePR,

ConfirmPR, CancelPR, ?NoSupplier (“?” indicates a

Activated (R,U) State

Workflow

Parameters and

Variables

Auxiliary Data

(number of users for Role R)

RBAC

Transition

s

Workflow

Transitions

EFSM 1

(user 1)

EFSM 2

(user 2)

EFSM 3

(user 3)

SHARED VARIABLES

RBAC

Transition

s

RBAC

Transition

s

Workflow

Transitions

Workflow

Transitions

205

message reception), !ReqPrice (“!” indicates a message

sending), !ReqExpert, ?BestPrice, ?BestExpert,

SendPO, RecInvoice, RecCreditNote,

NoCreditNoteRec, PaymentProcess, RecPaymentConf,

BlockGoods. The only variable is Count. Business

Workflow posesses integer parameters Cost, T1, T2,

T3, T4 and the Boolean parameter SupplierIndicated.

System actions, which are not attributed to any user,

are: counter increments, ?PriceVarianceException, and

?QuantityVarianceException. The latter (exception

message receives) are associated with input parameters

PriceVariance and QuantityVariance (QttyVariance in

the Figure 1), respectively. In the next section, a role

set and role assignment for this Business Workflow are

presented.

4.2. RBAC Rules

Actions are grouped in five roles, Role 1 through

Role 5. The only action of Role 1 is CreatePR. The

actions of Role 2 are ConfirmPR, CancelPR. The

actions of Role 3 are !ReqPrice, !ReqExpert,

?BestPrice, ?BestExpert, ?NoSupplier, SendPO. The

actions of Role 4 are RecInvoice, RecCreditNote,

NoCreditNoteRec. The actions of Role 5 are

PaymentProcess, RecPaymentConf, BlockGoods.

The following users are defined (in a small

company): Alice (the CEO) can activate all the roles,

Bob (the Supervisor) can activate Role 1, Role 2, Role

3 and Role 5, Carol (the Financial Manager) can

activate Role 4 and Role 5. All the other users are

Employees and can only activate Role 1 and Role 4.

In addition, we define two RBACs: a minimal one

with only one rule and a more complex one with four

rules restricting user/roles assignments. The simple

RBAC, hereafter RBAC1, contains the only rule: Role

5 cannot be activated after Role 1. The second RBAC,

hereafter RBAC2, contains the four rules: Role 2

cannot be activated after Role 1, Role 3 cannot be

activated after Role 2, Role 5 cannot be activated after

Role 3, and Role 5 cannot be activated after Role 4. For

simplicity, we assume that the user pool contains one or

more Employee(s), but CEO, Supervisor, and Financial

Manager are single users.

4.3. Variables and Parameters Abstraction

In order to make the state space of the Business

Workflow finite, we abstract (conservatively) the

unbounded parameters: the integer parameters cost T1,

T2, T3, T4, as well as the input parameters

QuantityVariance and PriceVariance. The abstraction

of these variables introduces a non-deterministic choice

in the user EFSM. We delete the counter variable, and

such deletion adds a cycle absent in the original

Business Workflow (this is the only added path in the

EFSM of the abstracted Business Workflow which is

non-executable in the original Business Workflow).

The added cycle does not prevent though a model

checker from verifying any safety properties on actions

or state reachability.

5. Alleviating State Explosion

We consider five techniques, which alleviate state

explosion in model checking RBAC on a given

workflow. They are related to data encoding (an

efficient data representation), property reformulation,

RBAC restriction, users’ activities restriction, and user

symmetry. We have chosen SPIN as our model checker

of reference due to its general robustness and

performance.

5.1. Data Encoding

An economical representation of data reduces

memory consumption in model checking. The role

activation array is the most memory-consuming

variable of the user EFSMs and thus, the primary target

for memory reduction. Unfortunately, the Promela

Boolean variables require eight bits of memory, instead

of only one. Thus, we apply a bit coding technique [2]

representing eight Boolean variables by a single byte

value. The technique does not lead to any reduction in

the size of the explored state space, though it reduces

the amount of memory needed to explore a given state

space. The technique is property and RBAC

independent.

5.2. Property Reformulation

Given a specific Business Workflow, some LTL

properties can be replaced with simpler properties

equivalent for the particular Business Workflow. As an

example, a simple SoD property forbidding a user u to

perform two actions a and b is stated in LTL as

follows:

◊ u(a) -> ! ◊ u(b)

For a Business Workflow, which forbids any

occurrence of a before b, it could be replaced with:

□(u(a)-> ! ◊ u(b))

206

The first formula rejects any execution containing

either the sequence a…b or b…a, while the second

only matches the sequence a…b and will be verified

faster. The same approach can be applied for a set of

users by building a LTL formula which is an

enumeration of such single-user formulae. The

approach requires model checking or static analysis of

the Business Workflow in order to determine if a can

occur before b, which, however, is less computationally

expensive than the verification of RBAC along with

Business Workflow. Such technique is relevant to

separation of duties properties, but not to reachability

properties.

5.3. RBAC Restriction

The idea is close to role pruning applied in the

context of insider threat assessment in [24]. It consists

in forbidding some activation of certain roles in given

states. We consider a Business Workflow, in which

there are no interleaving roles, i.e., on each path,

between two actions of the same role, no other action

of another role can be executed. We also assume that

all roles in preconditions are negated. Then, activation

of a given role could be restricted to a set of states,

where each state is the first state of a path of the

Business Workflow, whose emanating transition is

labeled by an action of this role. For our running

example, activation of Role 4 could be restricted to

state s13 for instance. However, in a more general case,

the Business Workflow may contain several possible

paths on which a role can be activated first in different

states of the Business Workflow. We, thus, restrict the

activation of such a role to several states. For instance,

Role 3 can be restricted to states s7 and s10, because

on any possible execution, where actions of Role 3 are

executed, the first states of those executions are s7 and

s10. The case of interleaving roles is discussed in more

details in [1].

5.4. Users’ Activities Restriction

The idea of restricting users’ activities is to impose

additional constraints to disallow role activations and

actions of specific users that are not relevant to a

property to be checked. Restrictions exclude from

exploration global states of the Business Workflow and

RBAC model where the property cannot be violated.

The idea is applicable at the least to the following case:

Property could be formulated in terms of actions of

a single user, i.e., the first order LTL [26] formalization

of the property contains at most one quantification over

users (for instance, a simple SoD property), and each

action of the SoD property cannot be executed more

than once in any given execution.

Then we introduce a new constraint that prevents a

user unable to execute all mutually exclusive actions of

the SoD property (e.g., due to role assignment) from

actually performing any of them. The reduction of the

number of possible actions for a user alleviates the

effects of state explosion. Furthermore, if all actions of

a given role R for a given user cannot be executed due

to the newly introduced constraints, we then introduce

another constraint that prevents the user to even

activate R, further reducing state explosion. For our

SoD property example, we introduce the following two

constraints: User 3 (Financial Manager) is prevented

from executing action ReceivePaymentConf of Role 5,

and Employees are prevented from executing action

CreatePR of Role 1.

5.5 User Symmetry

Several Employees can take part in the execution of

the workflow. Each of them is given the same set of

roles, so should one of them be able to violate the SoD

property then any of them would. Such user symmetry

can be exploited to simplify the expression of the SoD

property: instead of enumerating the SoD violation

over every Employee taking part in a given execution

of the workflow, the SoD violation is expressed for one

arbitrary chosen Employee, though modifying the

number of users does not look to be compatible with

cardinality rules.

6. Experiments

In the experiments the number of users is increased

until the verification can no longer be performed within

the given memory. The Separation of Duty property to

be verified is: ”No user should be able to perform, in

any given execution, both CreatePR and

RecPaymentConf”. The following results show the

effect of state space explosion on the original model

(no technique applied) and on the same model with one

of the five techniques.

207

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11

M
il
li
o

n
s

Users

S
ta

te
s

Original

User Sym m etry

RBAC Res triction

Property Reformulation

Users ' Activities

Res triction

Prop. Refor + Rbac

Res t. + Users ' Activ.

Res t.

Figure 3 Results for RBAC 1

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13

M
il
li
o

n
s

Users

S
ta

te
s

Original

RBAC Res triction

User Sym m etry

Property Reformulation

Users ' Activities

Res triction

Prop. Refor + Rbac

Res t. + Users ' Activ.

Res t.

As explained before, the data encoding technique

can safely be used in any case and does not affect the

state space, and thus is used by default in all the

reported experiments. All experiments are performed

using Spin model checker, version 4.2.3 under

Windows XP, on a computer with 2Gb of RAM, of

which 1Gb is allocated to Spin. Results are shown in

Figures 3 and 4.

7. Discussion and Future Work

Experiments indicate the proposed modeling

approach using an EFSM for representing RBAC

together with a Business Workflow is flexible enough

to be combined with various techniques which can

confine the state explosion during model checking

triggered by a growing number of users. The

experimental data show that among analyzed

techniques, the most efficient one is the users’ activities

restriction; it reduces by up to 97.33% the number of

explored states. In fact, all the techniques can be

applied together, and our experiments show that the

number of considered users nearly doubles in this case

(from 6 to 11 for RBAC1, and 7 to 14 for RBAC2).

Experiments with user symmetry indicates that this

technique is less efficient than most of the other

techniques. Additional experiments indicated that

symmetry reduction combined with any of the other

suggested techniques yields additional state reduction.

However, when we performed an experiment

combining all techniques except symmetry reduction,

the additional inclusion of symmetry reduction did not

further reduce the number of explored states

Nevertheless, symmetry reduction is relatively easy to

implement and combines with any of discussed

techniques. Overall, the experimental data indicate that

developing techniques for model reduction specific to

the RBAC and Business Workflow is a research

activity which merits further efforts.

Our ongoing work consists in developing another

technique, which consists of pruning Business

Workflow with respect to the property to validate. In

order to prune some transitions and states, the possible

occurrence of actions referred to in the property would

be tested in every existing path of the model, but

without taking into account any users. This could be

performed with much less stringent memory

requirements than that of the Business Workflow with

the complete user pool. The approach would be simpler

than CEGAR [27], since no counterexample would be

used to refine a model, and model checking of an

abstract property on an abstract model (Business

Workflow) would lead to a straightforward

simplification rather than to a refinement of Business

Workflow.

Another aspect of our future work will be the study

of interactions of various techniques, and the range of

Business Workflows, rules, and properties, on which

they can be applied. Such work could eventually form

the basis of a library of useful security properties and

patterns, facilitating property specification.

8. Conclusion

The paper contributes to a relatively unexplored

domain of combined Business Workflow and RBAC

analysis, namely, we propose a novel EFSM model for

representing a Business Workflow with a rule based

RBAC, suitable for formal verification (model

checking). Moreover, in the context of EFSM based

RBAC model checking, we studied five techniques to

alleviate the state space explosion: data encoding,

property reformulation, RBAC restriction, users’

Figure 4 Results for RBAC 2

208

activities restriction, and user symmetry. Two of these

techniques (users’ activities restriction and property

reformulation) are new to the best of our knowledge

and are the most efficient. We claim an improvement of

up to 97.33% in terms of the number of explored states,

and doubling the number of the users which can be

assigned to execute a business workflow in presence of

RBAC.

Experiments are performed using the model checker

Spin on a simplified Business Workflow, which

nevertheless possesses important real-life features, such

as presence of parameters, messages exchanges,

branching, and cycles. We, thus, believe that the

obtained results are relevant to a useful range of more

realistic Business Workflows. While we experimented

only with a couple of RBAC constraints (rules), an

encouraging observation is that a larger set of

constraints is easier to model check, as it imposes more

restrictions on possible user activities, and, thus,

reduces the state space.

References

[1] A. Dury, S. Boroday, A. Petrenko, V. Lotz, Model

Checking Access Control in Business Workflow, Technical

Report CRIM-06/10-11, CRIM, Montreal, November 2006.

[2] T. Ruys, “Low-Fat Recipes for Spin”, SPIN Model

Checking and Software Verification: Proceedings of the 7th

International SPIN Workshop, Springer Verlag, 2000.

[3] J.E. Tidswell, T. Jaeger, “An access control model for

simplifying constraint expression”, 7th ACM conference on

Computer and Communications Security, 2000.

[4] M. Koch, F. Parisi-Presicce, “Visual specifications of

policies and their verification”, Workshop on Fundamental

Approaches to Software Engineering, LNCS 2621, 2003.

[5] A. Schaad, J. Moffett, “A lightweight approach to

specification and analysis of role-based access control

extensions”, 7th ACM Symposium on Access Control Models

and Technologies, 2002.

[6] J. Zao, H. Wee. J .Chu, D. Jackson, “RBAC schema

verification using lightweight formal model and constraint

analysis”, ACM Symposium on Access Control Models and

Technologies, 2003.

[7] M. Mankai, L. Logrippo, “Access control policies:

modeling and validation”, Notere, Conférence sur les

Nouvelles technologies de la répartition, Canada, 2005.

[8] G. Hughes, T. Bultan, Automated verification of access

control policies, Technical Report 2004-22, University of

California, Santa Barbara, 2004.

[9] S. Park, G. Kwon, “Verification of UML-based security

policy model”, International Conference on Computational

Science and its Applications, 2005.

[10] T. Ahmed, A.R. Tripathi, “Static verification of security

requirements in role based systems”, 8th ACM Symposium on

Access Control Models and Technologies, 2003.

[11] F. Hansen, V. Oleshchuk, “Conformance checking of

RBAC policy and its implementation”, The First Information

Security Practice and Experience Conference, LNCS 3439,

2005.

[12] P. Herrmann, “Formal security policy verification of

distributed component-structured software”, 23rd IFIP Intl.

Conf. on Formal Techniques for Networked and Distributed

Systems, LNCS 2767, 2003.

[13] N. Nguyen, J. Rathke, “Typed static analysis for

concurrent policy-based resource access control”,

Unpublished draft, http://www.cogs. susx.ac.uk/users/

julianr/pubs/dist-access.html, 2005.

[14] J. Wainer, F. de Lima Bezerra, P. Barthelmess, “Tucupi:

a flexible workflow system based on overridable

constraints”, ACM SIG Symposium on Applied Computing,

2004.

[15] Woflan tool (on-line) http://is.tm.tue.nl/research/woflan/

[16] W. Janssen, R. Mateescu, S. Mauw, P. Fennema, P.

Stappen, “Model checking for managers”, SPIN 1999.

[17] M. Koshkina, F. van Breugel, Verification of business

processes for web services, Technical Report CS-2003-11,

York University Department of Computer Science, 2003.

[18] WSAT Tool: http://www.cs.ucsb.edu/~su/WSAT/

[19] P.K. Bose, M.G. Matthews, “Dynamic change in

workflow-based coordination of distributed services”,

International Workshop on Self-Adaptive Software, 2001.

[20] N. Li, Z. Bizri, M.V. Tripunitara, “On mutually-

exclusive roles and separation of duty”, ACM Conference on

Computer and Communications Security, 2004.

[21] J. Crampton, “Specifying and enforcing constraints in

role-based access control”, 8th ACM Symposium on Access

Control Models and Technologies, 2003.

[22] J. Rubio-Loyola, J. Serrat, M. Charalambides, P.

Flegkas, G. Pavlou, “A functional solution for goal-oriented

policy refinement”, Seventh IEEE International Workshop on

Policies for Distributed Systems and Networks (POLICY'06),

2006.

[23] M. Covington, M. Moyer, M. Ahamad, “Generalized

role-based access control for securing future applications”,

23rd National Information Systems Security Conference,

2000.

[24] S. Jha, N. Li, M. Tripunitara, Q. Wang, W.

Winsborough, Security analysis and administrative insider

threat assessment in role-based access control, CERIAS

Tech Report 2005-77, Center for Education and Research in

Information Assurance and Security, Purdue University,

2005.

[25] N. Zhang, M. Ryan, D.P. Guelev, “Synthesising verified

access control systems in XACML”, ACM Workshop on

Formal Methods in Security Engineering, 2004.

[26] E.A. Emerson, Temporal and Modal Logic, In

Handbook of Theoretical Computer Science, Volume B:

Formal Models and Semantics, Elsevier, 1990.

[27] E. Clarke, “Counterexample-guided abstraction

refinement”, Temporal Representation and Reasoning,

Fourth International Conference on Temporal Logic, 2003.

[28] M Nüttgens, T. Feld, V. Zimmermann, “Business

Process Modeling with EPC and UML: Transformation or

Integration?”, Proceedings of Unified Modeling Language -

Technical Aspects and Applications, 1997.

209

[29] J. Bacon, K. Moody, W. Yao, “A model of OASIS role-

based access control and its support for active security”:,

ACM Trans. Inf. Syst. Secur., 2002.

[30] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, R.

Chandramouli, “Proposed NIST Standard for Role-Based

Access Control”, ACM Transactions on Information and

System Security, Vol.4, 2001.

[31] DP Guelev, M Ryan, PY Schobbens, Information

Security, “Model-checking access control policies”, pp219-

230, 2004.

[32] M. Drouineaud, A. Luder, K. Sohr, “A role based access

control model for agent based control systems”, Proceedings

of the IEEE International Conference on Industrial

Informatics, 2003.

[33] K. Fisler, S. Krishnamurthi, L.A. Meyerovich, M.C.

Tschantz, “Change management: verification and change-

impact analysis of access-control policies”, 27th Intl. Conf.

on Software engineering, 2005.

210

