
A. Hua and S.-L. Chang (Eds.): ICA3PP 2009, LNCS 5574, pp. 661–672, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Lightweight Buffer Overflow Protection Mechanism
with Failure-Oblivious Capability

Tz-Rung Lee1, Kwo-Cheng Chiu1, and Da-Wei Chang2

1 Department of Computer Science, National Chiao-Tung University,
Hsin-Chu, Taiwan

roylee17@gmail.com, inaba178@gmail.com
2 Department of Computer Science and Information Engineering,

National Cheng-Kung University, Tainan, Taiwan
davidchang@csie.ncku.edu.tw

Abstract. Buffer overflow has become a major source of network security vul-
nerability. Traditional schemes for detecting buffer overflow attacks usually
terminate the attacked service, degrading the service availability. In this paper,
we propose a lightweight buffer overflow protection mechanism that allows
continued network service. The proposed mechanism allows a service program
to reconfigure itself to identify and protect the vulnerable functions upon buffer
overflow attacks. Protecting only the vulnerable functions, instead of the whole
program, keeps the runtime overhead small. Moreover, the mechanism adopts
the idea of failure-oblivious computing to allow service programs to execute
through memory errors caused by the attacks once the vulnerable functions
have been identified, eliminating the need of restarting the service program
upon further attacks to the vulnerable functions. We have applied the mecha-
nism on five Internet servers. The experiment results show that the mechanism
has little impact on the runtime performance.

Keywords: Buffer Overflow Attacks, Network Security, Self Reconfiguration,
Failure-Oblivious Computing, Guard Pages.

1 Introduction

Buffer overflow has become a major source of network security vulnerability. Attack-
ers can exploit this vulnerability by overwriting critical control data with maliciously
crafted content so as to gain the full control of the program. According to the statistics
from Common Vulnerabilities and Exposures (CVE), more than half of the software
vulnerabilities come from buffer overflow since 2002, and the number of buffer over-
flow vulnerabilities is still growing. Numerous approaches have been proposed to
detect buffer overflow attacks. Static analysis techniques [1,2] analyze the source
code of the service programs to detect memory error problems while dynamic
techniques [3-13] check data integrity during program execution. Although these
techniques effectively detect attacks, they can not protect the processes from being
compromised, and thus terminating the compromised processes is necessary to pre-
vent further error propagation. In recent years, several techniques have been proposed
to recover the attacked services, instead of terminating them, so as to provide

662 T.-R. Lee, K.-C. Chiu, and D.-W. Chang

continued service under the attacks [14-20]. However, such techniques cause moder-
ate to substantial impact on the system performance.

In this paper, we propose a lightweight protection mechanism that provides contin-
ued service under buffer overflow attacks. The proposed mechanism allows a service
program to reconfigure itself to collect runtime information in the face of buffer over-
flow attacks, to identify the vulnerable functions, and finally to protect those func-
tions. Moreover, the mechanism adopts the idea of failure-oblivious computing
[15,16] to allow service programs to execute through memory errors without losing
their correctness once the vulnerable functions have been identified. This eliminates
the need of restarting the service program upon further attacks so that continued
service can be provided.

The mechanism adopts a multi-stage approach. At the initial stage, the service pro-
gram is protected by a lightweight protection mechanism. Upon detecting an attack, the
program performs stage transition and reconfigures itself to collect runtime informa-
tion so as to identify the vulnerable functions. Once the vulnerable functions have been
identified, state transition and self-reconfiguration are done again for applying more
advanced (but more heavyweight) protection techniques on the functions, allowing the
program to execute through further attacks. Applying more advanced protection tech-
niques only on the vulnerable functions, instead of the whole program, helps to keep
the runtime overhead small, and thus increases the feasibility of the mechanism.

In the current implementation, we utilize Address Space Layout Randomization
(ASLR) [10] and Guard Page [17,18] as the aforementioned lightweight and heavy-
weight protection techniques, respectively. We have applied the mechanism on five
Internet servers. The experimental results indicate that, in most of the cases, the
proposed mechanism incurs less than 5% of runtime overhead.

The rest of this paper is organized as follows. Section 2 describes the related work.
More detailed description about the ASLR and the Guard Page protection techniques
are given in Sect. 3. Section 4 presents the design and implementation of our mecha-
nism. Section 5 shows the experiment results, which are followed by the conclusions
in Sect. 6.

2 Related Work

Originally, most of the related research efforts were put on the detection, either stati-
cally or dynamically, of the attacks. In recent years, more research efforts focus on
recovering the attacked programs. In this section, we will describe those efforts.

2.1 Buffer Overflow Detection

Static buffer overflow detection techniques [1,2] analyze program source code to
detect memory errors. The major limitation of such techniques is the lack of program
runtime information. Numerous dynamic techniques have been proposed to detect
buffer overflows during program execution. Several techniques detect buffer overflow
attacks by checking the integrity of control data (i.e., return address, frame pointers,
etc) [3,11]. StackGuard [6,7] and ProPolice [9] place canary values between local
buffers and control data on stacks to check if the control data was corrupted due to

 A Lightweight Buffer Overflow Protection Mechanism 663

buffer overflow. StackSheild [13] and RAD [4] copy the return address into a global
return stack so that they can check the integrity of the return address in the function
epilog. PointGuard [5] augmented the GCC compiler to emit code that encrypts and
decrypts pointers before and after they are stored in memory, respectively, so as to
detect invalid pointer updates. Address Space Layout Randomization (ASLR) [10]
shifts memory segments (e.g. stack, heap, and shared library code) in the process
address space with random offsets to obscure the target addresses from the attackers.
Non-executable buffers [8,10,12] prevent execution of code on stacks or heaps with
hardware assistance. An attacker may still inject instructions into the buffers, but any
attempt to execute those instructions will cause an exception. Due to the limitation of
the static techniques, some systems such as Cyclone [29] and CCured [30] combine
static analysis and runtime checks. They statically check the source code for buffer
overflow problems, and insert runtime checks for those which can not be identified
statically.

2.2 Automatic Recovery from Attacks

Instead of terminating the victim service upon detecting an attack, several techniques
have been proposed to recover the service so as to allow continued service. DIRA
[20] augmented the GCC compiler to log memory updates and track data dependency
during the program execution. When an attack is detected, the program identifies the
external input data that corresponds to the attack and passes the data as a signature to
the front-end filter. Finally, the program is rolled back to the state before the reception
of the attack request. This technique degrades the runtime performance due to the
overhead of logging memory updates and tracking data dependency. TaintCheck [14]
executes programs in an emulation environment, which tags data derived from un-
trusted sources, such as network, as tainted and tracks its propagation in the program
memory. Any attempt to use the tainted data as a pointer will be recognized as an
attack and triggers the post-analysis procedure to provide information to the filter.
The use of the emulation environment has a substantial impact on the program per-
formance. According to the performance results on an Apache server, the measured
slowdown ranges from about 2 to 25 times, which limits the practical usage. Sidi-
roglou and Keromytis [17,18,19] treated each execution of functions as a transaction.
Once an error is detected, they rollback the memory changes caused by the function,
abort the function, and continue the execution from where the function returns. How-
ever, they can not roll back I/O operations, and hence the program may not work in a
consistent way in its continued execution. Rinard et al. [15,16] proposed the concept
of failure-oblivious computing, which allows a program to execute through memory
errors without compromising its correctness. They modified the CRED safe-C com-
piler [11] to augment the generated code to perform bounds checks and to store away
or discard out of bounds writes. As a result, no memory data can be clobbered by
buffer overflow. However, bound checks degrade the runtime performance (e.g. the
measured slowdown ranges from 3% to 8.9 times) and make the approach less attrac-
tive for many applications.

In this paper, we propose a lightweight buffer overflow protection mechanism,
which adopts the idea of failure-oblivious computing. Unlike the existing work, our

664 T.-R. Lee, K.-C. Chiu, and D.-W. Chang

self-reconfigurable and multi-stage design allows the program to achieve the same
goal with little performance overhead.

3 Background

In this section, we briefly introduce the two existing techniques in our buffer overflow
protection mechanism: Address Space Layout Randomization (ASLR) and Guard
Page.

ASLR shifts memory segments (e.g. stack, heap, and shared library code) in the
process address space with random offsets to obscure the target addresses from the
attackers. As illustrated in Fig. 1, attackers have to guess the target address, and a
wrong guess usually leads to a segmentation fault. The limitation of ASLR is that it
can be defected by brute-force guessing [21]. Despite the limitation, ASLR has been
integrated in many systems [22,23] due to its ability to detect a broad range of mem-
ory errors and negligible runtime overhead.

Fig. 1. Address space layout randomization

The Guard Page mechanism allocates extra inaccessible memory pages (i.e., guard
pages) adjacent to the allocated memory areas during memory allocations so as to
detect memory overflow. This mechanism has been used in debugging errors of heap
based memory for many years [25], and it can also be applied for detecting stack-
based buffer overflow vulnerability [17,18] by repositioning the buffer to the heap
area [24] and guarding it with a guard page, as shown in Fig. 2. Any attempt to over-
flow the guarded buffers causes a segmentation fault and thus reveals the attack.
Therefore, guard pages can detect attacks before the memory data adjacent to the
guarded buffers has been compromised. Based on this property, we are able to allow
the program to execute through buffer overflow attacks, realizing the concept of fail-
ure-oblivious computing. The drawback of guard pages is its high runtime overhead.
Each buffer allocation and deallocation requires additional system calls for mapping
and unmapping guard pages. Thus, it is impractical to guard all the buffers in a

 A Lightweight Buffer Overflow Protection Mechanism 665

Fig. 2. Repositioning buffers from stack to heap and then guard them with guard pages

program. Our protection mechanism uses runtime information to reduce the number
of buffers that need to be guarded, and thus leads to little performance impact.

4 Design and Implementation

In this section, we present the design and implementation of the proposed buffer over-
flow protection mechanism.

4.1 Function-Based Protection

We focus on the stack-based buffer overflow attacks, so only local buffers are con-
cerned in the current implementation. We treat functions that have local buffers as
potentially vulnerable functions, and we apply protection techniques in a function-by-
function basis. Each potentially vulnerable function has two versions: the
O_VERSION and the G_VERSION. The former whose function name is prefixed
with O is the original version, and the latter whose function name is prefixed with G
uses guard pages to protect its local buffers. Both versions are generated by using
source code transformation. Figure 3 illustrates an example of the transformation. As
shown in Fig. 3(a), two functions, B and D, are potentially vulnerable. After trans-
formation, both B and D are transformed into two versions of function implementa-
tions, as shown in Fig. 3(b). In the figure, O_B and O_D are the original functions,
while G_B and G_D are functions that allocate their local buffers from the heap and
protect the buffers with guard pages. Note that the functions with original names, such
as B and D, are transformed into wrapper functions, which invoke one version of the
function implementations based on the decision of a proxy function. Specifically,
each wrapper function invokes the proxy function with the unique identifier of the
former as the parameter, and the proxy function returns either O_VERSION or
G_VERSION so that the wrapper function can then invoke the function implementa-
tions accordingly. The unique function identifiers are assigned during the transforma-
tion process.

666 T.-R. Lee, K.-C. Chiu, and D.-W. Chang

Fig. 3. Transformation of potentially vulnerable functions

4.2 Multi-stage Self-reconfiguration

The proposed mechanism adopts a multi-stage approach. Figure 4 shows the stages
and the transitions among the stages. The default stage, which is the initial stage, aims
to provide effective attack detection without degrading the service performance. In
this stage, ASLR is applied and the original function implementations are always
chosen. Once an attack is detected, the program transits to the logging stage, which
uses a lightweight technique to collect runtime call stack information. The informa-
tion is collected by pushing the function identifier into a separated and protected stack
right before the invocation of each transformed function (i.e., potentially vulnerable
function) and popping the function identifier out of the stack on the return of the
invocation. On detecting an attack in this stage, the program passes the call stack
information, which is referred to as the candidate list in the rest of the paper, to the
watching stage and then transits to that stage. Similar to the default stage, the logging
stage also relies on the ASLR as the attack detection technique and the original
function implementations are always chosen.

Given the candidate list, the watching stage can use the Guard Page mechanism to
protect buffers in the functions that appear in the candidate list. This is achieved by
returning G_VERSION when the proxy function is invoked by a function whose
identifier appears in the candidate list. Once a further attack arrives and causes the
overflow of a guarded buffer, the corresponding vulnerable function can be identified.
In that situation, the program exports the identifier of the vulnerable function and
transits to the protecting stage, which protects only the buffers allocated in that vul-
nerable function and allows the program to execute through further attacks without
losing its correctness. In the protecting stage, the proxy function returns G_VERSION
only when it is invoked by the wrapper of the vulnerable function. Protecting only a
small number of buffers leads to little performance overhead. Note that, all stages use
ASLR as a program-wide detection technique, which means that the buffers protected
with guard pages are still protected with ASLR as well. However, overflowing such
buffers is always detected first by the guard page.

 A Lightweight Buffer Overflow Protection Mechanism 667

Fig. 4. Stage transition diagram

Instead of including the control-path determination logic for all the stages into a
single proxy implementation, we choose to have multiple per-stage proxy implemen-
tations. Each proxy implementation is realized as a single shared object. During each
stage transition, the program reconfigures itself by linking to a different proxy imple-
mentation. Files are used for information passing between proxy implementations.

5 Performance Evaluation

In this section, we present the performance results of the proposed buffer overflow
protection mechanism. We have applied the protection mechanism on five open
source network server programs, as shown in Table 1. Source code transformation is
done by using TXL [26], a special-purpose programming language designed for soft-
ware analysis and source code transformation. We extend the Gemini tool [24], which
transforms source code to reposition stack-based buffers on the heap by using TXL, to
protect local buffers with guard pages. We compare the performance of the original
and transformed versions of each test program. For the transformed version, we send
attack messages from the client machine to trigger program reconfigurations and stage
transitions, and run benchmarks to measure the performance of each stage.

The experimental environment consists of a server machine and a client machine,
which are connected via a 100MB/s Ethernet switch. The server machine is equipped
with a 2.0 GHz Pentium 4 processor and 512MB RAM while the client machine is

Table 1. List of the vulnerable programs

Vul. Programs Description Vulnerability
Qpopper 4.0.4 POP3 Mail Server CVE-2003-0143
dproxy-nexgen Caching DNS Server CVE-2007-1866
ProFTPD 1.3.0a FTP Server CVE-2006-6563
ghttpd 1.4-3 Web Server CVE-2002-1904
Apache (with mod_jk 1.2.0) Web Server CVE-2007-0774

668 T.-R. Lee, K.-C. Chiu, and D.-W. Chang

equipped with a 3.4 GHz Pentium 4 processor and 768MB RAM. Both machines run
Linux Kernel 2.6.21.

Figure 5 shows the results on Qpopper, a popular POP3 mail server. The vulner-
ability is due to a call to Qvsnprintf() within pop_msg() in popper/pop_msg.c, which
leaves a buffer non-terminated and can be exploited to execute arbitrary code via a
buffer overflow. We use Postal [27], a benchmark for measuring performance of
SMTP and POP3 servers, to create POP3 sessions in a saturated manner on the server,
which has 2000 mailboxes with a total size of 50M bytes of messages. A typical
POP3 session includes logging on the server, listing mail messages, retrieving mes-
sages and deleting messages. As shown in the figure, the performance degradation of
the transformed Qpopper is little, ranging from 1% to 3%.

Fig. 5. Performance results of Qpopper

Figure 6 shows the results on Dproxy-nextgen, a small caching domain name
server. It has a buffer overflow vulnerability within its dns_decode_reverse_name()
function, which allows remote attackers to execute arbitrary code by sending a crafted
packet to UDP port 53. In this experiment, we measure the response time of looking
up a domain name. The figure indicates that all the stages of the transformed version
have very low (below 2%) performance overhead.

Fig. 6. Performance results of Dproxy-nexgen

 A Lightweight Buffer Overflow Protection Mechanism 669

Figure 7 shows the results on ProFTPD, a high-performance and highly configur-
able FTP server. The vulnerability is a boundary error within the
pr_ctrls_recv_request() function in the src/ctrls.c file, which can be exploited to exe-
cute arbitrary code. We measure the performance by fetching files with different sizes
from the server. As shown in the figure, the performance overhead of the watching
stage can be larger than 10% when fetching small files. This overhead reduces as the
file size grows. For example, there is no visible overhead when fetching files with
10M bytes. This is because IO transfer dominates the execution time in the cases of
large file transfer. Note that, the transformed ProFTPD does not transit to the protect-
ing stage in this experiment. This is because the overflows happen in the read() sys-
tem call, and the Linux kernel handles these exceptions, which are triggered by guard
pages, by doing early returns to the user space instead of issuing SIGSEGV signals to
the program. As a result, no stage transition is triggered. In this case, the program
memory is not compromised and the program can still continue its execution without
losing its correctness.

Fig. 7. Performance results of ProFTPD

Figure 8 shows the results on Ghttpd, a fast and efficient HTTP server with CGI
support. The vulnerability is a buffer overflow within the Log() function in the util.c
file, which allows remote attackers to execute arbitrary code via a long HTTP GET
request. We use WebStone [28], a standard benchmark for web server, to evaluate
performance of the transformed ghttpd. As shown in the figure, the performance
overhead is less than 3% in the default, logging and protecting stages. Even for the
watching stage, the overhead is still less than 5%.

Figure 9 shows the results on Apache Tomcat Connector (mod_jk), a module of
Apache for connecting to Tomcat, which is a web container, or an application server
that implements the servlet and the JavaServer Pages (JSP) specifications. The vul-
nerability is an unsafe memory copy within the map_uri_to_worker() function in the
native/common/jk_uri_worker_map.c file, which can be exploited to execute arbitrary
code or crash the web server by sending a long URL request. As the figure indicates,
all the stages of the transformed Apache program have nearly the same performance
with the original version.

670 T.-R. Lee, K.-C. Chiu, and D.-W. Chang

Fig. 8. Performance results of Ghttpd

Fig. 9. Performance results of Apache

6 Conclusions

In this paper, we propose a lightweight protection mechanism that allows continued
network service under buffer overflow attacks. Upon detecting a buffer overflow
attack, the mechanism allows a service program to reconfigure itself to collect run-
time call stack information, to locate the vulnerable functions, and finally to apply the
Guard Page protection technique on those functions. Applying the Guard Page protec-
tion technique only on the vulnerable functions, instead of the whole program, keeps
the runtime overhead small. Moreover, based on the concept of failure-oblivious
computing, the proposed mechanism allows the service programs to execute through
memory errors without losing their correctness once the vulnerable functions have
been located, eliminating the need of restarting the service programs upon further
attacks, and thus providing continued service.

In the current implementation, self-reconfiguration is achieved by source code
transformation and dynamic linking. We have applied the mechanism on five Internet
servers. According to the experiment results, the proposed mechanism incurs very
little performance impact (i.e., less than 5% in most of the cases).

The original model mentioned in Fig. 4 can only deal with overflows of buffers in
a single vulnerable function. However, it is possible that a network service has multi-
ple vulnerable functions. To deal with this problem, we have extended the model. In

 A Lightweight Buffer Overflow Protection Mechanism 671

the future, we will implement the extended model on network services that has multi-
ple buffer overflow vulnerabilities and evaluate the performance of the model.

References

1. Dor, N., Rodeh, M., Sagiv, M.: Cssv: Towards a Realistic Tool for Statically Detecting all
Buffer Overflows in C. In: ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, pp. 155–167 (2003)

2. Larochelle, D., Evans, D.: Statically Detecting Likely Buffer Overflow Vulnerabilities. In:
10th USENIX Security Symposium, pp. 177–190 (2001)

3. Baratloo, A., Singh, N., Tsai, T.: Transparent Run-time Defense against Stack Smashing
Attacks. In: USENIX Annual Technical Conference, pp. 251–262 (2000)

4. Chiueh, T.C., Hsu, F.H.: RAD: A Compile-time Solution to Buffer Overflow Attacks. In:
International Conference on Distributed Computing Systems, pp. 409–417 (2001)

5. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: Protecting Pointers from
Buffer Overflow Vulnerabilities. In: USENIX Security Symposium, pp. 91–104 (2003)

6. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P.,
Zhang, Q., Hinton, H.: StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In: 7th USENIX Security Conference, pp. 63–78 (1998)

7. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer Overflows: Attacks and De-
fenses for the Vulnerability of the Decade. In: DARPA Information Survivability Confer-
ence and Exposition, pp. 119–129 (2000)

8. Dik, C.: Non-Executable Stack for Solaris, Posted to comp.security.unix (January 1997)
9. Etoh, H., Yoda, K.: Protecting from Stack-Smashing Attacks,

http://www.trl.ibm.com/projects/security/ssp
10. The PaX Team: PaX Address Space Layout Randomization,

http://pax.grsecurity.net
11. Ruwase, O., Lam, M.: A Practical Dynamic Buffer Overflow Detector. In: Network and

Distributed System Buffer overflow Symposium, pp. 159–169 (2004)
12. Solar Designer: Non-Executable User Stack, http://www.openwall.com/linux/
13. StackShield, http://www.angelfire.com/sk/stackshield
14. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity Software. In: 12th Annual Network and
Distributed System Security Symposium (2005)

15. Rinard, M., Cadar, C., Dumitran, D., Roy, D., Leu, T., Beebee, J.W.: Enhancing Server
Availability and Security Through Failure-Oblivious Computing. In: 6th Symposium on
Operating Systems Design and Implementation, p. 21 (2004)

16. Rinard, M., Cadar, C., Roy, D., Dumitran, D.: A Dynamic Technique for Eliminating
Buffer Overflow Vulnerabilities (and Other Memory Errors). In: 20th Annual Computer
Security Applications Conference, pp. 82–90 (2004)

17. Sidiroglou, S., Keromytis, A.D.: A Network Worm Vaccine Architecture. In: 12th Interna-
tional Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,
pp. 220–225 (2003)

18. Sidiroglou, S., Keromytis, A.D.: A Dynamic Mechanism for Recovering from Buffer
Overflow Attacks. In: 8th Information Security Conference, pp. 1–15 (2005)

19. Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building a Reactive Immune
System for Software Services. In: USENIX Annual Technical Conference, pp. 149–161
(2005)

20. Smirnov, A., Chiueh, T.C.: DIRA: Automatic Detection, Identification and Repair of Con-
trol-Hijacking Attacks. In: 12th Annual Network and Distributed System Security Sympo-
sium (2005)

672 T.-R. Lee, K.-C. Chiu, and D.-W. Chang

21. Shacham, H., Page, M., Pfa, B., Goh, E.J., Modadugu, N., Boneh, D.: On the Effectiveness
of Address-Space Randomization. In: 11th ACM Conference on Computer and Communi-
cations Security, pp. 298–307 (2004)

22. Liang, Z., Sekar, R.: Automated, Sub-Second Attack Signature Generation: A Basis for
Building Self-Protecting Servers. In: 12th ACM Conference on Computer and Communi-
cations Security (2005)

23. Liang, Z., Sekar, R.: Automatic Generation of Buffer Overflow Attack Signatures: An Ap-
proach Based on Program Behavior Models. In: 21st Annual Computer Security Applica-
tions Conference, pp. 215–224 (2005)

24. Dahn, C., Mancoridis, S.: Using Program Transformation to Secure C Programs against
Buffer Overflows. In: 10th Working Conference on Reverse Engineering, pp. 323–332
(2003)

25. Perens, B.: Electric Fence,
http://perens.com/FreeSoftware/ElectricFence

26. Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A.: Source Transformation in Software
Engineering using the TXL Transformation System. Journal of Information and Software
Technology 44(13), 827–837 (2002)

27. Coker, R.: Postal Benchmark, http://www.coker.com.au/postal
28. Mindcraft Inc.: WebStone: the Benchmark for Web Servers,

http://www.mindcraft.com/benchmarks/webstone
29. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone: a Safe

Dialect of C. In: USENIX Annual Technical Conference, pp. 275–288 (2002)
30. Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-Safe Retrofitting of Legacy Code.

In: 29th ACM Symposium on Principles of Programming Languages, pp. 128–139 (2002)

	A Lightweight Buffer Overflow Protection Mechanism with Failure-Oblivious Capability
	Introduction
	Related Work
	Buffer Overflow Detection
	Automatic Recovery from Attacks

	Background
	Design and Implementation
	Function-Based Protection
	Multi-stage Self-reconfiguration

	Performance Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

