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Abstract
We describe an ongoing project, the deployment of a modu-
lar checker to statically find and prevent every buffer over-
flow in future versions of a Microsoft product. Lightweight
annotations specify requirements for safely using each buffer,
and functions are checked individually to ensure they obey
these requirements and do not overflow. Our focus is on the
incremental deployment of this technology: by layering the
annotation language, using aggressive inference techniques,
and slicing warnings by checker confidence, teams must pay
only part of the cost of annotating a program to achieve
part of the benefit, which provides incentive for further an-
notation. To date over 400,000 annotations have been added
to specify buffer usage in the source code for this product,
of which over 150,000 were automatically inferred, and over
3,000 potential buffer overflows have been found and fixed.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification

General Terms: Reliability, Security

Keywords: buffer overflows, modular analysis, annotation
design, annotation inference

1. INTRODUCTION
We describe an ongoing project, the deployment of a mod-

ular checker to statically find and prevent every buffer over-
flow in future versions of a Microsoft product. Lightweight
annotations specify requirements for safely using each buffer,
and functions are checked individually to ensure they obey
these requirements and do not overflow. To date over 400,000
annotations have been added to specify buffer usage in the
source code for this product, of which over 150,000 were
automatically inferred, and over 3,000 potential buffer over-
flows have been found and fixed.

Our checker is an integral part of the development process
for this product. Developers receive immediate feedback
about potential overflows in their code as part of the build
process, and identified issues must be fixed before code can
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be added to mainline branches. Our checker is only one of
many tools used to identify security issues. In combination
with testing and runtime mitigation, these provide a robust
defense against security exploits.

The key lesson from our experience has been the need to
focus on incremental deployment of annotation-based check-
ing. An all-or-nothing approach to deployment is incredibly
risky, requiring huge initial effort for potentially minimum
payoff. Incremental deployment allows teams to pay part of
the cost of annotating to realize part of the benefit, which
provides incentive for further annotation. Our system has
been engineered from the ground up to provide incremental
benefit for incremental cost. The principal components of
our system are:

• SAL, an annotation language (Section 3). A language
sufficiently general to specify any buffer interface will
be needlessly complicated for simple interfaces. We
layer the annotation language to reduce the startup ef-
fort needed to learn the language and understand each
annotation. A base set of primitive annotations allow
for general but verbose interface specifications. These
primitives compose into high-level annotations, which
compactly describe the most common interfaces. To
annotate the vast majority of a code base, developers
need only the high-level annotations, and learn to use
the primitives only as necessary.

• SALInfer, an annotation inference engine (Section 4).
Inference can dramatically reduce the effort needed to
annotate legacy code. We opt for an aggressive and
unsound inference, which can infer many correct anno-
tations at the expense of inferring some false ones. In-
ference algorithms are fully customizable Datalog pro-
grams, allowing extensive code base specific tuning to
maximize accuracy and coverage.

• ESPX, a modular overflow checker (Section 5). The
checker must find overflows accurately in any anno-
tated, partially annotated, or unannotated code base.
This is accomplished by slicing results by confidence,
presenting only the warnings most likely to correspond
to overflows. While false negatives, or missed over-
flows, are possible (our tool is used alongside addi-
tional checkers and runtime mitigation techniques, pro-
viding additional defense against missed overflows),
as annotations are added, the level of confidence in
warnings increases, and the number of false negatives
decrease. Fully annotated code is comprehensively
checked for overflows.
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1: void ProcessString(wchar_t *str)
2: {
3: wchar_t buf[100];
4: wchar_t *tmp = &buf;
5:
6: int len = wcslen(str) + 1;
7: if (len > 100)
8: Alloc(&tmp, len * sizeof(wchar_t));
9:

10: StringCopy(tmp, str, len);
11: ...
12: }
13:
14: void StringCopy(wchar_t *dst, wchar_t *src, int size)
15: {
16: wchar_t *dtmp = dst, *stmp = src;
17:
18: for (int i = 0; i < size - 1 && *stmp; i++)
19: *dtmp++ = *stmp++;
20: *dtmp = 0;
21: }
22:
23: void Alloc(void **buf, int size)
24: {
25: *buf = malloc(size);
26: }

Figure 1: Example application

In Section 2 we begin with a brief example of the benefits
and problems with modular checking. In Sections 3, 4, and 5
we describe the previous components in detail. In Section 6
we evaluate how well our system works in practice, and in
Section 7 we discuss related work.

2. EXAMPLE
Consider how the program in Figure 1 is manually re-

viewed to be certain it is free from buffer overflows. Func-
tion StringCopy has an implicit interface for its parameter
dst, requiring it to have a capacity of at least size elements.
When reviewing ProcessString, we make sure that, when
passed to StringCopy on line 10, tmp is at least len elements
long. As long as StringCopy obeys its interface and writes at
most len elements to tmp, ProcessString will not overflow.

StringCopy performs a character-by-character copy of src

into dst, ensuring that the result is zero terminated. When
reviewing StringCopy, we make sure that at most size ele-
ments are written to dst. As long as the interface is obeyed
by its callers, StringCopy will not overflow.

Now, suppose the allocation size on line 8 is changed to
simply len. Then ProcessString may call StringCopy with a
buffer only len / sizeof(wchar t) elements long, and since
ProcessString does not obey the interface on StringCopy,
StringCopy may overflow. Alternatively, suppose the condi-
tion on line 18 is changed to simply *stmp. Then StringCopy

may write more than len elements to dst, and since StringCopy

does not obey its own interface, ProcessString may overflow.
Even very thorough manual review will miss many over-

flows such as these, and static checking is necessary for com-
prehensive safety guarantees. Effectively performing this
checking requires knowledge of the implicit interface be-
tween ProcessString and StringCopy, and an understanding
of how each function obeys that interface. A checker local
to each modified function will not learn the interface, while
a checker global to the entire code base will not understand
the functions well enough without sacrificing scalability.

Where Level Property
pre ε notnull

post deref eread(el)

bread(el)

zread

ewrite(es)

bwrite(es)

zwrite

Table 1: Primitive annotation table

Usage Optional Initialized Capacity
in ε ε ε
out opt ecount(el) ecap(es)

inout bcount(el) bcap(es)

ret zterm

dret

Table 2: Buffer annotation table

Modular checking offers a solution. We use annotations to
make the interface on StringCopy explicit in the code (shown
in Figure 3). The modified code is locally checked against
these interfaces, and if it passes we guarantee it introduces
no new overflows. A modular checker can precisely and com-
prehensively check code bases for overflows. The drawback
is the need for annotations. Code will only be annotated
if there is demonstrable benefit to doing so. As such, we
provide checking benefit for unannotated and partially an-
notated code bases, and ease the annotation process through
effective inference and a clean, usable annotation language.

3. ANNOTATION LANGUAGE
We use annotations to describe requirements on buffer

pointers (in C, all pointers reference buffers and may over-
flow; all pointers must then be annotated). For each buffer
pointer passed into or returned by each function, what is
the function’s interface with the buffer, i.e. what are the
assumptions and guarantees the function makes about the
buffer’s length and contents?

Design of the annotation language has two chief goals,
expressiveness and conciseness.

• Expressive annotations accurately describe a wide va-
riety of buffer interfaces. If a buffer interface cannot
be accurately annotated, checking the correctness of
that function and its callers requires the interface to
be changed. This is often impossible or impractical
due to the need for backward compatibility, and even
if possible, presents a huge cost to developers.

• Concise annotations succinctly describe buffer inter-
faces. Verbose annotations have several costs: indi-
vidual annotations will be difficult to understand and
difficult to write, and, most importantly, easy to get
wrong. Investment in annotating a code base is largely
wasted if the annotations are frequently incorrect and
inconsistent.

Expressiveness and conciseness are, unfortunately, often
at odds with each other. We achieve a combination of ex-
pressiveness and conciseness by layering the annotation lan-
guage. An expressive layer of primitive annotations describe
primitive properties held by particular buffers at function

233



entry or exit. Several primitive annotations are necessary
to completely describe most interfaces. A second, concise
layer of buffer annotations describe all common interfaces.
Only one buffer annotation is required for each interface,
simplifying and reducing errors in the annotation process.
In practice, buffer annotations are used to describe all ap-
plicable interfaces. For more complicated cases, primitive
annotations are effective.

3.1 Primitive Annotations
Each primitive annotation describes a particular property

that must be held by particular buffer pointers at either en-
try to or exit from the function. These properties form a
natural extension of the pointer’s type, and thus we rep-
resent primitive annotations as qualifiers on the types of
pointer parameters and return values. Types are an ex-
tremely succinct way of specifying interfaces, and one with
which developers are already familiar. We present the full
grammar for primitive annotations here. Example annota-
tions are shown in Figure 2, and discussed in Example 1.

The primitive properties we are interested in are NULL-
ness and the readable and writable extents of each pointer.
Memory is initially writable, and made readable by initializ-
ing it. Readable and writable extents are permissions: they
may not describe the entire buffer (for example, only part
of a buffer may be marked as writable), and they may not
describe all permissions which are held (for example, a func-
tion may only have read permission for a buffer, even if its
caller also has write permission).

The possible primitive annotations are given by Table 1.
Each column in the table identifies one aspect of a primitive
annotation, and any primitive annotation may be formed
by choosing one value from each column (ε indicates an
empty value) and combining them together using ‘ ’ as a
separator. For example, choosing pre and eread(el) yields
‘ pre eread(el)’. The meaning of each column and value is
as follows:

• Where: Which point the property holds at.

– pre: At function entry.

– post: At function exit.

• Level: Which pointer v the property holds for, relative
to the annotated parameter/returned pointer p.

– ε: The property holds for p.

– deref: The property holds for all pointers at ∗p.

• Property: Which property holds for the pointer v.

– notnull: v is not NULL.

– eread(el): v is NULL or readable to el elements.
Expressions e are arithmetic expressions over con-
stants, parameters, and parameter dereferences.

– bread(el): v is NULL or readable to el bytes.

– zread: v is NULL or readable to a zero terminator.

– ewrite(es): v is NULL or writable to es elements.

– bwrite(es): v is NULL or writable to es bytes.

– zwrite: v is NULL or writable to a zero terminator.

As each primitive annotation is a well-defined precondi-
tion or postcondition on the function, any combination of
primitive annotations on a pointer leads to a checkable in-
terface.

void ProcessString(
__pre_notnull __pre_zread wchar_t *str);

void StringCopy(
__pre_notnull __pre_ewrite(size) __post_zread wchar_t *dst,
__pre_notnull __pre_zread wchar_t *src,
int size);

void Alloc(
__pre_notnull __pre_ewrite(1) __post_eread(1)
__post_deref_notnull __post_deref_bwrite(size) void **buf,
int size);

Figure 2: Primitive annotations for Figure 1

void ProcessString(__in_zterm wchar_t *str);

void StringCopy(__out_zterm_ecap(size) wchar_t *dst,
__in_zterm wchar_t *src,
int size);

void Alloc(__out __dret_bcount_bcap(0,size) void **buf,
int size);

Figure 3: Buffer annotations for Figure 1

Example 1. Consider again the application in Figure 1.
Figure 2 shows the primitive annotations for each pointer
used by each function.

ProcessString takes a string str, copies it into a scratch
buffer and does not write to it. The string must be non-NULL
and readable (but not writable) up to a zero terminator. The
correct annotations are pre notnull and pre zread.

StringCopy takes a string src and copies as much of it into
dst as possible, not exceeding size characters and zero ter-
minating dst. src is annotated as pre notnull and pre zread

as before. dst must be a non-NULL buffer with size elements,
writable but not readable at entry, and must be initialized
with a zero terminated string at exit. The correct annota-
tions are pre notnull, pre ewrite(size), and post zread.

Alloc returns an uninitialized buffer with size bytes by
assigning to *buf. Both buf and *buf must be annotated.
buf must be non-NULL and will filled in with a single value.
The correct annotations are pre notnull, pre ewrite(1),
and post eread(1). *buf will be filled in with a non-NULL
buffer with size uninitialized bytes. The correct annotations
are post deref notnull and post deref bwrite(size). �

The chief drawback of using primitive annotations is the
large number that may be required for simple interfaces. In
Figure 2, for example, three annotations are required simply
to specify that parameter buf of Alloc is filled in with one
value. An effective annotation system must describe such
simple interfaces clearly and concisely. To accomplish this,
we use buffer annotations.

3.2 Buffer Annotations
Each buffer annotation fully describes a buffer interface,

and includes all properties needed to safely use a buffer
pointer. As with primitive annotations, buffer annotations
are represented as type qualifiers. We present the full gram-
mar for buffer annotations here. Example annotations are
shown in Figure 3, and discussed in Example 2.

The main concept which allows for concise interface de-
scription is usage. Buffer pointer parameters are naturally
either in, out, or inout, according to whether they move data
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into or out of the function, and this abstraction is somewhat
clumsy to encode with preconditions and postconditions.

The possible buffer annotations are given by Table 2, and,
as with primitive annotations, individual buffer annotations
are formed by choosing one value from each column and
combining them. The meaning of each column and value is
as follows:

• Usage: How the buffer is used by the function.

– in: Passed in and read from.

– out: Passed in and written to.

– inout: Passed in and read/written to.

– ret: Returned via return value.

– dret: Returned via an out parameter.

• Optional: Whether the buffer pointer may be NULL.

– ε: Must be non-NULL.

– opt: May be NULL.

• Initialized: How much of the buffer is initialized. This
is a lower bound on the initialized amount (more could
be initialized, but not less). The initialized length may
change during execution for out and inout buffers. For
out parameters, only the initialized length at exit is
described. For inout parameters, the initialized length
at both entry and exit is described.

– ε: One element.

– ecount(el): el elements.

– bcount(el): el bytes.

– zterm: Up to the first zero terminator.

• Capacity: The total allocated capacity of the buffer.
This is a lower bound on the capacity.

– ε: The initialized amount (at function entry for
inout buffers).

– ecap(es): es elements.

– bcap(es): es bytes.

A total of 120 buffer annotations may be formed from
Table 2, which collectively describe the simplest and most
common buffer interfaces in use.

Example 2. Consider again the application in Figure 1.
For each pointer parameter and return value in this appli-
cation, we must pick appropriate values from each column
of Table 2, combining them to form the correct annotation.

ProcessString takes a string str, copies it into a scratch
buffer and does not write to it. The string is then in, and
since it must be zero terminated, is also zterm. The correct
annotation is in zterm.

StringCopy takes a string src and copies as much of it
into dst as possible, not exceeding size characters and zero
terminating dst. src is in zterm as before. dst is out,
zterm when initialized at exit, and ecap(size) since up to
size characters may be written. The correct annotation is
out zterm ecap(size).
Alloc returns an uninitialized buffer with size bytes by

assigning to *buf. buf is simply out. *buf is returned
through buf, and thus dret, has bcount(0) bytes initialized
but bcap(size) bytes allocated, so the correct annotation is
dret bcount bcap(0,size). �

Each buffer annotations is defined as a set of primitive an-
notations (in our implementation, each buffer annotation is
a C macro expanding to the corresponding primitives). For
example, out is equivalent to pre notnull, pre ewrite(1),
and post eread(1). This provides a clear definition of each
buffer annotation and narrows the set of annotations the
checker must understand to simple preconditions and post-
conditions.

A few buffer annotations cannot be represented with prim-
itive annotations, and cannot be checked for correctness. In
particular, out zterm annotates a buffer for which the func-
tion is given carte blanche to write a string of any size. We
disallow these unsafe buffer annotations; calls to functions
which require them (well-known examples include the C
standard library functions strcpy, strcat, gets, and sprintf)
are being removed through a separate process not described
here, and are ignored by our checker. Many overflows occur
due to functions with unsafe interfaces; for example, 5 of
the 14 overflows studied in [18] are due to incorrect usage of
strcpy and sprintf.

4. ANNOTATION INFERENCE
Comprehensively checking legacy code for overflows re-

quires that code to be annotated. For large code bases, the
cost of legacy annotation can be very high. Annotation in-
ference offers a way to avoid much of this cost. Rather than
requiring manual annotation of significant portions of the
code base before it can be checked, we annotate as much as
possible automatically, and check the code for overflows and
incorrect annotations.

The chief requirement for an inference tool is scalability.
Legacy code bases may contain tens of millions lines of code,
and inference tools are useless for code bases they cannot
generate results for. Beyond scalability, inference effective-
ness is measured by its accuracy and coverage.

• Accuracy is the fraction of inferred annotations that
are correct. Incorrect annotations are caught by the
checker, but the error messages can be confusing and
the developer cost of fixing an incorrect annotation is
often higher than that of adding the correct annotation
initially.

• Coverage is the fraction of correct annotations that are
inferred. Incomplete annotations have minimal impact
on checker effectiveness, and require significantly more
developer effort to fully annotate the code base.

Under the fixed requirement for scalability, accuracy and
coverage are at odds with each other. More accurate tech-
niques infer less information, compromising coverage, and
higher coverage techniques infer more information, compro-
mising accuracy. Both can be improved through more pre-
cise analysis, but scalability is then impacted. To optimize
these trade/offs, we use a fully customizable inference en-
gine, which can be rapidly tuned to generate effective results
for particular code bases and kinds of annotations.

To infer buffer annotations, we infer each aspect (usage,
NULL-ness, initialized length and capacity) independently,
aggressively and unsoundly propagating states, particular
properties holding of particular values at particular program
points, through the code base. Propagation rules are fully
customizable, controlled by identifying source code patterns
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using rules which are themselves fully customizable. Con-
straining or removing rules decreases the amount of inferred
information, increasing accuracy, while expanding or adding
rules increases the amount of inferred information, increas-
ing coverage.

Example 3. Consider again the application in Figure 1.
Parameter dst for StringCopy needs the buffer annotation
out zterm ecap(size). This encapsulates four pieces of in-

formation: dst is only written to, must be non-NULL, will be
zero terminated, and must be at least size elements long.
Figure 4 shows how each of these properties may be sepa-
rately inferred and combined into the correct annotation.

Each out state indicates a value that may be written to
later in the function. StringCopy writes to dtmp on line 19
(and 20), so out(dtmp) is added beforehand at program point p3.
We propagate this backwards through the assignment on
line 16 from dst to dtmp, adding out(dst) at the entry point p2

of StringCopy. From this, we infer that dst is an out param-
eter. (If dst was also read from, we would also infer in(dst)
at p2 to yield inout).

Each req state indicates a value that is required to be non-
NULL; it may be accessed later in the function without being
checked against NULL first. dtmp is accessed on line 19, so
req(dtmp) is added at p3. Since there is no prior guard against
NULL, we propagate back to p2 and infer that StringCopy

requires dst to be non-NULL.
Each zterm state indicates a value that may be zero termi-

nated later in the function. StringCopy writes a zero to dtmp

on line 20. As dtmp is also a string type, we add zterm(dtmp)
at p4, propagate this back to p2 and infer that StringCopy

should zero terminate dst.
Each cap state indicates buffer-size pairs of values, with a

size kind of either ‘e’ (elements) or ‘b’ (bytes). On line 25,
Alloc copies into buf a malloc’ed buffer with size bytes.
cap(*buf,size,‘b’) is added at p5, and propagated through
the call on line 8 to cap(tmp,len,‘e’) at p1, changed to an
element count by the multiplication len * sizeof(wchar t).
We propagate through the call on line 10 to cap(dst,size,‘e’)
at p2, and infer that StringCopy expects dst to be size ele-
ments long. �

Note in Example 3 that the propagation method for buffer-
size relationships is unsound; at the call on line 10 it is
known that tmp and len are a buffer-size pair, but there is
no guarantee at entry to StringCopy that this always holds.
Observing the lengths of buffers actually passed to a func-
tion is a simple and reliable method for guessing the required
length, and such leaps of logic are crucial for effective infer-
ence. However, this process may break down on certain code
base specific patterns. For example, some APIs take either
Unicode or ASCII strings, depending on the value of some
flag, and the resulting path-sensitive behavior must be rec-
ognized and avoided.

We accomplish this through customization, tuning the
inference to behave effectively for the targeted code base.
Each inference algorithm is simply a Datalog program, and
the inference engine is a custom Datalog solver, built un-
der the requirements of performing interprocedural analysis
over millions of lines of code.

Each inference algorithm uses two input predicates prop
and edge to specify, respectively, all raw syntax and con-
trol flow information for the targeted code base. The al-
gorithm rules then iteratively build up high level semantic

1: void ProcessString(wchar t *str)

7: if (...)

8: Alloc(&tmp, len * sizeof(wchar t));

10: StringCopy(tmp, str, len);

14: void StringCopy(wchar t *dst, wchar t *src, int size)

16: char *dtmp = dst, ...;

18: for (...)

19: *dtmp++ = ...;

20: *dtmp = 0;

23: void Alloc(void **buf, int size)

25: *buf = malloc(size);

p1

p2

p3

p4

p5

out(dtmp)

out(dst)

req(dtmp)

req(dst)

zterm(dtmp)

zterm(dst)

cap(∗buf,size,‘b’)

cap(tmp,len,‘e’)

cap(dst,size,‘e’)

Figure 4: Inferred properties for Figure 1

information from this: pattern rules derive semantic ‘facts’
about particular syntax trees, state rules derive and prop-
agate facts about the program state at particular program
points, and output rules derive annotations, facts about the
code base itself.

Example 4. An inference algorithm for buffer/size rela-
tionships is given in Figure 5. Buffer information is seeded
at malloc call sites and propagated forward and backward
through assignments, using the feasible relationships at func-
tion entry points to infer capacity annotations.

Rules 1-7 identify syntax tree patterns for buffer propa-
gation. Patterns are constructed using the prop predicate,
which identifies the value of a named property of a syntax
tree t. A fixed set of property names allow inference algo-
rithms to extract all available information. For example,
rule 1 identifies malloc call sites which return buffer b with
size s. Property ‘kind’ picks out the base kind of the tree
(‘call’), while ‘callee’ identifies the callee, ‘retval’ identifies
the return value, and ‘arg0’ identifies the first argument.

Rules 8-16 propagate cap states through the target code
base. States are constructed using (optionally) other states,
patterns and the edge predicate, which identifies forward
control flow edges between program points p0 and p1, picking
out the syntax tree t for the action taken over that edge.
Rule 8 seeds cap by deriving states after every malloc site.
Rules 9-12 propagate cap forward across copies of the buffer
or size, and backward across assignments into the buffer
or size, while rules 13-14 propagate forward and backward
across assignments that scale the size between an element
or byte count. Finally, rules 15-16 propagate cap across all
edges that do not kill (assign into) either the buffer or size.

Rule 17 infers fcap output annotations, which pick out
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Predicates

input prop(t,x,v) Property x of syntax tree t is value v.
input edge(p0,p1,t) Program points p0 and p1 are connected by a control flow edge with syntax tree t.
pattern malloc(t,b,s) t is a call to malloc returning buffer b with size s.
pattern assign(t,l,r) t is an assignment from r to l.
pattern scale(t,v) t is a multiplication of v by some value.
pattern sassign(t,l,r) t is an assignment from a scaled r to l.
pattern nokill(t,b,s) t is a syntax tree that does not erase the value of b or s.
pattern entry(t,f) t is the syntax tree for the entry edge of function f . Functions have unique entry and exit flow edges.
state cap(p,b,s,k) At program point p, buffer b has size s with kind k. Kinds are either ‘e’ (elements) or ‘b’ (bytes).
output fcap(f ,b,s,k) Function f takes buffer/size parameters b and s with kind k.

Pattern Rules

1. malloc(t,b,s) :- prop(t,‘kind’,‘call’),
prop(t,‘callee’,‘malloc’),
prop(t,‘retval’,b), prop(t,‘arg0’,s).

2. assign(t,l,r) :- prop(t,‘kind’,‘assign’),
prop(t,‘lhs’,l), prop(t,‘rhs’,r).

3. scale(t,v) :- prop(t,‘kind’,‘times’), prop(t,‘lhs’,v).
4. scale(t,v) :- prop(t,‘kind’,‘times’), prop(t,‘rhs’,v).
5. sassign(t,l,r) :- assign(t,l,t′), scale(t′,r).

6. nokill(t,b,s) :- ∼assign(t,b, ), ∼assign(t,s, ).

7. entry(t,f) :- prop(t,‘kind’,‘entry’), prop(t,‘func’,f).

State Rules

8. cap(p,b,s,‘b’) :- edge( ,p,t), malloc(t,b,s).

9. cap(p1,l,s,k) :- cap(p0,r,s,k), edge(p0,p1,t), assign(t,l,r).
10. cap(p1,b,l,k) :- cap(p0,b,r,k), edge(p0,p1,t), assign(t,l,r).
11. cap(p0,r,s,k) :- cap(p1,l,s,k), edge(p0,p1,t), assign(t,l,r).
12. cap(p0,b,r,k) :- cap(p1,b,l,k), edge(p0,p1,t), assign(t,l,r).

13. cap(p1,b,l,‘b’) :- cap(p0,b,r,‘e’), edge(p0,p1,t), sassign(t,l,r).
14. cap(p0,b,r,‘e’) :- cap(p1,b,l,‘b’), edge(p0,p1,t), sassign(t,l,r).

15. cap(p1,b,s,k) :- cap(p0,b,s,k), edge(p0,p1,t), nokill(t,b,s).
16. cap(p0,b,s,k) :- cap(p1,b,s,k), edge(p0,p1,t), nokill(t,b,s).

Output Rules

17. fcap(f ,b,s,k) :- cap(p,b,s,k), edge( ,p,t), entry(t,f).

Figure 5: Datalog program for inferring buffer/size relationships

buffer/size parameter pairs taken by functions in the code
base. These are simply those cap states feasible at entry to
the functions. �

5. MODULAR CHECKER
Given the buffer interfaces in a code base, checking the

safety of each function f with callees g is, in the end, fairly
straightforward: assuming f ’s preconditions and each g’s
postconditions hold, is each access safe and are f ’s postcon-
ditions and each g’s preconditions guaranteed to hold? The
chief difficulty arrives when, due to incomplete information,
we cannot be sure that the code is definitely safe, nor that
it is definitely unsafe.

The checker’s goal is to miss no overflows in passed code.
For a property as pervasive and complex as memory usage,
this goal is not immediately realizable on an existing code
base. To yield useful results on unannotated or partially
annotated code bases, the checker must be confident that
reports are genuinely errors. We briefly describe the checker
algorithm here. In Section 5.1 we describe how confidence
tunes the checker to the degree of annotation.

For each function, the checker performs an exhaustive
path exploration based on the RHS algorithm [12]. At each
program point, we compute the feasible sets of linear con-
straints over constant values, locations l (variables and heap
values), and pointer capacities (denoted as bcap(l)). If at a
control flow join point multiple sets of linear constraints are
feasible, they are not merged but are separately analyzed.

This reduces information loss, simplifies constraint represen-
tation, and, most importantly, allows us to easily generate
traces for developer inspection. To ensure termination, the
set of constraints is widened (made more general) according
to heuristics along loop back edges.

At function entry, constraints are generated and assumed
from the preconditions. For example, if pre bwrite(len)

holds for parameter buf, the constraint bcap(buf) ≥ len is
generated. At each dereference on a pointer location l, we
generate constraints describing whether the accessed por-
tion is in bounds, and check whether they always hold. For
example, if buf[2] is accessed and elements of buf are 2 bytes
wide, the constraint bcap(buf) ≥ 6 is checked. If this con-
straint is not guaranteed to hold, an overflow is possible.
At each function call, constraints are generated from the
callee preconditions and checked, while further constraints
are generated and assumed from the callee postconditions.
Finally, at function exit constraints are generated from the
postconditions and checked.

Example 5. Consider again the application from Fig-
ure 1. Figure 6 shows the constraints generated for a modi-
fied version of function ProcessString: the allocation size on
line 8 has been changed to len, introducing an overflow.

There are two paths through ProcessString, depending
on whether buffer tmp is stack or heap allocated at the call
to StringCopy on line 10. On path 1, tmp is stack allo-
cated. Setting tmp to &buf on line 4 generates the constraint
bcap(tmp) = 200, as buf is a 200 byte buffer. Taking the
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ProcessString path 1, string length ≤ 100

3: wchar t buf[100];

4: wchar t *tmp = &buf;

bcap(tmp) = 200
6: int len = wcslen(str) + 1;

bcap(tmp) = 200
7: assume(len <= 100);

bcap(tmp) = 200, len ≤ 100
10: StringCopy(tmp, str, len);

assert(bcap(tmp) ≥ len ∗ 2)
� bcap(tmp) = 200 = 100 ∗ 2 ≥ len ∗ 2 pass

ProcessString path 2, string length > 100

3: wchar t buf[100];

4: wchar t *tmp = &buf;

bcap(tmp) = 200
6: int len = wcslen(str) + 1;

bcap(tmp) = 200
7: assume(len > 100);

bcap(tmp) = 200, len > 100
8: Alloc(&tmp, len * sizeof(wchar t));

bcap(tmp) ≥ len, len > 100
10: StringCopy(tmp, str, len);

assert(bcap(tmp) ≥ len ∗ 2)
� bcap(tmp) = len < len ∗ 2 fail

Figure 6: Checked paths from Figure 1

false branch of the if statement on line 7 adds the constraint
len ≤ 100. At the call to StringCopy on line 10, we must
ensure that pre ewrite(size) holds for parameter dst, and
thus for the arguments that bcap(tmp) ≥ len ∗ 2. This con-
straint is implied by bcap(tmp) = 200 and len ≤ 100, so
StringCopy’s precondition is satisfied and the call is safe.

On path 2, tmp is heap allocated, with half the required
size. At the call to Alloc on line 8, we must ensure that
pre ewrite(1) holds for parameter buf, and thus for the ar-

guments that bcap(&tmp) ≥ 4, which must hold since tmp is
a stack variable. We then assume post deref bwrite(size)

for buf, adding the argument constraint bcap(tmp) ≥ len
and removing bcap(tmp) = 200. At the call to StringCopy

on line 10, we must again ensure that bcap(tmp) ≥ len ∗ 2.
If bcap(tmp) = len and len > 0 this does not hold, and since
the precondition may not be satisfied, the call is not safe
and a warning is issued. �

5.1 Checker Confidence
To prove an access safe, the checker requires knowledge

about the access external to the function and an understand-
ing of the function’s behavior with respect to the access.
With complete knowledge and sufficient understanding by
the checker, all accesses which cannot be proved safe are
likely bugs and reported as such. Where the checker has
an incomplete or imprecise model of the code, however, the
checker reports only the accesses it is most confident of being
unsafe. This opens a path to soundness: the value provided
by identifying bugs gives incentive to improve knowledge
and understanding, gradually eliminating false negatives.

External knowledge about accesses is conveyed through
the buffer interfaces annotated for each function. Deficien-
cies here are categorized as follows:

• Unannotated interfaces. Absent any knowledge of the
read and write extents for a pointer, no meaningful
constraints can be generated and the checker can say
nothing other than that it needs an annotation.

• Unannotatable interfaces. Some interfaces cannot be
completely or correctly described by primitive anno-
tations. Examples include unsafe string functions and
functions which rely on particular conditions to hold
or particular properties to hold only conditionally, as
well as interfaces on structure field pointers or global
pointers.

We are currently working to support conditional annota-
tions and annotations on structure fields and global vari-
ables, greatly reducing the number of unannotatable inter-
faces. Beyond this, the key challenge is to actually get point-
ers annotated. Since proving an access safe often requires
knowledge both of the function’s interfaces and its callee’s
interfaces, we find that incremental annotation is best done
in a targeted fashion. Particular classes of interfaces, such
as those in new code, in particular parts of the code base, or
on particular kinds of buffers (tainted buffers, string buffers,
etc.), are in turn exhaustively annotated and checked.

Even if a particular buffer interface is annotated, the checker’s
confidence that accesses on it are unsafe is determined by
how well the constraints on that access are understood by
the checker. Sources of analysis imprecision are categorized
as follows:

• Complex operations. Many program operations can-
not be precisely represented as constraints. For exam-
ple, after the statement x = y & z; we know only that
x < y and x < z. Code can be proved safe even if
it is not modelled precisely, but where the imprecision
is relevant to safety the checker will have more false
positives and degrades its confidence accordingly.

• Loop widening. Many loops can run for an unbounded
number of iterations, and to ensure checker termina-
tion constraints are widened at loop back edges. If the
loop invariants relevant to safety are retained during
widening, the code can be proved safe, but if not then
false positives increase and confidence degrades.

Accesses whose constraints cannot be modelled precisely
have lower confidence of being unsafe, and yet may be bugs.
To reason about checker imprecision, we recover dependency
information from use/mod sets for complex operations and
loop conditions. Checker warnings are then prioritized based
on the amount and nature of the imprecision involved in con-
straining the access, allowing for either minimal false posi-
tives with high priority warnings, or minimal false negatives
(excepting unannotated pointers) with all warnings. The
different warning levels we use are as follows, in decreasing
order of priority.

1. No information constraining the access is lost. If the
path containing the access is feasible, the access is
provably unsafe and may overflow.

2. Some information constraining the access is lost, but
appears unrelated to the pointer’s length. If all lost
information about the access is unrelated to the length,
and the remainder cannot be used to prove the access
safe, the access is a likely overflow.
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Count Buffer Annotation C Primitive Annotations C
240311 in 1 pre notnull pre eread(1) 4
53407 out 1 pre notnull pre ewrite(1) post eread(1) 6
29807 in opt 2 pre eread(1) 2
28735 inout 1 pre notnull pre ewrite(1) pre eread(1) 6
13567 out ecap(es) 2 pre notnull pre ewrite(es) post eread(1) 6
12907 in ecount(el) 2 pre notnull pre eread(el) 4
7560 out opt 2 pre ewrite(1) post eread(1) 4
6708 in bcount(es) 2 pre notnull pre bread(el) 4
4227 out bcap(el) 2 pre notnull pre bwrite(es) post eread(1) 6
2913 inout opt 2 pre ewrite(1) pre eread(1) 4
2756 out opt ecap(es) 3 pre ewrite(es) post eread(1) 4
2651 inout ecap(es) 2 pre notnull pre ewrite(es) pre eread(1) 6
1589 in opt ecount(el) 3 pre eread(el) 2
1302 out opt bcap(es) 3 pre bwrite(es) post eread(1) 4
998 in opt bcount(el) 3 pre bread(el) 2
739 out ecount ecap(el,es) 3 pre notnull pre ewrite(es) post eread(el) 6
682 inout bcap(es) 2 pre notnull pre bwrite(es) pre eread(1) 6
581 out opt bcount bcap(el,es) 4 pre bwrite(es) post bread(el) 4
... ... ... ... ...
413175 Overall 1.24 Overall 4.35

Table 3: Buffer and primitive annotation counts and complexity (C)

3. Some information relating the access with the pointer
length is lost. The access cannot be proved safe, but
little evidence exists that it is unsafe either.

Checker precision is improved in a targeted fashion ac-
cording to the distribution of bugs and false positives. Par-
ticular patterns of bugs are identified and handled more pre-
cisely in the checker to boost their priority, whereas particu-
lar classes of false positives are identified and handled more
precisely to prove them safe and increase the overall quality
of the warnings at that level.

6. RESULTS
We sketch the current deployment status of the annotation

language, inference, and checker over the Microsoft product.
In Sections 6.1-6.3 we gauge the effectiveness of each in turn.

Annotations are added through two main mechanisms.
First, new code must be fully annotated before being checked
in. Using concise buffer annotations, this burden is compa-
rable to that of adding types. Second, annotations are used
as quality gates, such that by certain milestones all buffers
matching certain criteria must be annotated. In total, over
400,000 annotations have been added to the product.

While the inference is run centrally to generate annota-
tions, control over annotation insertion is given to individual
developers. A tool fetches inferred annotations from a cen-
tral location, and offers them for (optional) inspection before
inserting them. Through informal surveys, we estimate that
over 150,000 annotations were inserted using this tool.

The checker is deployed on the desktop machine of every
developer working on the product, finding potential over-
flows in code within minutes of being written. All warnings
are available to developers, and all level 1 warnings (Sec-
tion 5.1) must be fixed before check-in. In total, over 3,000
have been fixed due to the checker.

6.1 Language Effectiveness
By using separate primitive and buffer annotation layers,

we seek to annotate the great majority of buffer interfaces

concisely, but still have the expressive power to annotate the
many unusual interfaces that may be in use.

To gauge the annotations’ effectiveness at concisely rep-
resenting interfaces, we check the relationship between the
frequency of an interface and the complexity of the annota-
tion required to represent it. The most common interfaces
should have the simplest representation. Table 3 relates in-
terface frequency with the complexity of the corresponding
buffer and primitive annotations for over 400,000 annota-
tions. We measure the complexity of a set of annotations
for an interface as the total number of values used from Ta-
ble 1 or Table 2.

Weighted by frequency, interfaces are annotated with buffer
annotations using an average of 1.24 values, or with prim-
itive annotations using an average of 4.35 values, a 251%
increase. Additionally, as can be seen from the annotation
lengths in Table 3, the least complex buffer annotations de-
scribe the most common interfaces, while there is little cor-
relation between primitive annotation complexity and inter-
face frequency.

6.2 Inference Effectiveness
Running inference specifications over the entire product’s

code bases yields ∼1,800,000 in, out, and req annotations,
and ∼120,000 ecap and bcap annotations. We use sampling
to gauge the accuracy and coverage of these annotations,
and thus their overall quality and effectiveness. Accuracy
is estimated as the fraction of a random sample of inferred
annotations which are correct, and coverage is estimated
as the fraction of a random sample of code base function
parameters for which the correct annotations were inferred.
Table 4 shows the result of this sampling for three code bases
totalling 9.8 MLOC. Accuracy and coverage are listed and
plotted with 95% confidence intervals; in, out, and req have
larger samples and thus tighter confidence intervals.

For in, out and req, we estimate that we infer 75% of the
correct annotations for a code base with a 3% false positive
rate. Most false negatives are due to separately analyzing

239



in/out/req

Accuracy

C
ov

er
a
g
e

0

1

1

bcap/ecap

Accuracy

C
ov

er
a
g
e

0

1

1

in/out/req bcap/ecap
MLOC Accuracy Coverage Accuracy Coverage

2.0 1.0 ± .11 .68 ± .11 .80 ± .15 .45 ± .18
6.1 .96 ± .08 .79 ± .09 .73 ± .16 .31 ± .18
1.7 .97 ± .12 .72 ± .10 .67 ± .17 .73 ± .16
9.8 .97 ± .04 .75 ± .06 .72 ± .09 .49 ± .11

Table 4: Inference results for in/out/req and bcap/ecap

code bases which may call into each other, as parameter
information is not propagated across such calls. The few
false positives are due to aliasing; for example, if one alias
for a value is checked against NULL before another alias is
dereferenced, a req annotation will still be inferred.

For ecap and bcap, we estimate that we infer 49% of the
correct annotations for a code base with a 28% false positive
rate. Most false negatives are due to complex pointer and
size arithmetic that is not handled by the specification, iso-
lated functions to which sizes cannot be propagated, and, as
with in, out and req, separately analyzing code bases that
call into each another. Most false positives are due to con-
fusion between byte and element counts on a buffer, or be-
tween multiple buffers and multiple sizes; for example, if two
buffers are passed to a function with identical constant sizes,
those buffer/size relationships will be tangled together. In
practice, we exploit type and naming conventions to reduce
the false positive rate to less than 10%.

6.3 Checker Effectiveness
We have tested the checker on the suite of buffer overflow

model programs developed by Zitser et. al. [18]. These are
based directly on vulnerable and patched versions of several
open source server applications, and form the most realistic
publically available testing suite of which we are aware. Of
the 14 vulnerable programs, 5 may overflow due to the incor-
rect use of unsafe string functions (e.g. strcpy and sprintf).
Uses of these functions are identified and removed through
a separate checking process, and as such we do not anno-
tate or analyze them (see Section 3.2). Of the remaining 9
programs, we supplied relevant annotations (all of which are
on standard library functions or are automatically inferred)
and ran our checker, which issued warnings for the relevant
lines in 7 vulnerable programs (true positives) and 3 patched
programs (false positives). Most warnings are level 2 and 3.
The results of these runs are shown in Table 5.

Of the two missed overflows, SM-6 is on a global buffer
which we do not yet annotate (see Section 5.1), and BIND-2
is due to a signed-to-unsigned cast of a potentially negative

Name True Pos. False Pos. Annotations
SM-1 �
SM-3 � � 1 inferred
SM-4 � �
SM-5 � 1 inferred
SM-6
SM-7 � � 2 library
BIND-1 � 1 library
BIND-2 1 library
BIND-3 � 1 library

Table 5: Checker results on Zitser model programs
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Figure 7: Annotation and level 1 warning rates

size variable, a different type of bug which is caught by a
separate integer overflow checker not described here.

Figure 7 shows checker performance on numerous partially
annotated code bases (all overflows resulting from these warn-
ings have been fixed). Warning counts are moderately corre-
lated with annotation density, with an R2 measure of predic-
tive power of 42%. Overflows are readily found on unanno-
tated code, with coverage steadily increasing as annotations
are incrementally added.

7. RELATED WORK
Many annotation-based checkers have been developed to

detect buffer overflows and other security errors, including
CSSV [5], Eau Claire [2], Splint [7], and MECA [17]. The
principal novelty with our system is our incremental ap-
proach to annotation. Existing systems either require fully
annotated code bases to perform effective checking [5, 2]
or cannot comprehensively check even fully annotated code
bases [7, 17].

CSSV [5] is a modular overflow checker for string-intensive
C programs. CSSV’s annotation language is considerably
more expressive but considerably less concise than ours.
Sound contracts are inferred by approximating the weak-
est preconditions and strongest postconditions on functions,
but lack coverage compared to manual annotation. Func-
tions are combined with contracts to produce an integer
program which is checked for violations. This method is
sound and precise, but requires the analyzed function and
its callees to be fully annotated.

ESC/Java [9] uses a sophisticated theorem prover for gen-
eral purpose modular checking. Eau Claire [2] uses ESC to
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find buffer overflows in C programs, extending the anno-
tation language with constructs similar to that of CSSV.
Since the checking method used by ESC does not widen
loops, either invariants must be provided or a fixed number
of iterations are simulated, a limited approach for analyzing
loop-intensive buffer manipulations.

Splint [7] extends LCLint with annotations for buffer read-
able and writable extents. Fairly complex annotations are
necessary even for simple buffer/size relationships, and no
inference mechanism is available. Splint has an unsound
constraint-based checker which uses heuristics to analyze
common loop forms. The effectiveness of this strategy is
unclear, though in [7] the false positive rate was 75% after
annotation.

MECA [17] is an annotation-based checker built on MC
[1]. An initial set of annotations provided by the program-
mer is propagated bottom-up through the call graph, after
which statistical inference is used to select likely additional
annotations for confirmation by the programmer. Our infer-
ence is more aggressive, propagating information top-down
without being checked. MC can be used to find operations
leading to overflows, such as unchecked array accesses [1],
but not comprehensively check for them.

Houdini [8] infers annotations by using predefined heuris-
tics to guess potential annotations, including buffer/size re-
lationships, and eliminating ones refuted by ESC/Java. Hou-
dini achieves high accuracy and coverage, but due to the
number of guesses required and expense in refuting them,
seems to scale poorly.

Daikon [6] infers annotations by running an instrumented
program through a test suite and collecting invariants. Such
a dynamic approach may generate invariants that hold over
the test cases but not over all inputs. As with Houdini,
Daikon can be used in conjunction with ESC/Java [10] to
remove incorrect invariants.

Static buffer overflow checkers which do not rely on anno-
tations can be deployed on code bases with little risk. These
include ARCHER [16], BOON [15], and the PolySpace C
Verifier [11]. While offering great utility for finding over-
flows, the requirement for very precise interprocedural anal-
ysis limits the effectiveness of these checkers. Zitser et.
al. test these and other checkers on Sendmail, a 145,000
line program, and 14 model programs [18]. ARCHER and
BOON can analyze programs the size of Sendmail, but find
only 1 and 2 of the model program overflows, respectively.
In contrast, the PolySpace C Verifier finds almost all of
the model program overflows, but cannot analyze Sendmail.
Our checker achieves coverage similar to that of the PolySpace
C Verifier (Section 6.3) while analyzing programs of any size,
at the expense of requiring annotations.

Dynamic overflow mitigation techniques include check-
ing stack integrity to detect overflows after they occur [4],
or checking memory accesses to prevent overflows from oc-
curring [3, 14, 13]. Overhead generally increases with the
amount of protection provided. Static and dynamic tech-
niques are complementary, with static checkers finding many
overflows before runtime, and dynamic checkers finding those
that get through.

8. CONCLUSION
Deployment of an annotation-based checker is a daunting

prospect, requiring a potentially huge amount of effort for a
potentially negligible payoff. Enabling incremental deploy-

ment through the technology in our system has allowed us to
clear this hurdle, to demonstrate effectiveness, and to build
momentum towards comprehensive annotation and check-
ing at a scale far beyond what could have initially seemed
possible.
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