
Scalable Network-based Buffer Overflow Attack
Detection

Fu-Hau Hsu
Department of Computer
Science and Information

Engineering
National Central University
Taoyuan, Taiwan, R.O.C.

hsufh@csie.ncu.edu.tw

Fanglu Guo
Symantec Research

Laboratory
Cupertino, CA, U.S.A.

fanglu guo@symantec.com

Tzi-cker Chiueh
Computer Science

Department
Stony Brook University
Stony Brook, NY, U.S.A.

chiueh@cs.sunysb.edu

ABSTRACT
Buffer overflow attack is the main attack method that most if not
all existing malicious worms use to propagate themselves from
machine to machine. Although a great deal of research has been
invested in defense mechanisms against buffer overflow attack,
most of them require modifications to the network applications
and/or the platforms that host them. Being an extension work
of CTCP, this paper presents a network-based low performance
overhead buffer overflow attack detection system called Nebula1,
which can detect both known and zero-day buffer overflow at-
tacks based solely on the packets observed without requiring any
modifications to the end hosts. Moreover, instead of deriving
a specific signature for each individual buffer overflow attack
instance, Nebula uses a generalized signature that can capture
all known variants of buffer overflow attacks while reducing the
number of false positives to a negligible level. In addition, Neb-
ula is built on a centralized TCP/IP architecture that effectively
defeats all existing NIDS evasion techniques. Finally, Nebula in-
corporates a payload type identification mechanism that reduces
further the false positive rate and scales the proposed buffer over-
flow attack detection scheme to gigabit network links.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Se-
curity and protection (e.g., firewalls)

General Terms
Security

Keywords
Buffer Overflow Attacks, Return-into-libc Attacks, CTCP, Gen-
eralized Attack Signatures, Payload Bypassing, Network-based
Intrusion Detection

�NEtwork-based BUffer overfLow Attack detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’06, December 3–5, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-580-0/06/0012 ...$5.00.

1. INTRODUCTION
Buffer overflow attack is arguably the most widely used and

thus most dangerous attack method used today. It accounts for
more than 50% of all the security vulnerabilities recorded by
CERT [20]. Many solutions to the buffer overflow attack prob-
lem have been proposed in the last decade, including compiler
transformation approaches that detect and/or prevent tampering
of control-sensitive data structures [2,3,19], library rewriting ap-
proaches that ensure each incoming packet never steps beyond
the corresponding packet-receiving buffer’s bound, and operat-
ing system approaches that prevent malicious code injected by
buffer overflow attacks from being executed. In theory, these ef-
forts have largely solved the buffer overflow attack problem. In
practice, however, new buffer overflow vulnerabilities are still
discovered and reported on a routine basis. This discrepancy
between theory and practice arises because almost all existing
solutions to the buffer overflow attack problem require substan-
tial modification to the computing infrastructure in which net-
work applications are developed or executed, and thus have met
substantial resistance in actual deployment. One way to over-
come this deployment problem is to develop a network-based
buffer overflow attack detection mechanism that can detect ar-
bitrary buffer overflow attacks without requiring any changes to
the network applications or the hosts they run on. This paper
describes the design, implementation and evaluation of such a
system, called Nebula.

Existing network-based intrusion detection systems (NIDS)
compare incoming packets against an attack signature database,
and raise an alert when one or multiple matches are found. Typi-
cally, a separate signature is created for each distinct buffer over-
flow attack. Obviously, this approach cannot effectively detect
zero-day attacks, whose signature is unavailable by definition,
or variants of known attacks. Moreover, under this approach,
false positives are inevitable and tend to be numerous, mainly
because the signature matching logic in NIDSs rarely takes into
account the context in which buffer overflow attacks take place.
In contrast, the design goal of Nebula is to detect arbitrary buffer
overflow attacks, zero-day or not, based solely on the payload of
incoming packets. While Nebula is still signature-based, the sig-
nature it uses is designed to capture all known buffer overflow
attacks. Although the Nebula prototype described in this paper
does not achieve its design goal completely, we believe it repre-
sents an important step toward reaching that goal.

There are two variants of buffer overflow attack: code-injection
(CI) attack, where attackers insert a piece of malicious code into
the victim application’s address space and then steer the appli-
cation’s control to the injected code; return to libc (RTL) attack,
where attackers directly steer the control of the victim applica-
tion to a function pre-existing in its address space, e.g., a library
function. In both cases, attackers hijack the control of the vic-

163



tim application, by modifying a control-sensitive data structure
such as a return address and changing it to either a location on
the stack (CI attack) or a location in the text or code region (RTL
attack). From the above analysis, a buffer overflow attack packet
must include a 4-byte hijack destination word that corresponds
to a memory address on the stack or in the text region. Fur-
thermore, to increase the success probability and robustness of
a buffer overflow attack, attackers almost always replicate the
hijack destination word in the packet so as to accommodate dif-
ferences in the address of the target control-sensitive data struc-
ture due to different combinations of compiler, loader, operating
system, and command-line arguments. In summary, the main
signature that Nebula uses to detect buffer overflow attacks is a
sequence of identical 4-byte words that correspond to an address
in the stack region or text region.

For all the buffer overflow attacks whose actual attack pack-
ets are publicly available, the above signature can detect them all
without any false negatives. However, the above signature could
also trigger many false positives, especially when the hijack des-
tination word is assumed to appear in the attack packet only once
or twice. Nebula addresses the false positive problem using a
multi-pronged approach. First of all, Nebula can recognize files
downloaded via FTP, HTTP, P2P file sharing, and BitTorrent-
like applications, and exclude bytes in downloaded files from the
signature matching process. This optimization significantly im-
proves the run-time efficiency and decreases the false positive
rate of Nebula. Secondly, Nebula can detect and record failed
buffer overflow attacks, which eventually lead to the victim ap-
plication’s termination, and use this information to detect an at-
tacker’s attempt to map out the victim application’s exact address
space layout by repeated probing. Finally, Nebula transparently
learns the normal connection establishment/tear-down behaviors
of internal servers, and uses this information to detect any con-
nectivity anomaly after an attacker successfully compromises an
internal server.

The rest of this paper is organized as follows. Section 2 re-
views previous works on host-based and network-based buffer
overflow attack detection. Section 3 describes the design of Neb-
ula, including its multi-pronged approach to buffer overflow at-
tack detection. Section 4 presents a detailed evaluation of Nebula
in terms of its false negatives, false positives, and run-time over-
head. Section 5 concludes this paper with a summary of major
research contributions and an outline for future work.

2. RELATED WORK
Traditionally, detecting buffer overflow attacks at the network

packet level is deemed as a difficult work because packets pro-
vide too little information about the attacked programs. However
with the effort of security community, several promising methods
have been proposed.

As using repeating addresses in attack strings to increase the
chance to have a successful attack, repeated NOP instructions
right before the injected code are also widely used in attack strings.
Toth and Kruegel’s solution [14] focus on detecting the appear-
ance of a sequence of NOP instructions which they call sledge
or their equivalences. In their method they try to dissemble the
packet content, and if a substring of a packet content could be
interpreted as a sequence of 30 or more instructions, an alarm is
issued. However it is not a trivial work to disassemble a packet to
find the longest execution path which may start at any byte inside
that packet. If an attacker on purpose crafts packets that contains
numerous execution paths and all of the paths have length less
than 30, than the attacker could issue some kind of DoS/DDoS
attacks upon this approach without being detected.

Like Nebula, buttercup [13] also uses addresses as hints to de-
tect buffer overflow attacks. Instead of using a generic address
pattern for all buffer overflow attacks, for each individual attack
string, they need to study the specific vulnerable program and
its buggy overflowed functions to drive a small range of possible

address that could be used to launch a successful attack. Later
on this address range is used as a signature of the specific attack
string; therefore, if any word of a packet’s payload could be inter-
preted as an address within this range, the packet is classified as
an attack packet. This method simplifies the signatures of known
attacks; thus, improves the performance of signature matching.
However, for unknown buffer overflow attacks, it seems, current
buttercup version doesn’t take them into account.

Andersson et al.’s method [15] uses system calls as a buffer
overflow attack signature; therefore, if more than two threat level
one system calls [16] are detected, then an alert is issued. Cur-
rently their algorithm assume system calls are issued in the fol-
lowing form. mov system call num, %eax; int 80h. However
there are other ways to issue a system call, such as push sys-
tem call num; pop %eax; int 80h.

The basic processing unit of all the above methods is a packet.
In other words, the content of one packet will not influence the
examination result of other packet. As a result, if an attacker
could split her/his input into several small packets, not fragments,
then she/he can bypass the detection; moreover, because in return-
into-libc buffer overflow attack strings, there is no injected code,
the two approaches which search for buffer overflow attack strings
based on binary code can no longer handle this problem. For but-
tercup approach, currently they haven’t handled the return-into-
libc problem yet.

Kruegel et al. [22] and Ke Wang et al. [23] (PAYL) base on the
ASCII code frequency distribution in the payloads of network
traffic to/from a network service to build a normal traffic payload
model for that service. By comparing the actual traffic into/from
a network service with its associated model at run time, these
systems can detect abnormal payload. To achieve low false posi-
tive rate, PAYL computes a traffic payload model for each traffic
direction and for each distinct port and service.

PAYL assumes that it is possible to build a reliable traffic pay-
load model for any given network service. It is not clear whether
this assumption holds for services whose traffic payloads change
frequently, such as a news web site like CNN, a auction web site
like Ebay, an E-commerce web site like Amazon, etc. Moreover,
like all anomaly detection, PAYL also suffers from the usual ”em-
ulation” attach in which the attacker tries to faithfully follow the
traffic payload model when composing the attack payload.

3. DESIGN

3.1 Principles of Buffer Overflow Attacks
In a typical buffer overflow attack, the attacker injects an in-

struction sequence into the victim application and transfers the
control of the application to the injected code. As an applica-
tion’s text segment is typically read-only, the only way to hijack
the control of an application is to dynamically modify the tar-
get address of its branch instructions whose target is not fixed
at compile time. Such dynamic branch instructions include func-
tion returns, pointer-based function calls, and C-style switch state-
ments. These branch instructions typically have their target ad-
dresses stored in some stack or heap variable. If an attacker can
overflow an array or buffer that resides beside a target-address
variable in an application, she can then modify this target ad-
dress, and eventually take control of the application after the
dynamic branch instruction using the target-address variable is
executed.

In all known buffer overflow attacks, the predominant way to
hijack a victim application’s control is by altering the return ad-
dress of a function that contains an ”overflowable” buffer; hence,
when the function returns, code stored in the address pointed by
the overwriting address will be executed. As an example, the fol-
lowing shows a code segment that is vulnerable to buffer over-
flow attacks and its stack layout at the time when it is called. SP
and FP are the stack pointer and base (or frame) pointer, respec-
tively. The stack grows downward toward address zero.

164



main() { STACK LAYOUT
Input();

} Return Address of Input()
Base Pointer of main() ;FP
Local Variable i

Input() { UserID[4]
int i; UserID[3]
int UserID[5]; UserID[2]

UserID[1]
i=0; UserID[0] ;SP
while ((scanf("%d",
&(UserID[i]))) != EOF)

i++;
}

In this case, the procedure Input() keeps accepting inputs
into the array UserID without stopping even after the bound of
UserID is exceeded. As a result, the attacker can fill the stack
frame of Input() with whatever values she desires, including
the stack location holding the return address of Input(). As a
result, when Input() returns, the control is transfered to wher-
ever the overwritten return address points to. Typically the at-
tacker sets the new return address to the beginning of a piece
of injected code, for example, the address of UserID[0]. The
ability to transfer the control of a victim application to a sequence
of instructions that is under the control of the attacker opens the
door to an infinite number of further compromises. However, this
flexibility is only possible if the injected code can execute from
the stack or heap.

A variant of buffer overflow attack that does not require in-
jecting any code is called return-to-libc attack, which transfers
the control of the victim program to the entry point of a pre-
chosen system call function, e.g., exec(). As a result, the attacker
can still inflict upon the underlying system without injecting any
code. However, it is difficult to set up a return-to-libc attack be-
cause the arguments of the target system call must be carefully
laid out on the stack in order for the desired attack to take ef-
fect. The following figure shows the stack frame for the function
above, which contains a buffer overflow vulnerability, before and
after a return-to-libc attack.

10044 10008
10040 X
10036 Return Address of Input() Entry to exec()
10032 Base Pointer of main(); FP X ;new SP
10028 Local Variable i X
10024 UserID[4] X
10020 UserID[3] X
10016 UserID[2] X
10012 UserID[1] "/csh"
10008 UserID[0] ; SP "/sys"

By overflowing the array UserID[], the attacker is able to mod-
ify the return address, and inserts a pointer (�����) at the mem-
ory location ����� as the input argument to the target system
call exec(). More specifically, the attacker changes the re-
turn address of Input() to the entry point of exec(). Before
the return instruction in the function Input() is executed, the
stack pointer register (SP) is assigned to the value in the frame
pointer register (FP) and thus points to �����. Then the top
of stack is popped and copied to FP. At this point, SP points
to �����. After the return instruction is executed, SP points
to ����� and the program’s control goes to the entry point of
exec(). Inside exec(), the content of FP is pushed to the
top of stack and SP points to �����, and the value in SP is then
copied to FP. By convention, the first input argument resides in
the memory location [FP] + 8, or ����� in this case. The con-
tent of memory location ����� points to a 8-byte character string
(”/sys/csh”). As a result, the attacker is able to make the system
call exec("/sys/csh").

3.2 Generalized Signature
The key challenge to a successful buffer overflow attack is how

to overwrite the target control-sensitive data structure in the vic-
tim application. However, the distance between the ”overflow-
able” buffer (UserID[] in the above example) and the target

control-sensitive data structure (the return address of Input())
may vary for different instances of the same network application
for the following reasons:

� Due to memory alignment requirement, different compil-
ers may allocate local and global variables in an order that
is completely different from the order they appear in the
source code.

� For the same source code, different compilers on different
OSes may use a different memory layout for the same set
of variables. In other words, the memory layout of a C
program’s variables on by a Linux host could be different
from that on a Solaris host.

� Address obfuscation compilers [4] insert byte strings into
memory areas for variables to further randomize the mem-
ory layout. The length of the inserted byte string is ran-
domly generated at compile time or at run time.

Because the distance between the overflowable buffer and the
target control-sensitive data structure is not completely predictable,
buffer overflow attack authors typically repeat multiple times the
attack string used to overwrite the target control-sensitive data
structure, so as to maximize the success rate. In the case of RTL
attacks, the attack string that is repeated consists of (1) the en-
try point of the target libc or system call function and (2) one or
multiple pointers to character strings as input arguments. In the
case of CI attacks, the attack that is repeated is the entry point
of the injected code. For the ten buffer overflow attack exploit
strings [12] we examined, the number of times at which the at-
tack string is repeated ranges from 4 to 100 times.

To turn the above observation into a practical signature, fur-
ther restrictions need to be imposed on the contents of the attack
strings. First, in the X86 architecture, memory addresses, in-
cluding entry points to a piece of injected code or a libc function,
must fall within a well-defined address space range. In the case
of RTL attacks, the return address entry must point to the address
space region in which the libc library resides; moreover, because
the character strings that are used as input arguments are on the
stack, the input argument pointers must thus point to the stack
region. Similarly, for a CI attack, the return address entry must
point to the stack region because the injected code typically sits
on the stack.

In Linux, the user-level stack starts from address ����������
and grows downward, and the default maximum size of a pro-
cess’s user-level stack is 2 MBytes [8]. However, because the av-
erage function frame size is 28 bytes [6, 7], most processes have
an active stack size of less than 8 KBytes. This means that the
address space range from ���������� to ���������� � ��
should cover all stack variables in most cases. Linux’s shared
library, which contains all system call entry points, reside in the
range that starts at address ���������� and ends at the begin-
ning of the stack, i.e., ���������� � �� .

To summarize, the generalized signature for recognizing any
buffer overflow attacks is as follows: If an input string contains
a stack address that repeats � times, then it is regarded as a CI
attack; if an input string contains at least � copies of a pattern
that consists of a shared library function’s entry point address
followed by at least one stack address, then it is regarded as a
RTL attack. Currently the repeat count � is set to �.

3.3 Centralized TCP Architecture
For signature matching purpose, Nebula considers as a sin-

gle input string all the bytes that are transferred from an outside
host to an inner host over a TCP connection. To collect these
input strings, Nebula is built on a centralized TCP/IP (CTCP)
or TCP proxy architecture [5] in which an organization’s edge
router (called CTCP router hereafter) transparently splits each
TCP connection between an internal host and an external host

165



remote-2
remote-1

remote-3

local-2

local-1

local-3

CTCP
Router

Figure 1: In the centralized TCP architecture, a network connec-
tion an internal host (e.g. L1) and an external host (e.g. R1) is
split into two sub- one between the external host and the CTCP
router, and the other between the CTCP router and the internal
host. As far as R1, R2, and R3 are concerned, it’s the TCP/IP
protocol stack on the CTCP router that they are interacting with
directly. The TCP/IP protocol stacks on L1 and L2 are com-
pletely hidden and thus immune from attacks.

into two TCP connections, one between the internal host and it-
self, and the other between itself and the remote host, as shown
in Figure 1. Packets exchanged over these two TCP connec-
tions only contain the original two communication parties’ IP
addresses; that is, the CTCP router is completely invisible to
them. Because the CTCP router is involved in the set-up and tear-
down of every TCP connection, it can easily identify all the bytes
flowing in a TCP connection and presents the resulting stream to
Nebula’s signature-based filter.

There are well known techniques [17, 18] that can effectively
evade the detection of NIDSs. Fundamentally these evasion meth-
ods exploit differences in the interpretation of certain parts of an
incoming packet between the TCP/IP stack on an NIDS and that
on an end host, for example, the TTL field and overlapped IP
fragments. Under the CTCP architecture, none of these invasion
techniques work because fundamentally there is only one TCP/IP
stack visible to the outside world, and the proposed signature-
based filtering scheme is based on the CTCP router’s interpreta-
tion of the incoming packets.

In addition, because the protocol processing associated with
all outgoing TCP packets are performed on the CTCP router,
it is now possible to collectively manage the congestion-related
states of these TCP connections based on their destination sub-
nets [1], and utilize the available bandwidth on the Internet more
effectively. In particular, this congestion state sharing mecha-
nism allows short-lived TCP connections to start with a larger
initial congestion window size and thus reduces their end-to-end
connection time. Similarly, the CTCP router can also serve as the
basis for packet reordering detection that could eliminate spuri-
ous congestion window reduction.

3.4 Contextual Analysis
The proposed generalized signature covers all known variants

of buffer overflow attacks. So it has zero false negative, More-
over, the fact that its signatures are derived from the first princi-
ples of buffer overflow attacks, rather than any specific byte pat-
terns from particular buffer overflow attacks, means that Nebula
can even detect zero-day buffer overflow attacks. However, there
is no guarantee that Nebula will never generate false positives,
especially when the number of repetition patterns � is small
and when the stack size is large. We propose contextual analy-
sis techniques that analyze bytes surrounding the bytes matching
the proposed signature to determine whether these matched bytes
indeed correspond to a buffer overflow attack.

From our initial experiments, it is clear that when the number
of repeated patterns is assumed to be 3 or more, the number of
false positives is negligible. This means that the only way for
an attacker to evade Nebula’s detection mechanism is to repeat
an attack pattern only once or twice. However, because the at-
tacker can never be sure of the exact binary image of the victim
program (even with the knowledge of the application’s source
code), repeating an attack pattern only once or twice is more
likely to crash the victim application rather than to take control
of it. On both Linux and Windows, when a program is crashed,
the OS will terminate all the program’s pending socket connec-
tions by sending out an RST packet to the communicating hosts
on its behalf. Based on this observation, Nebula uses the follow-
ing contextual analysis technique to determine whether an input
string containing only one or two copies of an attack pattern in-
deed represents an attack: checking if a TCP socket connection
terminates immediately after receiving an input string that con-
tains one or two copies of a potential attack pattern. When this
happens, the packet in question is flagged as a buffer overflow
attack packet, and the remote host is flagged as a suspicious host.
All future packets from a suspicious host will be examined more
thoroughly and critically. This technique effectively discourages
attackers from performing trial-and-error experiments with vic-
tim applications using an attack packet sequence that repeats the
attack pattern only once or twice.

After hijacking a victim application, the attacker typically sets
up a separate network connection to either provide a command
shell or to download back-door programs. To bypass firewalls,
this connection is typically initiated by the victim machine, or is
initiated by the attacker machine but aimed at port 80 on the vic-
tim machine, which most firewalls allow. From the above analy-
sis, Nebula arrives at another contextual analysis technique: after
detecting a suspicious input string that contains one or two copies
of the proposed signature, Nebula checks if the victim machine
initiates a new network connection to the attacker machine or the
attacker machine initiates a new network connection that targets
at port 80 on the victim machine.

3.5 Payload Bypassing
Payload bypassing tries to avoid packet analysis for as much

traffic as possible. Because most buffer overflow attacks take
place during the exchange of control messages, it is safe to ig-
nore the bulk of data that is downloaded as uninterpreted bytes.
For example, in an FTP session, data transferred over the data
connection can never be used to mount a buffer overflow attack
against the FTP program because the FTP program does not in-
terpret them.

Based on the above observation, we propose to apply an exist-
ing network protocol analyzer called Ethereal [9] to identify net-
work packets that correspond to files transferred through HTTP,
FTP, and P2P applications such as BitTorrent and eDonkey, and
ignore them in the signature matching process. From CacheL-
ogic’s measurement [21] on USA, Europe, and Asia backbone
in June 2004, HTTP and P2P packets accounted for more than
70% of the total traffic. In P2P traffic, BitTorrent and eDonkey
accounted for 70-90%. Thus payload bypassing is expected to
significantly cut down the performance overhead associated with
Nebula . To be sure, this optimization may not be applicable to
other content filtering applications, such as those aimed at iden-
tifying potentially harmful email attachments.

In addition to the above improvement, payload bypassing also
decreases the number of false positives. The leading byte of any
words that contain a stack address corresponds to a non-printable
ASCII character. Thus, packets exchanged via text-based proto-
cols can never contain bytes that correspond to stack addresses.
That is, Nebula’s false positives mainly come from packets in
binary-based protocols or binary files that are being transferred.
Therefore, ignoring downloaded files during signature matching
prevents these binary bytes from becoming false positives.

166



3.5.1 HTTP
Both the control message and payload part of an HTTP trans-

action are transferred over a single TCP connection. The con-
trol message is the message header and the payload is the mes-
sage body. Most if not all known remote HTTP attacks use the
message header. The message body corresponds to uninterpreted
byte stream, and contains files requested by the user. To im-
plement payload bypassing for HTTP traffic, Nebula only needs
to search the Content-Length field in the message header.
Since the message header normally is only hundreds of bytes at
most, this searching overhead is relatively modest. Suppose the
length of the following message body is �, then the message body
will be the �-byte data after the separator between the message
header and message body, and the next message header will start
after the �-byte message body.

3.5.2 FTP
Unlike HTTP, an FTP session’s control messages travel over

a control connection and its files are transferred over a separate
data connection. The TCP port number of the data connection
is dynamically exchanged in the control connection. Each data
connection only transfers one file. To implement payload by-
passing for FTP traffic, Nebula needs to identify FTP data con-
nections and ignores the data in them. There are two ways for
an FTP client and server to exchange the port number of a data
connection. The first way is active FTP, in which an FTP client
uses the “PORT” command to tell the FTP server the port it will
open up and the FTP server connects to the client via that port.
The server port for the data connection is typically smaller by
one than the control connection’s server port number. The sec-
ond way is passive FTP. In this mode, the FTP server uses the
passive response message to tell the client the server port, and
the client may use an arbitrary client port number to connect to
the FTP server. Thus in passive FTP, the client port cannot be ex-
tracted from the control connection. Based on the above analysis,
the solution is to match subsequent network connections against
the known 3-tuple: server IP, server port, and client IP, and de-
clare the first connection matching this 3-tuple to be the passive
FTP data connection. Because FTP’s control connection traffic
is less than one hundred bytes for each file transfer transaction,
the performance cost of searching through the control connection
for PORT commands and passive response messages is relatively
modest.

3.5.3 BitTorrent
There are two types of BitTorrent traffic. The first type is

query traffic from BitTorrent nodes to tracker nodes and their
responses. The second type of BitTorrent traffic is P2P file trans-
fer traffic among BitTorrent nodes. Similar to the HTTP traf-
fic, each P2P connection includes both headers (control message)
and bodies (data message). Headers are used to exchange control
information among peers. For example, a downloader node can
tell its peers which portions of a file it needs. A message body
always follows a header in a connection, with its length specified
in the header.

To implement payload bypassing for BitTorrent traffic, Neb-
ula needs to identify message bodies in BitTorrent P2P connec-
tions. Because these P2P connections do not use well-known
port numbers, they can be identified only through their contents.
For example, the first several bytes of a BitTorrent P2P connec-
tion includes a string “BitTorrent”. By searching for this string
in the beginning of every network connection, Nebula can reli-
ably track BitTorrent P2P connections. After a BitTorrent P2P
connection is identified, its message body part can be readily de-
duced based on the body length in the header. If other packets
happen to have the “BitTorrent” string, their body length field
may not match the packet length, which suggests the associated
connection is not a BitTorrent connection.

3.5.4 eDonkey
There are also two types of eDonkey traffic, just like BitTor-

rent. The first type is between an eDonkey node and an eDonkey
server, and does not carry files. An eDonkey server tracks which
files are stored on which nodes. EDonkey nodes report to eDon-
key servers the files they have and query eDonkey servers which
eDonkey nodes have the files that they want. Unlike BitTorrent’s
tracker node, an eDonkey server can further search files based on
keywords. Only P2P connections among eDonkey nodes carry
file traffic. In each P2P connection, information is exchanged in
a TLV-like (Type, Length, Value) structure, and the transferred
files are encapsulated in a message type called “send part.”

To implement payload bypassing for eDonkey traffic, Nebula
first identifies eDonkey P2P connections, which always start with
a sequence of “Hello” message, “file request” message, “slot re-
quest” message, and “request parts (of a file)” message. The
overhead to scan these messages is small because each struc-
ture contains a length field to identify the next structure. Thus
no string matching is required. Transferred files are always in
the “send part” message. Therefore, after locating the “send
part” message, the file data stream in the message can be sim-
ply skipped.

3.6 Attack Analysis
Although Nebula’s signature can successfully catch all exist-

ing buffer overflow attacks to Linux machines that we have found
so far. Future attacks may attempt to evade Nebula’s detection
logic and thus result in false negatives. There are several known
weaknesses of Nebula and we discuss them in more detail in this
section.

Nebula assumes the attack string contains at least � stack ad-
dresses or library function entry point addresses, where� is 3 by
default. It is conceivable that future attacks may repeat the over-
writing stack address only once or twice just to avoid Nebula’s
detection. Fortunately, with the help of payload bypassing, Neb-
ula may set � to 1 and still is able to detect most of these new
attacks without generating many false positives. But payload by-
passing has its own problem: it may create false negatives be-
cause some buffer overflow attacks indeed target at downloaded
payload files.

Payload bypassing assumes there is no buffer overflow attack
in the payload. But files being downloaded as payloads some-
times can indeed overflow some buffer of their viewer software.
For example, some special crafted PNG file and JPG file can
overflow some versions of Microsoft Internet Explorer. Fortu-
nately, this type of attack requires user intervention to take effect
and is thus considered a passive attack. In other words, the at-
tacker cannot actively infect a user machine like worms. There-
fore, although payload bypassing may miss some passive buffer
overflow attacks, it will not miss any active buffer overflow at-
tacks that are used by worms to propagate themselves from ma-
chine to machine as quickly as possible.

Finally, the number of false positives generated by Nebula
when sanitizing traffic to Windows platforms are high, because
Windows processes utilize a different memory layout than Linux
ones. In a Windows-based buffer overflow attack [24], attack-
ers change the return address to the address of an indirect jump
instruction whose associated register has already been tampered
with through other means. And the steppingstone indirect jump
instruction can be anywhere in the DLLs or application code. In
our future work, we plan to address this issue by developing new
signatures for Windows platforms.

4. EVALUATION
To evaluate Nebula’s effectiveness in detecting buffer overflow

attacks, we measure the false negative rate using input traffic con-
taining known attacks, and the false positive rate under known
innocent traffic. Then we measure the performance overhead of

167



Name No. of Repetitions Hijack Destination Address
LFTP Remote Stack-Based Overflow 24 0xbffff100

ATPHTTPd Buffer Overflow � �� 0xbffff600
in.telnetd tgetent buffer overflow � �� 0xbffff5d2
Samba Remote buffer overflow � �� 0xbffff244

imapd remote overflow � �� 0xbffff501
Remote INND buffer overflow exploit 19 0xbffff5d0
Remote vulnerability in LCDproc 0.4 4 0xbffff750
Tcpdump remote root vulnerability 10 0xbffff248

BSD Termcap overflow � �� 0xbffff5c2
PoPToP PPTP Server Remote Exploit � �� 0xbffff600

Table 1: Analysis of ten publicly available Linux-based buffer overflow attacks, in terms of the number of times an attack pattern is
repeated and the hijack destination address contained in the attack packet. All these attacks are CI attacks. Their measured stack sizes
are all less than 16Kbytes.

Outside Client Host Inner Host
Pentium 3 (1133MHz) Pentium 4Pentium 4

KCTCP / UCTCP

��
��
��
��

��
��
��
��

Figure 2: The testbed set-up used to evaluate the effective-
ness a performance of the CTCP architecture. All test hosts are
equipped with an Intel Pro/1000 Gigabit Ethernet NIC.

Nebula with and without payload bypassing. Figure 2 shows the
test setup used in these tests. In this setup, both external client
machines and internal server machines are Pentium-4 machines,
whereas the CTCP router is a Pentium-3 (1133MHz) machine.
All three machines are equipped with an Intel Pro/1000 gigabit
NIC and run Linux 2.4.7.

4.1 False Negatives
For each of the 10 buffer overflow attacks listed in Table 1, we

first set up a proper operating environment to collect the corre-
sponding attack packet sequence. Then we applied the proposed
CI and RTL attack signatures to each of the ten attack packet
sequences, and the result is that Nebula can successfully detect
all 10 attacks successfully. This result is not particularly sur-
prising as none of existing buffer overflow attacks are designed
to evade Nebula. However, the fact that Nebula can use a sin-
gle signature to detect all of them demonstrates that the idea of
attack-independent signature is indeed feasible.

4.2 False Positives
To test Nebula’s false positive rate, we used two types of packet

payloads. Static samples are a collection of files stored on user
hosts, including object files (such as library files and executable
files), document files (such as pdf, ps, doc, txt, and HTML), pic-
ture files (such as gif, jpg, and mpeg), text files (such as HTML
and txt), and gzip files, whose size is 348 Mbytes, 334 Mbytes,
220 Mbytes, 269 Mbytes, and 79 Mbytes, respectively. Dynamic
samples are actual packet traces collected by sniffing the traffic
on a 100-Mbps link that connects a university research lab to the
Internet. Packets belonging to the same TCP connection are as-
sembled together and stored in a separate file. Therefore each of
these dynamic sample files records the whole conversation be-
tween the two communicating hosts of the corresponding TCP
connection. We collected one month’s worth of packet trace,
which includes 134966 TCP connections and about 1.582 Gbytes
of data. We ran these two samples through Nebula’s signature-
matching algorithm, and measured the number of matches while
varying the stack size and the minimal number of repetitions of
the attack pattern. Every such match is considered as a false pos-
itive.

Repeat 2Mbyte 16Kbyte 8Kbyte
1 426260/1155877 1672/6157 1240/4195
2 202/176 1/22 1/11
3 37/92 1/13 1/5

10 2/16 0/4 0/0

Table 2: Number of false positives under the static sample as
reported by Nebula. The minimal number of times the attack
pattern is repeated is assumed to be 1, 2, 3 or 10, and the stack
size tested is 2Mbytes, 16Kbytes, or 8Kbytes. In each entry the
left is the number of false positives for RTL attacks, whereas the
right is the number of false positives for CI attacks.

Repeat 2Mbyte 16Kbyte 8Kbyte
1 902265/2121784 5033/13928 2810/7648
2 214/77 0/14 0/0
3 43/21 0/10 0/0

10 1/2 0/1 0/0

Table 3: Number of false positives under the dynamic sample
as reported by Nebula. The minimal number of times the attack
pattern is repeated is assumed to be 1, 2, 3 or 10, and the stack
size tested is 2Mbytes, 16Kbytes, or 8Kbytes. In each entry the
left is the number of false positives for RTL attacks, whereas the
right is the number of false positives for CI attacks.

Table 2 shows the result of the static sample test. When the
minimal number of attack pattern repetition is 3 or above, the
false positive rate is generally acceptable, regardless of the stack
size. When the number of repetitions is larger than or equal to 2
and the stack size is smaller than or equal to 16Kbytes, all false
positives are due to object files. Moreover, one object file could
cause more than one false positives.

Table 3 shows the result of the dynamic sample test. When
the stack size is 16Kbytes or smaller and the minimal number of
attack pattern repetitions is 2 or 3, all false positives are caused
by 4 out of a total of 134966 TCP connections traced, or a false
positive rate of �	�����	. These four TCP connections are used
to transfer four different HTML page, among which three contain
a gif file and one contains a jpg file.

Because the stack addresses in Linux must start with ���� ,
which is not a printable ASCII character, and therefore rarely
appears in telnet sessions, e-mail bodies, HTML text files, etc.
Instead, it is more likely to show up in executable files, picture
files, and files containing Unicode characters. Because the static
sample contains more executable files, the false positive rate of
the static sample test is higher than that of the dynamic sample
test.

168



0 2000 4000 6000 8000 10000
Number of TCP Connections

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

CTCP
Linux Router

Figure 3: Throughput comparison between a CTCP router and
a Linux router, when the number of TCP connections increases
from 1 to 10000.

4.3 Performance Overhead
In performance overhead test, we measured the throughput of

a CTCP router and a generic Linux router under different num-
bers of TCP connections between the client and the server, based
on the testbed set-up shown in Figure 2. In each throughput mea-
surement, the client host continues pumping data into every TCP
connection. Results in Figure 3 show that the CTCP router ac-
tually provides a better throughput than the vanilla Linux router.
In addition, CTCP’s throughput is not affected by the number of
TCP connections traversing through it, up to 10000 connections.

The throughput gain of CTCP over vanilla Linux mainly comes
from two sources. First, under the CTCP architecture, the round-
trip delay of each packet is shorter, because it is the CTCP router
that creates the ACK packet, not the server, as in the generic
Linux router case. As a result, the client is able to to send pack-
ets at a faster rate than it does under a Linux router, Second,
the CTCP architecture allows the processing of a packet and
the transmission of the next packet to proceed simultaneously.
In other words, when the client checks the validity of an ACK
packet of a previously sent packet, say 
�, and prepares for the
next outgoing packet, say 
�, the CTCP router could process 
�
simultaneously.

To test the throughput penalty introduced by Nebula on a CTCP
router, we measured its throughput with and without Nebula en-
abled, using the same testbed set-up shown in Figure 2. In these
measurements, different numbers (ranging from 100 to 10000)
of TCP connections between the client and the server are estab-
lished before the client pumps data into each TCP connection.
The throughput of each test is measured at the server host.

Experimental results show the CTCP router’s throughput is
420 Mbits/sec when Nebula is disabled, and drops to 248 Mbits/sec
when when Nebula is turned on. The performance degradation
mainly comes from the additional processing overhead associ-
ated with examining every incoming byte.

4.4 Effectiveness of Payload Bypassing
We examined the effectiveness of payload bypassing from three

angles: (1) What is the percentage of traffic that is “payload”?
(2) How many false positives are eliminated? and (3) How much
throughput improvement can be achieved? The same testbed as
in Figure 2 is used. We tested four protocols, HTTP, FTP, BitTor-
rent, and eDonkey on Windows XP, to answer the first two ques-
tions. We use Windows applications because most Internet traffic
is generated from Windows machines and programs using these
protocols are readily available on the Windows platform. Files
being downloaded are from the static sample, which has 8068
files with a total size of 1.22 Gbytes. We used Linux machines

Protocol Control Traffic Control Payload
(Mbytes) (%) (%)

HTTP 4.700 0.39% 99.61%
FTP 2.071 0.17% 99.83%

BitTorrent 3.984 0.33% 99.67%
eDonkey 4.347 0.36% 99.64%

Table 4: Percentage of payload in the traffic when each of the
four protocols that Nebula can recognize is used to transfer files
of a total size of 1.22 Gbytes

Protocol False Positive False Positive
Repeat = 1 Repeat = 3

HTTP 0 0
FTP 0 0

BitTorrent 0 0
eDonkey 49 0

No payload
bypassing 426260+1155877 37+92

Table 5: The number of false positives in the test traffic associ-
ated with different protocols after applying payload bypassing is
negligible even when the attack pattern repetition count is 1.

to answer the third question because we found that Windows XP
can only achieve around 200 Mbps TCP throughput when two
Windows XP machines are directly connected, whereas Linux
can achieve 500 Mbps with the same set-up. Files used in this
test are a random subset of the static sample because we can only
afford to use a 500-Mbyte RAM disk for network throughput test.
Using physical hard disks in this test is unacceptable because we
were using gigabit Ethernet link.

4.4.1 Percentage of Payload Traffic
The percentages of ”payload” in the traffic when using each of

the four protocols to transfer files in the static sample are shown
in Table 4. To transfer around 1.22 Gbytes of data, the extra bytes
introduced by each of the four protocols is only around 2 Mbytes
to 5 Mbytes. This means that if payload bypassing is used, less
than 0.4% of the traffic needs to be checked for buffer overflow
attack, and more than 99.6% of the traffic can be safely ignored.

4.4.2 Effectiveness on Eliminating False Positive
The effectiveness of payload bypassing on eliminating false

positive is shown in Table 5. The stack size used in the test is
2 Mbytes, the worst case. Before applying payload bypassing,
when the attack pattern repetition count is 1, there are millions
of false positives. With payload bypassing, text-based protocols
such as HTTP and FTP have zero false positive regardless of the
attack pattern repetition count and the content of transferred files.
For binary-based protocols, only eDonkey protocol has a small
number of false positives when the attack pattern repetition count
is 1. This is not surprising as the control traffic of the eDonkey
protocol accounts for only around 4 Mbytes.

4.4.3 Throughput Improvement
Only HTTP protocol is tested in this experiment because the

computation overhead of HTTP payload bypassing is the high-
est among all four protocols. HTTP payload bypassing needs
to search special string “Content-Length”, “Transfer-Encoding”,
empty line, etc. in the HTTP header of each file transfer transac-
tion. While FTP also needs to search special strings in the control
connection, FTP control traffic is less than half of HTTP head-
ers. For binary-based protocols, no search operation is required,
as payloads reside at particular offsets of the data stream.

In the baseline case, the CTCP router supports neither buffer
overflow attack nor payload bypassing, and its throughput is shown

169



Test Cases Throughput
(Mbps)

Direct connection 507
Linux router 409

CTCP without BO check 420
CTCP with BO check 248
CTCP with BO check

and payload bypassing 420

Table 6: The throughput of the CTCP router under a test HTTP
connection when different options are turned on. With payload
bypassing, a CTCP router can perform buffer overflow (BO) at-
tack detection and still achieve a throughput higher than a generic
Linux router.

in Table 6. When two computers are connected directly, i.e.,
without any router in between, the HTTP throughput can reach
around 500 Mbps assuming files are stored on RAM disks. Adding
a Linux router or a CTCP router in between, the throughput is de-
creased to around 409 Mbps and 420 Mbps, respectively. When
the buffer overflow check function in the CTCP router is turned
on, its throughput is further decreased to 250 Mbps, because
the CTCP router needs to examine every byte going through it.
However, when the CTCP router enables payload bypassing, its
throughput comes back up to 420 Mbps, as if buffer overflow
attack detection costs nothing. This throughput gain arises be-
cause the CTCP router only needs to check the header parts of
the tested HTTP traffic, which corresponds to a very small per-
centage of bytes that actually go through the CTCP router.

5. CONCLUSION
Buffer overflow attack is arguably the most dangerous attack

method used today because new network applications continue to
exhibit this type of vulnerabilities and many INTERNET worms
use it to propagate themselves from machine to machine. Al-
though many host-based solutions to buffer overflow attacks al-
ready exist, so far their impact on improving enterprise IT se-
curity is relatively limited. The main reason is that these solu-
tions typically require disruptive changes to the existing IT in-
frastructure and therefore do not offer a feasible migration path
that IT architects can reasonably take. This paper proposes a
scalable network-based buffer overflow attack detection system
called Nebula, which does not require any infrastructure modi-
fication, features a generalized buffer overflow attack signature
that is able to detect all known variants of buffer overflow at-
tacks, and exploits various contextual information to reduce the
number of false negatives to a negligible level. Although existing
network-based intrusion detection systems can also detect some
buffer overflow attacks, the difference is that Nebula uses a sin-
gle signature to detect all buffer overflow attack instances that are
derived from the same principles of operation, zero-day or not.
In addition, Nebula is built on a centralized CTCP architecture
that can defeat all existing NIDS evasion techniques and incor-
porates a payload bypassing mechanism that can scale its signa-
ture matching logic up to gigabit/sec links on general-purpose
server hardware. Experiments on a fully working Nebula proto-
type demonstrate its overall effectiveness in buffer overflow at-
tack detection and its negligible run-time performance overhead.

Although the current Nebula prototype still cannot detect all
possible buffer overflow attacks, it represents an important step
toward effective network-based detection of buffer overflow at-
tacks, including zero-day ones. We are currently incorporating a
binary disassembler to the Nebula prototype so as to reduce the
number of false positives when the attack pattern repeat count
is set to 1. In addition, we are developing an implementation
framework that can quickly import the protocol recognition logic
added to Ethereal without manual programming. This implemen-

tation framework allows Nebula to leverage the development ef-
forts behind Ethereal and increase the number of protocols its
payload passing mechanism can recognize for free.

6. REFERENCES
[1] Prashant Pradhan, Tzi-cker Chiueh, Anindya Neogi,

“Aggregate TCP Congestion Control Using Multiple
Network Probing,” ICDCS 2000.

[2] Tzi-cker Chiueh and Fu-Hau Hsu, “RAD: A Compiler Time
Solution to Buffer Overflow Attacks,” Proceeding of
ICDCS 2001, Arizon USA, April 2001

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks,” in Proceedings of 7th USENIX
Security Conference, San Antonio, Texas, Jan. 1998

[4] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar,
“Address Obfuscation: An Efficient Approach to Combat a
Broad Range of Memory Error Exploits,” 12th USENIX
Security Symposium, Washington, DC, August 2003.

[5] Fu-Hau Hsu and Tzi-cker Chiueh, “CTCP: A Transparent
Centralized TCP/IP Architecture for Network Security,”
Annual Computer Security Application Conference
(ACSAC 2004), Tucson, Arizona, Dec., 2004.

[6] D. Ditzel and R. McLellan., “Register Allocation for Free:
The C Machine Stack Cache,” Proc. of the Symp. on
Architectural Support for Programming Languages and
Operating Systems, pp. 48 - 56, March 1982.

[7] Sangyeun Cho, Pen-Chung Yew, Gyungho Lee,
“Decoupling local variable accesses in a wide-issue
superscalar processor,” Pro. of the 26th annual international
symposium on Computer architecture, Georgia, United
States, 1999.

[8] Sandeep Grover, “Buffer Overflow Attacks and Their
Countermeasures,” Linux Journal, March 10, 2003

[9] Ethereal: A Network Protocol Analyzer, www.ethereal.com
[10] FastTrack Description,

http://www.p2pwatchdog.com/packet fasttrack.html
[11] Manish Prasad, Tzi-cker Chiueh, “A Binary Rewriting

Defense against Stack based Buffer Overflow Attacks,”
Usenix Annual Technical Conference, General Track, San
Antonio, TX, June 2003

[12] Fyodor, “Exploit world! Master Index for ALL Exploits, ”
http://www.insecure.org/sploits all.html

[13] A. Pasupulati, J. Coit, K. Levitt, S.F. Wu, S.H. Li, R.C.
Kuo, and K.P. Fan, “Buttercup: On Network-based
Detection of Polymorphic Buffer Overflow Vulnerabilities,”
Network Operations and Management Symposium
2004(NOMS 2004).

[14] Thomas Toth, Christopher Kruegel, “Accurate Buffer
Overflow Detection via Abstract Payload Execution,”
Distributed Systems Group, Technical University Vienna,
Austria, RAID 2002.

[15] Stig Andersson, Andrew Clark, and George Mohay,“
Network-Based Buffer Overflow Detection by Exploit Code
Analysis,” AUSCERT 2004

[16] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Operating
system enhancements to prevent the misuse of system calls,”
Proceedings of the 7th ACM conference on Computer and
Communications Security, 2000, Athens, Greece.

[17] Matthew Smart, G. Robert Malan, Farnam Jahanian,
“Defeating TCP/IP Stack Fingerprinting,” USENIX
Security Symposium, Aug. 2000.

[18] Mark Handley, Vern Paxson, and Christian Kreibich,
“Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol Semantics,” Proc.
USENIX Security Symposium 2001.

170



[19] Vendicator, “Stack Shield,”
http://www.angelfire.com/sk/stackshield/

[20] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken, “A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities,” NDSS 2000.

[21] CacheLogic,
http://www.cachelogic.com/research/slide1.php

[22] C. Kruegel, T. Toth, and E. Kirda, “Service Specific
Anomaly Detection for Network Intrusion Detection,”
InSymposium on Applied Computing (SAC), Spain, March
2002.

[23] Ke Wang and S. J. Stolfo, “Anomalous Payload-based
Network Intrusion Detection ,”Recent Advance in Intrusion
Detection (RAID), Sept. 2005.

[24] DilDog, “The Tao of Windows Buffer Overflow,”
http://www.cultdeadcow.com/cDc files/cDc-351/index.html

171


