SQLProb: A Proxy-based Architecture towards Preventing
SQL Injection Attacks

Anyi Liu Yi Yuan Duminda Wijesekera,
Department of Computer Department of Computer Angelos Stavrou
Science Science Department of Computer
George Mason University George Mason University Science
aliu1@gmu.edu yyuan3@gmu.edu George Mason University
{wijesekera,

ABSTRACT

SQL injection attacks (SQLIAs) consist of maliciously crafted
SQL inputs, including control code, used against Database-
connected Web applications. To curtail the attackers’ ability
to generate such attacks, we propose an SQL Proxy-based
Blocker (SQLProb). SQLProb harnesses the effectiveness
and adaptivity of genetic algorithms to dynamically detect
and extract users’ inputs for undesirable SQL control se-
quences. Compared to state-of-the-art protection mecha-
nisms, our method does not require any code changes on
either the client, the web-server or the back-end database.
Rather, our system uses a proxy that seamlessly integrates
with existing operational environments offering protection
to front-end web servers and back-end databases. To evalu-
ate the overhead and the detection performance of our sys-
tem, we implemented a prototype of SQLProb which we
tested using real SQL attacks. Our experimental results
show that we can detect all SQL injection attacks while
maintaining very low resource utilization.

Categories and Subject Descriptors

K.6.m [Management of Computing And Information
Systems]: Miscellaneous—Security; K.6.5 [Management
of Computing And Information Systems]: Security
and protection— Unauthorized access

Keywords

Information security, SQL injection attack, Intrusion pre-
vention, Intrusion detection

1. INTRODUCTION

SQL injection attacks(SQLIAs) refer to a class of attacks
in which an adversary inserts specially crafted control code
into the data fields of an SQL query. A successful SQLIA al-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

2054

astavrouy@gmu.edu

lows the attacker to gain control of the original query, lead-
ing to privilege escalation and extraction of unauthorized
information from the database [30]. These attacks exploit
inadequacies in the user input handing that are sometimes
deeply embedded in the program logic [12, 6].

Earlier research has presented many techniques to defend
against SQLIAs. Some research is geared towards attempt-
ing to validate user inputs [18, 19, 20]. Unfortunately, this
is appears to be difficult because most existing approaches
have little knowledge of the syntactic structure of generated
queries, hence some malicious inputs still manage to pass
through [3]. Furthermore, input validation cannot offer pro-
tection against more sophisticated attacks such as alternate
encoding and stored procedure attacks [12].

Another class of static analysis solutions statically screens
application source to validate every user input before being
integrated into a query [10, 11, 35, 8, 7, 9, 6, 17, 5]. These
techniques work when application source code is available.
In addition, although dynamic prevention techniques [3, 1]
require minimal human interaction, they insert extra meta-
data to delimit user inputs that may change the semantics
of the original application code. Moreover automatic preser-
vation of metadata is almost impossible. Even if these ap-
proaches can effectively detect most SQLIAs, they require
extra effort to distinguish user input data, using techniques
such as tainting or code instrumentation.

Some researches [27, 28] and commercial solutions such
as using PREPARE statements require the programmer to de-
fine the skeleton of an SQL query in order to make the SQL
structure unchangeable. These approaches, although pro-
viding a robust mechanism to prevent SQL injection attacks,
require the programmer to specify the intended query at ev-
ery query point, requiring a lot of re-engineering.

Like most code injection attacks, SQLIAs exploit the fact
that web applications use a common memory space to keep
query code and the user input data, thereby inject code as
data and execute them as code [25]. Our system, SQL-
Prob (SQL Proxy-based Blocker) extracts user input from
the application-generated query, even when the user input
data has been embedded into the query, and validate them in
the context of the generated query’s syntactic structure. We
validate user inputs by extracting user inputs and aligning
them against valid inputs by using and enhancing genetic
algorithm.

SQLProb offers several advantages: First, it is a com-
plete black-box approach that does not require modifying



application or database code, thereby avoiding the complex-
ity of tainting, learning, or code instrumentation. Second,
our input validation technique does not require metadata
or learning. Third, our implementation utilizes an off-the-
shelf proxy that requires minimal setup complexity. Finally,
SQLProb is independent of the programming language used
in the web application.

To evaluate our system, we have employed SQLProb to
detect a wide categories of SQL injection attacks. We show
that SQLProb can prevent sophisticated attacks, such as the
alternate encoding attack and the stored procedure attack.
Our experimental results demonstrate remarkable effective-
ness in detecting all classes of SQL attacks at a reasonable
overhead.

The rest of the paper is organized as follows. Section 2
illustrates the SQLIA with a simple web application exam-
ple. In Section 3, we first define some terminologies, and
then present our system overview as well as the detailed
steps of detection process. In Section 4, we evaluate the ef-
fectiveness of our approach. Section 5 discusses related work
and Section 6 concludes this paper.

2. AN ILLUSTRATIVE EXAMPLE

In this section, we present an actual example of an SQLIA.
Figure 1 depicts the login page of an online bookstore that
allows users to login by providing user name and password.
An SQL injection attack occurs when an attacker causes the
web application to generate SQL queries that are function-
ally different from what the user interface programmer in-
tended. For instance, for a database that stores user names
and passwords, an attacker may attempt to gain root priv-
ileges by manipulating the user name or password string.
Let’s say the application contains the following code:

query = "SELECT * FROM accounts WHERE login=’"
+ request.getParameter("login")
+ "’ AND password=’"
+ request.getParameter("password") + "’";

In this code, the web application retrieves user inputs
from login and password, and concatenates these two user
inputs into the query. The above code generates a query
for the purpose of user authentication. However, if an at-
tacker enters admin into the login field and abc’ OR ’1=1
into the password field, the query string becomes the follow-
ing, whose condition always evaluated to be a logic tautol-
ogy, hence an attacker can bypass the authentication pro-
cess, and gain the root privilege.

SELECT * FROM accounts WHERE name=’admin’
AND password=’abc’ OR ’1=1’

In the above case, the password field, which should have
only a password string, is replaced with five sub-strings:
string “abc”, logic control keyword “OR”, “1”, logical con-
trol assignment “=”, and “1”. Particularly, the logical con-
trol code “OR” connects “password=’abc’” and “1=1" to
changes the evaluation of the Where clause.

3. SYSTEM DESIGN

3.1 SQLProb System Overview

The main system architecture of SQLProb is illustrated
in Figure 2. SQLProb has four main components: (1) The

query = "SELECT * FROM accounts WHERE login="
+ request. getParameter(login’)
A +™ AND password="

3 + request.getParameter("passwd") + "";
H b 4
‘ I I n e p R ﬂ‘ll Sh $
ookStore s RS A SELECT * FROM accounts WHERE name="| admin "
L AND password=" nonsense' OR '1=1 '
Enter login and password @

admin .
.—En:m' OR ‘I=1 @ line 9 7,

ookStore Home Registration shopﬂi;

Login |admin

Password|

guestiguest L

admin‘admin
v User Information
>

i | Login  admin
First Name Administrator

Last Name Accaunt
Address

Email  admin@localhost
Phone

Figure 1: Typical problem overview

Collected
uel
Query Queries
Collector
User Input Benign
User Input g
Extractor ser "p‘l "queres

Parse Tree
User-Input | Anomaly
Validator Kl %(

Data Collection
Phase

Web |
Application N

Query Evaluation
Phase

J Parse Tree
‘ Generator

Proxy

Result

Figure 2: Overview of the SQLProb system archi-
tecture

Query Collector processes all possible SQL queries during
the data collection phase; (2) The User Input Extractor im-
plements a global pairwise alignment algorithm to identify
user input data (Section 3.2.1); (3) The Parse Tree Gener-
ator generates the parse tree for the incoming queries (Sec-
tion 3.2.2); (4) The User Input Validator evaluates weather
the user input is normal or malicious based on user input val-
idation algorithms (Section 3.2.3). The shaded area shows
the off-the-shelf proxy.

SQLProb uses two phases: the data collection phase and
the query evaluation phase, as defined in Section 3.2. During
the data collection phase, user inputs validator collects the
queries that cover all the functionalities of the application,
and stores them in a repository. During the query validation
phase, when an application-generated query be captured by
the proxy, the proxy forwards it to the user input extrac-
tor and the parse tree generator simultaneously. The user
input extractor leverages a global alignment algorithm for
the application-generated query against the collected query
repository, and extracts the user input data. Then, the user
input validator validates the extracted user inputs in the
parse tree, which is generated by the parse tree generator.
If the user inputs are validated to be normal, the generated
query will be sent to database directly; otherwise, the query
will be discarded as a malicious query. Here we assume that
input for the data collection phase is vetted to avoid includ-
ing existing SQLIAs in our training data. This can easily
be done using an automated process.

3.2 Terminology

Our terminology is as follows:

e We denote the set of all queries generated by an ap-
plication A as Q@ = {¢; | 1 < i < m}. For a query ¢;

2055




s ¢ T W passwd="'abc ' o r 1=
[o]o]oToJoJoJoJofofofo[oJoJoJo]ofofoJofo[ofo[oJofo]o o o o000
stholr"
loj1f2]2]2]2]2]2[2]2]2]2[2]2]2[2]2]2]2[2]2]2]2]2]2]2]2]2]2]2]2]2
clo|1]2]3]3]3]3]3]s|3]3]3]3]3]3]3]3]3]3]3]3]|3]3]3]3]3]3]|3]3]3]3]3
of1[2]3]a|a|ala]aa]4a|a|a|a|ala]a|a]a|a|a|a|a]ala]a|a]ala]a4|a
Flof1]2]a]a|5]5]5[5]5]5[5|5[5]5]5|5|5|5]5]5]5[5]|5[5/5]5[5|5|5|5|5
of1]2]3]4|5|6|6|6|6|6|6|6|6|6|6|6|6|6|6|6|6]|6|6|6|6|6|6|6|/6]|6]6
Tlho e sla sl |77 |77 77777777777 7|7 [7[7[7[7|7]7]7 |7
l[ol1]2]34]5|6|7[8|8|8|8|a|a|s|s|s|s|a|8|a|a|s|a|s][a|s]ela|e]a]se
wlol1|2]s[4]s][e[7]s[9]o[o]o[9]o[9]o]o]e]e]o]o[a]o]o]a]a]a]a]e]e]e
[o]*]2]3]4]s|6[7]8]9][10]10[10]10]10]10][10[10[10[10[10[10[10]10]10]10]10]10[10[10[10]10
plol1]2]3]als 6|7 8] 9[to[at[r1[11[ra[t1[1[aa]aa [aa[a[aa [t [1a[ra[ra [ [ [a ][ 11] 11
alo|1]2]3]a]5]6]|7]8]9]10]11[12]12[12]12[12]12[12[12]12[12[12[12]12[12[12[12[12[12[12]12
s[o|1|2]3]4]5]6][7[8[9]10[11[12]13]13]13[13]13[13[13[13[13[13[13]13[13]13[13]13[13]13 13
so|1]2]3]4]5]6]|7]8]9]10[11]12]13[1a[14]14[14]18[14[14[14]14]14[14[14]14[14] 14]14]14[ 14
wlo|1[2]3]a]5]6]7]8]9]10[11]12][13]1a][15[15[15]15]15[15]15[15]15]15[15] 15[ 15]15] 15[ 1515
dlo[1]2]3]4a]s]e]|7]8]9][10]11][12[13]14]15[16]16[16]16]16[16]16]16]16]16] 16 16]16[ 16] 16|16
=[o|1[2]|3]4]5]6]|7]8]9[10[11]12[13]1a[15]16]17[17[17[17[17]17|17]17]17 17 [17]17]17]17]17
o1 |2]3]a[5]6]|7[8]9[10[11]12]13[14[15[16|17[18[18[18]18]18[18|18[18|18]18[18[18[18]18
alo|1]2]3]4]5]6]|7]8]9[10[11]12[13]1a][15]16]17|18[19[19]19] 19| 19]19]1919]19]19[19]19]19
b o234 56|78 ]9 [10[11]12]13]14][15[16]17[18]19]20] 20|20 20|20]20]20]20]20]20]20]20
clo|1]2]3]4 56789 [10[11[12]13[14]15[16]17|18[19]20[21[ 21|21 21[2121]21]21[21 21| 21
‘o[ ]2]3 4[5 s 7[8]e10][11]12[13]14]15[16]17[18]19]20 21 [22]21[21]22|22]22]22| 22[22| 22

(a) the scoring matrix
Alignment Sequences
s 3 3 JE—
S C F° T W’ passwd =
’ ’ ’ — N A p—
S*C F' T W’ passwd= Ebc or 1—1|
(b) The alignment result finalized by

Needleman-Wunsch

Figure 3: A complete scoring matrix processed by
the Needleman-Wunsch algorithm between two SQL
queries and the extracted user input by alignment.
In the complete matrix, the shaded cells represent
the path, which is traced back from the bottom
rightmost cell to the top leftmost cell.

that has n(n > 0) user inputs, the set of user inputs
is denoted as set UI(g;) = {UL; | 0 < j < n}. We
use the term wuser input data for the raw user typed
strings and any transformations thereof.

The collected queries of A is the set 7 (A) of all SQL

queries generated by A during the data collection phase.

During the data evaluation phase, given a query ¢;, the
algorithm that compares the similarity for ¢; against
a query ¢; € 7 (A) is given as Sim(qi, q;). The query
which ¢; gives the highest similarity value in 7 (A), is
called prototype query of q;.

may contains k(k > 1) queries, based on SQL gram-
mar G. The parse tree for a single SQL query g; is
denoted as Tree(q;). The parse tree of a set of queries
Q ={q |1 <i<k}is denoted by Tree(Q).

3.2.1 Separation of User Input

The intuition behind SQLProb is we can pre-generate the
structure of all user inputs. Therefore, by having a large
enough sample set, it is possible to efficiently compare any
user input we receive with one that is in our sample. To effi-
ciently perform this comparison, we use an enhanced version
of the Needleman-Wunsch algorithm [31]. This algorithm
was originally designed to globally optimally aligned pairs of
DNA, RNA, or protein sequences.

The Needleman-Wunsch algorithm [31] iteratively con-
structs a (N+1) x (M +1) dimensional scoring matriz where

After incorporating user input, the resulting query string

2056

N and M are the lengths of the two sequences. The algo-
rithm uses four steps: (1) scoring similarity, (2) summing,
(3) back-tracking, and (4) finalization.

Given two SQL query strings ¢1 = x122...x, and g2 =
Y1Y2 . .. Ym, We can insert gaps, if necessary, to achieve a
global maximum alignment between them. In the first two
steps, our algorithm first computes the similarity score for
each cell of the scoring matrix based on a predefined simi-
larity matrix. The similarity and gap penalty can be defined
as a part of the scoring matrix, or can be specified explicitly
if otherwise. In our work, we assign 1 for a syntactic match,
0 for a syntactic mismatch, and 5 for a gap. The value of
the maximum alignment between ¢1 and g2, or Sim(qi, g2)
is defined as the sum of terms for each aligned pair of let-
ters (x;,y;) within the sequences (representing similarity as
s(zi,y;)), plus terms for each gap (representing a penalty as
p)-

The cell M(4, 7) is the score of the best alignment between
the initial segment zix2...x, of x up to x; and the initial
segment y1y2...ym of y up to y;. Initially, M(0,0) = 0,
M(i,0) = —ip, M(0,j) = —jp. Starting with the top left-
most cell M(1,1) to bottom rightmost cell M(N+1, M +1),
based on the following equation is used to iteratively fill in
in the matrix:

y=MAX M(Z—l,]) D 1>1
M(i,j—1)—p Jj=1

After computing the scoring matrix, in the third step, the
algorithm backtracks from the cell with the highest score(the
bottom rightmost cell) according to the following three rules,
in order to maximize the alignment score back to the cell
with the lowest score (the top leftmost cell) of the matrix.

e If move diagonal, do nothing;
e If move left, insert a gap into the second sequence;
e If move up, insert a gap into the first sequence.

The purpose of backtracking is to access the left, upper,
and diagonal cell and move to the cell with the highest score.
If all three cells are equal, backtracking will move to the
diagonal cell. As illustrated in Figure 3(a), backtracking
starts from the cell with the highest score 22(the bottom
rightmost cell). The shaded path is traced back to the top
leftmost cell, which has the lowest score of 0.

We use the example in Figure 3(b) to demonstrate align-
ment between two SQL queries. The first query is in the col-
lected query set 7 (A) during the data collection phase. The
second query is generated by the web application at the data
evaluation phase. In this example, all SQL keywords are ab-
breviated by their initials. For example, SELECT is abbrevi-
ated as S’, FROM is abbreviated as F’, and so on. To achieve
global alignment, the Needleman-Wunsch algorithm inserts
“, as a gap, into the first query after password=’. There-
fore, the alignment result for the password is “
whlch indicates that the user’s input string for the second
query has a length of 12. Accordingly, the sub-string at
the corresponding position in the second query is abc’ OR
>1=1. Therefore, we can easily extract the user’s input for
the password in the second query as “abc’ OR '1=1".



Applications | Before opti- | After opti- | % of reduction
mization mization

Bookstore 213 55 25.8%

Classifield 395 31 8.1%

EmployDir 218 33 15.1%

Events 364 25 6.8%

Portal 504 56 11.1%

Table 1: The result of optimization

3.2.2  Complexity Analysis and Optimization

To allocate the prototype query ¢; of a application-generated
query gi, every application-generated query must align with
all collected queries during the data collection phase. In the
worst, case, the incoming query ¢; must align with all m col-
lected queries in 7 (A). Because both time and space com-
plexity of Needleman-Wunsch algorithm are quadratic, the
overall time complexity to allocate the prototype query is
O(n?), while the space complexity is still O(n?). Normally,
m is much larger than the length of most query strings, mak-
ing most alignment operations superfluous. The purpose of
our optimization is to reduce m to m’(m’ << m), such that
the overall time complexity will be reduced to approximate
O(n2). To avoid unnecessary alignment operations, we clus-
ter collected queries in the following steps: First, we cluster
the collected queries based on different query types. For
example, SELECT statements and UPDATE statements will be
categorized into two different clusters. Secondly, within each
cluster, queries carrying redundant information will be fur-
ther aggregated. Particularly, identical queries contains the
same query structure, except the user input, will be aggre-
gated. In the aggregated representation, instead of replacing
name and password by the wild-card tokens [22], we fully
eliminate the user input strings. Eventually, queries with
the identical query structure but different user input strings
will be aggregated into the same cluster.

Table 1 demonstrates the number of queries, obtained dur-
ing the data collection phase, before and after optimization.
For different applications, the optimization reduces the size
of the collected query, ranging from 6% to 25%.

3.2.3  User Input Validation Algorithms

One of the advantages of our approach is that we can
evaluate the extracted user input data in the context of the
syntactic structure of the query. In order to motivate our
definition of the user input validation algorithm, we return
to the two queries(normal and malicious) in Section 2, and
show the parse trees for their where clause in Figure 4.

Figure 4(a) represents the partial parse tree for the where
clause of the normal query in section 2, every user input
string can find a non-leaf node in the parse tree, such that
its sub-tree leaf nodes comprise the entire user input string.
Namely, for user input leaf nodes, it is impossible to find a
non-leaf node whose decedent leaf nodes contains not only
the user input leaf nodes, but also other control leaf nodes.
For example, the non-leaf node ID for john and ID for non-
sense. Both are shown as shaded double octagon. Conse-
quently, our algorithm is given in Table 2.

An example application of the validation algorithm is given
in Figure 4(b). The password field is parsed into the set
Ui, (leaf(ui)) with five leaf nodes: nonsense, OR, 1, =, and

Data:Parse Tree Tree(q;) and the set of user input UI(g;)
Result: True if the query is an SQLIA, or False if otherwise
1. for every user input U, ; in UI(g;)

2. do depth-first-search upward from every leaf node
leaf(u;) parsed from Ul; j, according to SQL grammar G;

3. Searching stops when all the searching path intersect
at a non-leaf node nl_node;

4. do breath-first-search downward from nl_node until
reaching all m leaf nodes leaf(node)y;

5. if J", (leaf(u;)) C Upe,(leaf(node);) then

Return True;
else Return False;
end
end
Table 2: The validation algorithm
Type [ Attack Description Detected?
Tautology Injecting one or more condi- | Yes

tional statement

Logically Incorrect | Information gathering, extract | Yes

Queries data

Union Queries Return data from a different | Yes

table
Piggy-Backed New queries piggy-back on the | Yes
Queries original
Stored Procedures Invoking stored procedure Yes
Inferences Infer answers from apps’ re- | Yes
sponse

Alternate Encod-
ing

Injecting modified control text | Yes

Table 3: Different Categories of Attacks used in effective-

ness evaluation

1. Next, we do depth-first-search from these five leaf nodes.
The traversed paths intersect at a non-leaf node, SQLFEz-
pression. Finally, we do breath-first-search from SQLFEz-
pression to reach all the leaf nodes of the parse tree, which is
a superset of |J!_, (leaf(u;)), implying that the input string
u; 1s malicious.

The algorithm described above takes quadratic time, be-
cause step 2 and step 3 take time of n x h, where n is the
number of leaf nodes parsed by u;, and h is the average num-
ber of layers from leaf nodes to nl_node in the parse tree.
In addition, step 4 takes time complexity for a breath-first-
search is O(n?). Therefore, the overall time complexity is

O(n?).

4. EVALUATION

To measure the overhead and performance of our approach,
we used a prototype implementation of SQLProb. The cur-
rent version of SQLProb is implemented by Java and tested
on a Virtual Machine with 1 GB RAM running Fedora 9.
We use MySQL 5.0.27 as the back-end database server. For
every SQL query initiated by a web application, we use a
customized MySql Prozy [33] to collect it, and determine if
it is benign or malicious, before sending it to the database.
If the query is determined as benign, the query will be for-
warded to the database; otherwise, it will be dropped imme-

2057



Where Clause: WHERE login=john' |~
AND password="nonsense’

logininput: liuay.  password input: nonsense

(a) Parse tree for WHERE clause of a normal
query

Figure 4: The parse tree of a normal where clause (left) and an attack one(right).

represent the leaf nodes parse from user inputs .

Where Clause: WHERE login="john’

login input: liuay.

AND password="nonsense’ OR "1=1"

password input: nonsense’ OR ‘1=1

(b) Parse tree for WHERE clause of an attack

query

Application| No of Requests LOC Failure & Syn-
Name tax. Error
Portal 7483 16,453 2999

Bookstore 6492 16,959 1612

Classifieds 6544 10,949 1475

EmplDir 7038 5,658 1994

Events 7109 7,242 2240

Table 4: Applications from the Amnesia

diately. To minimize the network latency, we use wget 1.10
[39] to replay HT'TP request from a different machine within
the same Ethernet subnet to the machine, which runs both
web application server and the prevention engine.

JavaCC [37] was used to automate parse tree generation
process. Specifically, we used JJTree [38], the pre-processor
of JavaCC, to generate parse trees. Figure 5 illustrates the
screen-shot of the web application and the input of login
and password. The corresponding parse tree is illustrated
on the right hand side of the figure. The source code of
the vulnerable web application are public available from
http://www.gotocode.com.

4.1 Experimental Setup

We use Amnesia attack test suite [17], containing both
benign and attacking string patterns. The attacking result
has been extensively explored before (such as in [5, 28]).
Although the test suite contains 30 different attack patterns
and the malicious codes have been injected successfully, we
noticed that the set of attack patterns may not be com-
plete. To ensure the test suite is as complete as possible,
we further extended the attack pattern by including a wide
category of the real-world attacking patterns[12], in order
to guarantee that the malicious attacking string patterns
return “sensitive” information. Table 3 illustrates a list of
vulnerabilities, as well as injection attacks exploiting those
vulnerabilities. Those vulnerabilities and attacks cover the
most known SQLIA scenarios; furthermore, the combination
of those can come up with more complicated new attacks.
Table 4 summarizes the characteristics of Amnesia test suite.
The second column lists the number of web requests, and the

= - -
- €
B Getting Started (5 Latest Headines

| [EBoskw @ | | ieestepd..,

L sesotipdt oo | (]

ookStore

L

%Iine b

Enter login and passwo
g ey |
Password [~ |

guest/guest

£
&3 Find: |

Done

Eile Edit View Terminal Tabs Help

Start
MultiStatement
PLSQLStatement
SelectStatement
Select
SelectList
SelectItem
SQLColunnName
ID: member_id
SelectItem
SQLColunnName
ID: member level
FromClause
TableReference
TableName
ID: members
WhereClause
SQLExpression
SQLAndExpression
SQLUnaryLogicalExpression
SelectItem
SQLColumnName
ID: member_login
Operator
Factor
StringLitExp
ID: liuay

The shaded double octagons

select member_id, member_level from members where member_login ='liuay' and memb *

er_password='abc' ;

[ (o o

Figure 5: The screen-shot of SQLProb

third column lists the lines of code (LOC) for each applica-
tion. Since the test suite contains a large number of web
requests that resulted in invalid SQL queries, the fourth
column reports the number of invalidate web requests.

4.2 Detection & Resource Overhead

The objective of the first set of experiments is to demon-
strate the effectiveness of the proposed technique to prevent
SQL injection attacks. We ran the the attack suite and de-
tect by SQLProb, which can achieve 100% detection rate for
all the attacks in the test suite.

The objective of the second set of experiments is to eval-
uate the performance of SQLProb. The first performance
metric is the response time per web request. For each web
request sent to the application, we measure the web appli-
cation’s original response time, the response time only with
proxy, and the response time with SQLProb. All the re-
sults have 95% confidence interval, which are shown in Fig-
ure 6. Clearly, for different application, the proxy only intro-
duces reasonable delay, which ranges from 16.7%(Portal)
to 25.7% (Events). For every request, the prevention en-
gine had varying delays ranging from 59.5%(Empldir) to

2058



0.2 T
I Original -
[ Mysql Proxy only]
|| C__IsQLProb

Query Response Time(s)
o
[
T

Portal

Events

Bookstore Classifield Empldir

Figure 6: The response time

181.3%(Portal). The delay of our prevention engine mainly
attributed to query alignment, parse tree generation, and
user input validation procedure e.g., most queries collected
by Portal at training phase are very long strings. Due to
the nature of Needleman-Wunsch algorithm, the incoming
query must take longer time to align with the collected long
queries in order to determine its prototype query. Refin-
ing optimization to reduce the alignment time comprises an
interesting future direction.

The second performance metric is the resource usage, such
as CPU usage. Figure 7 demonstrates the CPU usage over
time for the web applications. All the results have 95%
confidence interval. The results clearly demonstrate that
SQLProb demands much less computational resource than
Mysql Proxy. It only takes 20.9% to 54.2% CPU usage of
which taken by Mysql Prozxy. Clearly, SQLProb works faster
than Mysql Proxy in processing the incoming queries.

5. RELATED WORK

SQL injection attacks have researched in depth, resulting
in a number of protection techniques that can be broadly
categorized as: input validation, static analysis , learning-
based prevention, and dynamic prevention approaches. We
compare ours with each of these categories.

Input Validation Because the root cause of SQLIAS is
the intermingling of data and control code, improper input
validation accounts for most security problems in database
and web applications. Many input validation approaches
are signature-based, resulting in incomplete input valida-
tion routines introducing false alerts. In [19, 20], a human-
developed security- policy description language(SPDL) spec-
ifies and enforces user input constraints by analyzing and
transforming HTTP requests/responses to enforce the spec-
ified policy. This approach is human-based, and requires
developer to know which data and pattern filter to apply to
the data. PowerForms [18] and Commercial tools, such as
AppsShield [32] and InterDo [35] provide the similar method-
ology.

The common weakness of these techniques are: they have
no insight on the structure of the generated queries, and
therefore, may still admit bad inputs. In addition, they ig-
nore the fact that the original user input may subject to ma-
nipulation and transformation, which may eventually defeat

CPU Usage(%)

25

I Wget
[ Mysql Proxy

[ 1SQLProb
20 b

i
&
T
I

=
(=]
T
I

Portal Events

Bookstore Classifield

Empldir

Figure 7: The CPU usage

the effectiveness of this approach. Our approach is compli-
mentary to most of the existing input validation approaches.
In addition, we avoid the complicated steps to trace the user
input string manipulation throughout the application. Fur-
thermore, compare with some products claim to have the
proxy-alike capability of intercepting all incoming queries
and blocking the suspicious ones [42, 40, 41], our approach
does not require specifying any signature or rule for known
attacks.

Static Analysis To guarantee security, [6, 7, 8, 26]
perform static analysis over the entire application’s source
code to ensure that every piece of input is subject to an
input validation check before being incorporated to a query.
However, this approach requires the entire source code of
the application, while our approach is a black-box based
approach that requires no source code for applications and
databases.

Our work is closely related to the recent work of CAN-
DID [5], which dynamically mines programmer intended query
structure on any user input. While it is an effective ap-
proach, it requires extra instrumentation to transform the
web application code, usually tied to a specific program-
ming language. Moreover, there is no guarantee that the
byte code transformation process is error-free, and will not
introduce any potential vulnerabilities. Furthermore, byte
code transformation is expensive and may negatively impact
the availability of the web applications.

Learning-based Prevention A set of learning-based
approaches have been proposed to learn all the intended
query structure statically [17] or dynamically [2, 22]. The
effectiveness of detection largely depends on the accuracy of
the learning algorithms. Comparing with this category of
approaches, our approach demonstrates at least two advan-
tages. First, our approach neither require any learning algo-
rithm, nor limited to the number of collected queries. Sec-
ond, our approach validates the user input within the syn-
tactic structure of generated query, which more efficiently
reveals the syntactic meaning of the user input.

Dynamic Prevention Dynamic tainting approaches [14,
16, 15] taint the input strings and track those taints along
the information flow of a program. All of them require not
only the source code of the entire application, but also the
collaboration of external libraries.

2059



Many recent work [3, 1, 4], explicitly mark the user input
data by using metadata. Although they all indeed work
efficiently, it is widely believed that the metadata intro-
duces many disadvantages, such as changing the semantics
of the original program, and requiring metadata preserva-
tion functions throughout the application, which is almost
impossible in an automatic manner [5]. In contrast, our ap-
proach is a complete black-box approach that requires no
source code of web applications. SQLrand [13] leverages
secret keys, while SMask [24] uses keyword mask to ran-
domize and de-randomizes every SQL keyword through a
proxy filter before passing the query to the database. Thus,
the injected commands will cause a syntactic failure after
passing to the proxy filter. This approach has immedi-
ate drawbacks: SQLrand requires extra efforts to rewrite
all the “plain-text” queries in the web applications to the
“randomized” ones. In addition, the security of the above
approaches depends on the secret key, which is possibly be
compromised by brute force attacks. Furthermore, this tech-
nique “decrypt” SQL instructions throughout the applica-
tions, which imposes tremendous overheads. In comparison,
our approach does not require any secret key. Our approach
has a different purpose by using the proxies for the align-
ment purpose.

6. CONCLUSION

We have presented SQLProb, a novel online and adaptive
detection system against SQLIAs. SQLProb employs dy-
namically user input extraction and analysis taking into con-
sideration the context of query’s syntactic structure. Unlike
current protection techniques, our approach is fully modu-
lar and does not require access to the source code of the
web applications or the database. In addition, our system
is easily deployable to existing enterprise environments and
can protect multiple front-end web applications without any
modifications. To measure the performance and overhead of
our technique, we developed a prototype of SQLProb. Our
experimental results indicate that we can achieve have high
detection rate with reasonable performance overhead mak-
ing our system ideal for environments where software or ar-
chitecture changes is not an economically viable option.

7. ACKNOWLEDGEMENTS

We thank William Halfond and Alex Orso for providing
SQL injection application testbed. We would also like to
thank Xuxian Jiang for providing useful comments on an
early version of the paper. Finally, we thank anonymous
reviewers for their insightful comments and suggestions.

8. REFERENCES

[1] T. Pietraszek, C. Vanden Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Proceedings of the International
Symposium on Recent Advances in Intrusion
Detection(RAID), pages 124-145, 2005.

F. Valeur, D. Mutz, and G. Vigna. A learning-based
approach to the detection of sql attacks. In
Proceedings of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment
(DIMVA), pages 123140, 2005.

Z. Su, and G. Wassermann. The essence of command
injection attacks in web applications. In Proceedings of

2060

the Symposium on Principles of Programming
Languages(POPL), pages 372382, 2006.

G. Buehrer, B. W. Weide, and P. Sivilotti, Using
parse tree validation to prevent sql injection attacks.
In Proceedings of the Fifth International Workshop on
Software Engineering and Middleware(SEM), 2005.

S. Bandhakavi, P. Bisht, P. Madhusudan, and V.N.
Venkatakrishnan. CANDID: preventing sql injection
attacks using dynamic candidate evaluations. In
Proceedings of the 14th ACM Conference on Computer
and Communications Security(CCS) , pages 12-24,
2007.

Y. Xie, and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In Proceedings of
the 15th USENIX Security Symposium, pages 179192,
2006.

V. Livshits, and M. Lam. Finding security
vulnerabilities in Java applications with static
analysis. In Proceedings of the 14th USENIX Security
Symposium, August 2005.

M. Lam, J. Whaley, V. Livshits, M. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program
analysis as database queries. In Proceedings of the
ACM Principles of Database Systems(PODS), June
2005.

M. Martin, V. Livshits, and M. Lam. Finding
application errors using PQL: a program query
language. In Proceedings of the 20th Annual ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, San Diego,
California, October 2005.

D. Scott and R. Sharp. Abstracting application-level
web security. In Proceedings of the World Wide
Web(WWW), pages 396407, 2002.

Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S.
Kuo. Securing web application code by static analysis
and runtime protection. In Proceedings of the
Thirteenth International World Wide Web(WWW),
pages 40-52, New York, May 2004.

W. Halfond, J. Viegas, and A. Orso. A Classification
of SQL injection attacks and countermeasures. In
Proceedings of the International Symposium on Secure
Software Engineering(SEEE), March 2006.

S. Boyd and A. Keromytis. SQLrand: Preventing SQL
injection attacks. In Proceedings of the 2nd Applied
Cryptography and Network Security(ACNS), pages
292302, 2004.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In Proceedings of
the 20th IFIP International Information Security
Conference(SEC), pages 295-308, 2005.

W. Halfond, A. Orso. and P. Manolios. Using positive
tainting and syntax-aware evaluation to counter SQL
injection attacks. In Proceedings of the 14th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), pages 175185, 2006.

W. Xu, . S. Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In Proceedings of the 15th
USENIX Security Symposium, pages 121136, 2006.
[17] W. Halfond, and A. Orso. AMNESIA: analysis and

[15]

[16]



[24]

[25]

[29]

[30]

31]

monitoring for NEutralizing SQL-injection attacks, n
Proceedings of the IEEE and ACM International
Conference on Automated Software Engineering(ASE),
2005.

C. Brabrand, A. Mller, M. Ricky, and M. I.
Schwartzbach. Powerforms: Declarative client-side
form field validation. In Proceedings of the World
Wide Web(WWW), 2000.

D. Scott and R. Sharp. Abstracting application-level
web security. In Proceedings of the World Wide
Web(WWW), 2002.

D. Scott and R. Sharp. Specifying and enforcing
application-level web security policies. In IEEFE
Transactions in Knowledge and Data Engineering
(TKDE), 15(4):771.783, 2003.

D. Balzarotti, M. Cova, V. Felmetsger and G. Vigna.
Multi-module vulnerability analysis of web-based
applications. In Proceedings of the 14th ACM
Conference on Computer and Communications
Security(CCS), pages 25-35, 2007.

S. Lee, W. Low, P. Wong. Learning fingerprints for a
database intrusion detection system. In Proceedings of
the 7th European Symposium on Research in
Computer Security(ESORICS), pages 264-280, 2002.
Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, Y.
Takahama. Sania: Syntactic and semantic analysis for
automated testing against SQL injection. In
Proceedings of the 23rd Annual Computer Security
Applications Conference(ACSAC), pages 107-117,
2007.

M. Johns, C. Beyerlein. SMask: Preventing Injection
Attacks in Web Applications by Approximating
Automatic Data/Code Separation. In Proceedings of
the 22nd ACM Symposium on Applied Computing
(SAC), Seoul, Korea, March 2007.

R. Riley, X. Jiang, D. Xu. An Architectural Approach
to Preventing Code Injection Attacks. In Proceedings
of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and
Networks(DSN), pages 30-40, 2007.

C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A
Static Analysis Tool for SQL/JDBC Applications. In
Proceedings of the 26th International Conference on
Software Engineering (ICSE), pages 697698, 2004.

W. Cook, and S. Rai. Safe query objects: statically
typed objects as remotely executable queries. In
Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 97106, 2005.

Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and
Y. Takahama. Sania: Syntactic and Semantic Analysis
for Automated Testing against SQL Injection. In
Proceedings of the 23rd Annual Computer Security
Applications Conference (ACSAC ’07), Miami Beach,
Florida , 2007.

X. Jiang, and D. Xu: Profiling Self-Propagating
Worms via Behavioral Footprinting, In Proceedings of
the 4th ACM Workshop on Recurring Malcode,
Fairfax, VA, November 2006

T.0O.Fundation. Top ten most critical web application
vulnerabilities, 2005.
http://wuw.owasp.org/documentation/topten.html.
R. Durbin, S. Eddy, and A. Krogh. Biological

2061

sequence analysis. Cambridge University Press, [ISBN:
0521629713, 1998.

Sanctum Inc. AppShield 4.0 Whitepaper, 2002.
http://www.sanctuminc.com.

MySQL Proxy Project Wiki.
http://forge.mysql.com/wiki/MySQL_Proxy.

SPI Dynamics. Web application security assessment.
SPI Dynamics Whitepaper, 2003.

Kavado, Inc. InterDo Vers. 3.0, 2003.

SQLBrute - SQL Injection brute force tool.
http://www.darknet.org.uk/2007/06/
sqlbrute-sql-injection-brute-force-tool/.
JavaCC Project. https://javacc.dev. java.net/.
JJTree.
https://javacc.dev.java.net/doc/JJTree.html.
Wget http://ftp.gnu.org/gnu/vwget/.

McAfee Entercept Database Edition. http://www.
anidirect.com/products/intrusionprevention/ds
entercept_databaseedition.pdf.

GreenSQL. http://www.greensql .net/.

SANA Security’s Primary Response.
http://wuw.sanasecurity.com/common/files/PR3.
O_datasheet.pdf.



