
SQL DOM: Compile Time Checking of Dynamic SQL
Statements

Russell A. McClure and Ingolf H. Krüger

University of California, San Diego
Department of Computer Science and Engineering
9500 Gilman Drive, La Jolla, CA 92093-0114, USA

{rmcclure, ikrueger}@cs.ucsd.edu

ABSTRACT
Most object oriented applications that involve persistent data
interact with a relational database. The most common interaction
mechanism is a call level interface (CLI) such as ODBC or JDBC.
While there are many advantages to using a CLI – expressive
power and performance being two of the most key – there are also
drawbacks. Applications communicate through a CLI by
constructing strings that contain SQL statements. These SQL
statements are only checked for correctness at runtime, tend to be
fragile and are vulnerable to SQL injection attacks. To solve these
and other problems, we present the SQL DOM: a set of classes
that are strongly-typed to a database schema. Instead of string
manipulation, these classes are used to generate SQL statements.
We show how to extract the SQL DOM automatically from an
existing database schema, demonstrate its applicability to solve
the mentioned problems, and evaluate its performance.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering.

D.2.11 [Software Engineering]: Software Architectures – Data
abstraction.

General Terms
Algorithms, Reliability, Security.

Keywords
SQL, SQL DOM, Impedance Mismatch, SQL Strings, SQL
Injection, Dynamic SQL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

1. INTRODUCTION
The term impedance mismatch [17] refers to the inherent
disconnect between databases and programming languages. Many
solutions have been proposed, including language extensions [4,
11, 16], call level interfaces [2, 13, 21], object/relational mapping
[10, 15, 18] and persistent object systems [3, 7, 20].

Call level interfaces offer the full expressive power of SQL by
providing an interface that accepts dynamically generated SQL
statements, but they provide no static syntax or type checking.
Language extensions, such as SQLJ[4], do provide some static
syntax and type checking but they are limited to static SQL
statements. Object/relational mapping and persistent object
systems allow stored data to be treated as objects but they do not
expose the full power of the database engine.

In this paper, we focus on overcoming the problems associated
with accessing relational databases through call level interfaces
from object oriented programming languages.

1.1 Problem Definition
Call level interfaces (CLIs) are powerful because they provide a
low level interface to the database engine. Interfacing with a
database engine through a CLI involves constructing SQL
statements through string concatenation and substitution. This
allows the developer to create very flexible and powerful queries.
However, the resulting queries cannot be checked for correctness
until they are sent to the database engine at runtime.

There are many types of problems and errors that can arise when
constructing SQL statements in this way. Some of the more
common problems are bad syntax, misspelled column and table
names and data type mismatches. SQL strings (strings that contain
SQL statements) are also very fragile with respect to changes to
the database schema. In medium to large sized projects, the
number of SQL strings can become quite large. As an application
evolves and the database schema changes, it becomes a difficult
task to maintain the SQL strings that are in the code base. SQL
strings also pose a security risk. They leave an application
extremely vulnerable to SQL injection attacks [14]; this type of
attack is typically based on malicious code inserted into a web
form, and then – as part of the processing of the form – into a
dynamically generated SQL string. The resulting query leads to
execution of the malicious code, resulting in adding/removing
data from the database.

88

1.2 Solution Proposal
Our goal is to provide a way to have the full expressive power of
dynamic SQL statements, without the inherent problems
mentioned in the previous section. The end result is increased
maintainability, reliability and security for the application.

Our solution consists of an executable, sqldomgen, which is
executed against a database. The output generated by sqldomgen
is a Dynamic Link Library (DLL) containing classes that are
strongly-typed to a database schema. We refer to these classes as
the SQL Domain Object Model (SQL DOM). Using these classes,
the application developer is able to construct dynamic SQL
statements without manipulating any strings.

Using this method, the compiler is enlisted to eliminate the
possibility of SQL syntax, misspelling and data type mismatch
problems. Names of tables and columns are incorporated into the
SQL DOM through class names or enumeration members. Data
types of columns become types of constructor and method
parameters. Having the compiler catching bugs that used to show
up only occasionally at runtime increases the reliability of the
application.

As the database schema changes throughout the life of an
application, the support of the compiler also increases the
maintainability of the application. If the database schema
changes, sqldomgen is rerun, generating a modified SQL DOM.
When the application is then rebuilt with the modified SQL
DOM, compiler errors such as the following would be generated:

• No such class exists. This would happen if a table or
column was renamed or removed.

• Data type conversion error. This would happen if the
data type of a column was changed.

• Missing constructor parameter. This would happen if a
new column was added to a table.

The security of an application using the SQL DOM is increased
because all known SQL injection attacks are eliminated (this
currently only applies to our test database engine, SQL Server
2000). In an application that uses SQL strings, defending against
SQL injection attacks is very difficult. There is no single place
where strings are constructed. There is usually no single place
through which all database-bound user input passes. The SQL
DOM represents a single point of defense. All SQL statements are
constructed by the SQL DOM. All database-bound user input
passes through constructors of classes in the SQL DOM. These
constructors perform the necessary escaping and data type
validation to eliminate the threat of SQL injection.

1.3 Applications
We believe that any application that is currently using SQL
strings could benefit from the SQL DOM. However, there are a
few areas we feel would benefit more than others.

Applications being developed with the extreme programming
(XP) methodology tend to evolve rapidly through the
development process. Iterative user feedback results in iterative
changes to the application and database schema. These changes
can lead to a large amount of time being spent keeping existing
SQL strings consistent with the changing database schema.

Without compiler support the developer can never be sure that the
code and database schema remain consistent. Unit tests, even if
they exist, are also rarely complete enough to uncover all
deviations between code and schema. Using the SQL DOM
would eliminate this problem. The compiler would be able to
assist in the maintenance process, thereby increasing the
reliability of the application. Having the SQL DOM, developers
would be more willing to make changes to the database schema to
meet the needs of their customers.

Applications that need to make it to market quickly also stand to
gain from using the SQL DOM. The SQL DOM eliminates all
syntax and data type mismatch bugs, which can easily slip into
applications that use SQL strings. The SQL DOM also frees the
developer from having to perform many unit tests on data access
code. This in turn allows getting the product to market faster.

The SQL DOM can also be used to enforce SQL coding
standards. For example, you may want to only allow tables to be
joined by a foreign key relationship. Or, only allow filter
conditions to be placed on indexed columns. The SQL DOM can
be tailored to enforce these standards.

2. THE EXISTING METHOD
In this section we will demonstrate by example some of the
problems with dynamic SQL strings. In the following section we
will show how our SQL DOM alleviates these problems. To
illustrate the existing methods and our proposed solution we will
use a simple database with four typical tables as shown in Figure
1. The tables store information about customers, products, orders,
and order details.

Figure 1. A sample database schema

A common problem that is introduced by using SQL strings is
misspelled table and column names as shown in Figure 2. The
compiler cannot offer us any aid in catching these kinds of errors.
Code reviews would be of limited help because of the difficulty in
manually finding misspelled words.

89

Figure 2. SQL string with misspelled names

Misspellings such as this should be caught during unit testing and
the example we have shown most likely would be caught at that
time. However, SQL strings are often not that simple, as we will
see in the next example.

In Figure 3 we see a common example of a function that uses
string concatenation to dynamically filter the result set of a select
statement. Conditions are added to the where clause of the select
statement for each of the function parameters that the caller
specifies.

This example also contains a misspelled column name on line 46.
In addition, if line 44 is executed, there will be no space between
the AND keyword and the column name resulting in an invalid
SQL statement. These errors are more difficult to find during unit
testing than the errors in the previous example. Calling the
function is not enough. Finding these errors depends on particular
values being passed in to certain parameters. 100% statement
coverage would be required to find these kinds of errors. That
may be easy to accomplish with only few tables in the database
schema. But if the project contains hundreds of SQL strings to
check, 100% statement coverage may be prohibitively time
consuming.

Figure 3. SQL string with syntax errors

Another type of error that can occur in SQL strings is a data type
mismatch. This occurs when a data type that developers are using

in their program to hold a column value is of a different type than
the column itself. Even 100% statement coverage during testing is
not enough to catch a data type mismatch.

Figure 4 contains a function to generate an SQL string to update
the UnitsInStock column of the Products table. The SQL data type
of the UnitsInStock column is smallint, a 16 bit integer. The
developer of the function has mistakenly coded the unitsInStock
parameter as an int, a 32 bit integer. The compiler will not
complain about this. This bug will lay dormant until a value that
is too large for the smallint to hold is passed into this function.
The result will be a runtime error generated by the database
engine.

Figure 4. SQL string with a data type mismatch

The maintenance of SQL strings is also problematic. Changes to
the database schema during the life of an application are
guaranteed for any non trivial database application. These
changes can come either during the initial development of an
application or as part of the requirements for a new version. When
confronting database schema changes, development teams are
faced with difficult questions. How much work will it take to
modify the existing body of SQL strings to stay in sync with the
changing database schema? How much time will the testing
effort require to validate that the SQL strings are in sync with the
database schema? How many customer support calls will we
receive as a result of runtime errors due to invalid SQL strings?

SQL strings also render an application highly susceptible to SQL
injection attacks [14]. A seemingly harmless function such as the
one listed in Figure 5 is a major security hole. A malicious user
could craft the value of the companyName parameter in such a
way, that they could execute arbitrary SQL statements against the
database engine. For example, if the value of companyName was
set to “Bad Guy’; drop table Customers --“, the Customers table
would be dropped.

Figure 5. A major security hole

There is also a lack of developer support during the development
of SQL strings. The IDE cannot prompt developers with a list of
table names or column names because as far as it knows, the
developer is writing a string. This means that developers must
have the database schema memorized, or they must look up the

90

needed information. Having to look up such detail frequently can
break their concentration. This, in turn, can lead to decreased
productivity. As the size of the database increases, this problem is
exacerbated.

3. SQL DOM
Our solution consists of two parts. The first is an abstract object
model. The second is an executable, sqldomgen, which is
executed against a database schema to generate a concrete
instantiation of the abstract object model. In this section, we will
examine our solution in depth.

3.1 Abstract Object Model
Developing the abstract object model was the most challenging
problem we faced. We wanted to develop an object model that
accomplished two things which were not entirely orthogonal. Our
first goal was to construct an object model that could be used to
construct every possible valid SQL statement, which would
execute at runtime. Our second goal was for our object model to
be easy to use. We felt that if the developer had to go through too
many contorted and confusing steps, our tool would not be used,
and would therefore be useless. When we were forced to choose
between the two goals, we always chose the first goal.

One example of the struggle between these two goals occurred
during the design of the class that would be used to construct
insert SQL statements. For an insert SQL statement to be valid it
has to contain a value for every column in the table that is not
auto increment or does not have a default value specified. We had
two implementation options. The first was to have the constructor
take all of the required values as parameters. This would allow the
compiler to ensure that all necessary values were supplied to the
insert SQL statement. The other option was to have properties or
functions that would be used to associate a value for a column
with the insert SQL statement. This would be a little more
developer friendly but the compiler would not be able to
guarantee the validity of the insert SQL statement. In line with
goal number one, we chose option one.

3.2 SQL DOM Generator
We knew that we would need to generate code dynamically for
our solution to be viable. The first author was familiar with the
classes in the .NET Framework that allow for the dynamic
generation and compilation of code. As a result, sqldomgen was
developed using C# [6] and the .NET Framework [1]. Our
approach, however easily generalizes to other development
languages and frameworks, including Java.

sqldomgen performs three main steps. The first step is to obtain
the schema of the database. This is currently accomplished by
using methods provided by an OLEDB Provider. The second step
is to iterate through the tables and columns contained in the
schema and output a number of files containing a strongly-typed
instance of the abstract object model. The final step is to compile
these source files into a dynamic link library (DLL).

To ensure that changes to the database schema result in compile
time errors, we envision the sqldomgen being executed as part of
the daily build of an application.

3.3 Concrete Object Model
The object model consists of three main types of classes. They are
SQL statements, columns and where conditions.

Figure 6 shows a few of the SQL statement classes generated for
our sample database. For each of the four types of SQL
statements (select, insert, update and delete), a class is created for
each table in the database schema. These classes are used to
construct SQL statements. To construct a select SQL statement
for the customers table, you would use an instance of the
CustomersTblSelect-SQLStmt class. To construct an update SQL
statement for the Orders table, you would use an instance of the
OrdersTblUpdateSQLStmt class. Each class is associated with a
single table. The constructors of each class are typed to take only
parameters representing columns of the table with which the class
is associated.

Figure 6. SQL statement classes

Select SQL statements have a JoinTo<TableName> method for
each table with which they share a foreign key relationship. This
precludes the developer from having to remember or look up the
names of the foreign and primary key columns.

Column classes, shown in Figure 7, are used as parameters to the
constructors and methods of the SQL statement classes. They are
used to specify which columns are to be selected, updated or
inserted. Column classes hold data in variables of the same type
as the column with which it is associated. Since some tables have
columns with identical names, namespaces are used to prevent
name collisions.

Figure 7. Column classes

91

It is within the column classes that SQL injection attacks are
mitigated. Column classes, whose data type is string, parse and
possibly modify the values that are passed to them. For example,
a single quote in a string value would be escaped to two single
quotes to prevent an SQL injection attack. Other data types
besides strings do not require escaping to be performed because of
the strongly-typed nature of the classes. A class that represents a
column whose data type is int only accepts values that are valid
ints. It does not accept string values that could possibly contain an
SQL injection attack. In this way the compiler is leveraged to
assist us in thwarting such attacks.

Figure 8. Where condition classes

The final type of class that we will look at in the SQL DOM are
where condition classes. These classes, shown in Figure 8, are
used to specify conditions in the where clauses of select, update
and delete SQL statements. Where condition objects are added to
SQL statements through the AddWhereCondition function. Where
condition classes can also be grouped together and arbitrarily
nested to create complex conditions.

3.4. SQL DOM in Action
In this section we demonstrate how the SQL DOM overcomes the
problems associated with SQL strings that were described in
Section 2.

Figure 9 shows a rewritten GetAllCustomers function. The
previous version of this function had some misspelled table and
column names. In the new version, there are no strings at all.
Misspelling a column or table name in the new function would
result in a compiler error message.

Figure 9. GetAllCustomers using SQL DOM

Figure 10 shows a rewritten GetCustomers function. The old
version suffered from an SQL syntax bug as well as some
misspelling problems. In the new version, all of the SQL syntax is
being generated by the SQL DOM thereby eliminating those
errors. The new version is also much easier to read and
comprehend which tends to result in increased maintainability.

Figure 10. GetCustomers using SQL DOM

Figure 11 shows a rewritten SetUnitsInStock function. The old
version of the SetUnitsInStock function suffered from a hard to
find data type mismatch bug. If a developer accidentally did the
same thing using the SQL DOM, a compiler error message would
be generated like the one shown as a tool tip in Figure 11.
sqldomgen generated a UnitsInStock property whose type
matches the type of the UnitsInStock column. Internally, the
UnitsInStock property instantiates the
UnitsInStockUpdateColumn class to do all of the work. The type
of the UnitsInStock column is smallint, which is equivalent to a
short in C#. When an int is assigned to the property instead of a
short, the compiler generates an error. The developer would be
reminded that the data type of the UnitsInStock column is in fact
short and the appropriate code changes could be made.

Figure 11. SetUnitsInStock using SQL DOM

Our final function rewrite is shown in Figure 12. The previous
version of this function was a gaping security hole. The SQL
DOM has now plugged the hole. If a malicious user attempts to
perform an SQL injection attack [14] by submitting a specially
crafted value for the companyName parameter, it will be
mitigated by the CompanyNameUpdateColumn class (created
internally by the CompanyName property). In the case where the
value of the companyName parameter was set to “Bad Guy’; drop
table Customers –“, the CompanyNameUpdateColumn would
modify it to be “Bad Guy’’; drop table Customers –“. The attack
would have failed.

92

Figure 12. A plugged security hole

The SQL DOM encapsulates the entire database schema. Because
of this, the IDE now knows the database schema. Therefore,
developers can rely on the IDE to prompt them for, say, column
names, as in Figure 13, or the data type of a column, as in Figure
14. This relieves developers of the burden of memorizing the
database schema or having to look it up somewhere.

Figure 13. The IDE prompting the developer

Figure 14. The IDE prompting the developer

4. EVALUATION
4.1 Benefits
Before we subject our approach to a quantitative evaluation using
performance measurements in Section 4.2, we first summarize its
qualitative benefits.

As shown in the preceding section, the SQL DOM together with
the supporting tool, sqldomgen, allows detecting errors in code
that accesses the database during compile-time instead of at
runtime. This has a direct impact on the reliability of the running
system: runtime error messages and exceptions pertaining to the
errors addressed above can be avoided.

The SQL DOM also impacts testability and maintainability of the
overall code-base: unit tests no longer have to address typos and
data type mismatches, and can focus on functionality instead.
Maintenance is improved because the transition from one
database schema to another is supported by the compiler and
corresponding IDE.

The readability of code accessing the database is increased,
because class names make explicit use of the “language” created
by the database schema; simple syntactic errors, such as string
concatenation errors are avoided entirely. This may come at the
expense of a slight increase in code length, caused by length of
class names in the SQL DOM.

While a thorough evaluation in production environments is an
element of future work, we have already witnessed these benefits
in a large enterprise integration effort; in this project, quality
prototypes have to be produced at high frequency, while
concurrent changes to multiple database schemata require
flexibility in the code accessing the database. The SQL DOM
provides this flexibility and increases database access security at
the same time.

4.2 Execution Time
The benefits of the SQL DOM come at a cost. The price we pay is
increased time to construct SQL statements. Without the SQL
DOM we simply manipulate strings to generate SQL statements.
With the SQL DOM we are instantiating and manipulating a
number of objects to generate SQL statements. To get an idea of
the magnitude of the cost we incur, we ran three tests. In each of
the three tests we compare the SQL DOM execution times with
that of SQL string execution times, in the generation of identical
SQL statements. To see how this cost changes with the size of the
resulting SQL statement, each test contains five increasingly
bigger versions of the same type of SQL statement.

First we tested the time it takes to generate a simple select
statement. Only the number of columns being selected was
increased from 1 to 13. The results can be seen in Figure 15.

0

200

400

600

800

1000

1200

1400

1 4 7 10 13

Number of select columns

m
s

pe
r 1

0,
00

0
ge

ne
ra

tio
ns

DOM
Strings

Figure 15. Performance test #1

Our second test also involved the generation of a select SQL
statement. However, this time the number of columns selected
was constant and the number of where conditions were increased
from 1 to 13. The results can be seen in Figure 16.

93

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 7 10 13

Number of where conditions

m
s

pe
r 1

0,
00

0
ge

ne
ra

tio
ns

DOM
Strings

Figure 16. Performance test #2

The final test generated an update SQL statement. The number of
columns being updated was increased from 1 to 13. The results
can be seen in Figure 17.

0

200

400

600

800

1000

1200

1400

1 4 7 10 13

Number of columns updated

m
s

pe
r 1

0,
00

0
ge

ne
ra

tio
ns

DOM
Strings

Figure 17. Performance test #3

The results of all of the tests were in line with what we were
expecting to see. While in some cases the increase is a factor of
10 it is important to realize that the number being increased by
this factor is incredibly small. For example, consider the last data
point in Figure 16. The time to generate a single SQL statement is
increased from roughly .035 ms to .35 ms. This increase of .31
ms would be unnoticeable when the cost of accessing the database
is taken into consideration. On our test machine, the cost of
executing simple, static, SQL statements against a local database
averaged 180 ms. .35 ms is approximately .2% of 180 ms. So,
while the increase in SQL generation times may look expensive,
when viewed in the context of database access it is virtually
unnoticeable. In our estimation, the performance cost does not
come close to outweighing the benefits achieved by the SQL
DOM.

As yet, we have not spent any time optimizing the SQL DOM.
We believe that the performance of the SQL DOM can be
substantially improved.

5. RELATED WORK
SQLJ [4] and Embedded SQL [11] provide language extensions
for Java and C respectively. SQL statements are written using
these extensions in the same file as regular source code. Before
being compiled by the regular language compiler, the file is
preprocessed. Among other steps, the preprocessor checks the
SQL statements against a database schema for syntax and type
mismatch errors. The main disadvantage to these approaches is
that they do not support dynamic SQL statements. Also, these
approaches were never widely adopted. In fact, according to
Oracle’s SQLJ Roadmap [19], future versions of their
development tools and database will no longer support SQLJ due
to lack of use.

Brant and Yoder [5] present a collection of patterns for
developing applications that need to support user-configurable
reports. Applications such as this would contain a great number of
dynamic SQL statements. Their patterns, Report Objects, Query
Objects, Formula Objects, Composable Query Objects and
Constraint Observers, provide a way to organize dynamic SQL
statements so that they are easily customizable to support user-
configurable reports. Their work is similar to ours in that they
propose using objects to construct and output SQL strings.
However, they do not propose any sort of compile time checking
of the validity of the generated SQL statements.

Object/relational mapping [10, 15, 18] and persistent object
systems [3, 7, 20] provide an object-oriented view of data stored
in a relational database. Instead of querying the customers table
and having a set of rows returned, you would have a collection of
customer objects returned instead. The properties on the customer
object would correspond to the columns on the customers table.
This is very useful and has a number of advantages including a
familiar programming model and type safety. Although
abstracting away relational data behind a set of strongly-typed
objects is useful, it also results in the full power of the database
engine being obscured. This leads to the two main disadvantages
of this approach, namely the loss of expressive power and
performance associated with directly accessing the database
engine through a call level interface.

Cook and Rai [9] introduce Safe Query Objects. Safe Query
Objects allow query behavior to be defined using strongly-typed
objects and methods. In addition, safe query objects support query
shipping by automatically generating code to execute queries
remotely in a relational database. Java Data Objects (JDO) is used
to provide the strongly-typed objects. This approach provides a
way to efficiently execute strongly-typed queries that can be
expressed in terms of the properties of strongly-typed objects.
This is definitely a useful tool for those applications that will be
using object/relational mapping or a persistent object system.
However, these approaches share the shortcomings we discussed
in the previous paragraph.

Gould, Su and Devanbu [12] present a different solution to the
same problem we discuss in this paper: overcoming the problems
associated with dynamically generating SQL statements. Their
approach is to statically analyze source code to locate where SQL
strings are being constructed. Each of the different possible
resulting strings is then analyzed for syntax and type mismatch
errors. Their approach has two notable advantages over our
approach. Since all the analysis is performed statically, no

94

performance penalty is incurred. Their solution can also be used
on existing applications whereas our approach would require
existing applications to rewrite their SQL statement generation
code using classes from the SQL DOM. However, performing
static checking leaves the developer powerless to defend against
SQL injection attacks. This would require dynamically analyzing
and possibly altering user input like we do in the SQL DOM.
Another advantage the SQL DOM has is that it offers developers
development-time-support in the construction of SQL statements
via intellisense™. Also, mistakes made by the developer are
caught by the compiler, not by a separate analyzer. This means
developers never need to leave the confines of their favorite IDE
to find errors in their SQL statements.

Haskell/DB [16] is an effort to embed SQL in the functional
programming language, Haskell. HaskellDB is similar to our
approach in two ways. The first is that it provides an executable
to generate the necessary Haskell types which are used to create
SQL strings. This is similar to our sqldomgen. The other
similarity is that the end result of their language extensions are
SQL statements which are then passed to the database through a
call level interface. HaskellDB is also similar to the language
extensions mentioned above and therefore lacks support for
dynamic SQL statements. Another notable difference is that
HaskellDB is designed to work with functional programming
languages whereas the SQL DOM is designed to be used from
object oriented programming languages.

6. CONCLUSION
6.1 Summary
In this paper we have looked at the problems inherent in accessing
relational databases from object oriented programming languages.
In particular, we have investigated the shortcomings of
communicating with database engines through call level
interfaces. This communication requires the construction of
dynamic SQL statements through string concatenation and string
replacement. Creating SQL statements in this way can lead to a
number of problems, including run time errors, SQL injection
attacks and code that is not easily maintainable.

To overcome these problems, we have introduced an object
model, which we refer to as the SQL DOM. The SQL DOM
allows SQL statements to be constructed through the
manipulation of objects, which are strongly-typed to the database
schema.

6.2 Future Work
There are a number of ways in which the SQL DOM can be
improved.

It has been our experience that many applications use
object/relational mapping and call level interfaces in different
parts of the code. Integrating the SQL DOM with an
object/relational mapper can provide a unified solution.

Currently, the classes that make up the SQL DOM are output as
C# source code using classes from the System.CodeDom
namespace of the .NET Framework. At the time we were
developing sqldomgen, this was the most familiar way to perform
dynamic code generation. We have since come across a tool
called CodeSmith [22]. CodeSmith allows the developer to write

templates in any language that can then be manipulated
programmatically. Rewriting sqldomgen to use CodeSmith would
make it much easier to provide the SQL DOM to other object
oriented langauges such as Java.

sqldomgen is run against a database schema. One of the inputs to
sqldomgen is a connection string which is used to connect to the
database. sqldomgen connects to the database to discover the
schema. Allowing the schema to be specified in other ways, such
as an XSD file, will increase the flexibility of our approach
further.

The SQL DOM classes are manipulated to generate strings
containing SQL statements. These strings are then passed by the
developer through a call level interface to the database engine.
We believe that a significant performance boost can be achieved
by integrating the SQL DOM more closely with a call level
interface. Providing a way to take advantage of the parameterized
query support of the call level interface is an interesting
alternative to just generating strings.

The final piece of future work we suggest pertains to other query
languages. XPATH [8] is another query language where queries
are often constructed using string manipulations. Given an XSD
for an XML document, one could generate a set of strongly-typed
objects. These objects would then be manipulated to obtain an
XPATH query. This approach would give the same benefits to
dynamic XPATH queries as the SQL DOM gives to dynamic
SQL statements.

7. ACKNOWLEDGEMENTS
Our work was partially supported by the UC Discovery Grant and
the Industry-University Cooperative Research Program, as well as
by funds from the California Institute for Telecommunications
and Information Technology (Calit2). We are grateful to Alin
Deutsch and the anonymous reviewers for insightful comments.

8. REFERENCES
[1] .NET Framework. http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/dnanchor/html/
netfxanchor.asp, 2004.

[2] ADO.NET. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cpguide/html/
cpconaccessingdatawithadonet.asp, 2004.

[3] Atkinson, M. P., and Morrison, R. Orthogonally persistent
object systems. VLDB Journal, 4(3):319-401, 1995.

[4] American National Standard for Information Technology.
Database languages – SQLJ – Part 1: SQL routines using the
Java programming language. Technical Report
ANSI/INCITS 331.1-1999, InterNational Committee for
Information Technology Standards (formerly NCITS), 1999.

[5] Brant, J., and Yoder, J. W. Creating reports with query
objects. In Harrison, N., Foote, B., and Rohnert, H., editors,
Pattern Languages of Program Design 4. Addison Wesley,
2000.

[6] C#. http://msdn.microsoft.com/vcsharp/, 2004.

[7] Cengija, D. Hibernate your data. onJava.com, 2004.

95

[8] Clark, J., and DeRose, S. XML Path Language (XPath)
Version 1.0. Technical report, W3C, 1999.

[9] Cook, W., and Rai, S. Safe Query Objects: Statically-typed
objects as remotely-executable queries.
http://www.cs.utexas.edu/users/wcook/Drafts/SafeQuery_Co
okRai.pdf, 2004.

[10] Dub, J. A., Sapir, R., and Purich, P. Oracle Application
Server TopLink application developers guide, 10g (9.0.4).
Oracle Corporation, 2003.

[11] Embedded SQL for C. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/esqlforc/
ec_6_epr_01_3m03.asp, 2004.

[12] Gould, C., Su, Z., and Devanbu, P. Static checking of
dynamically generated queries in database applications. In
Proceedings, 26th International Conference on Software
Engineering (ICSE). IEEE Press, 2004.

[13] Hamilton, G., and Cattell, R. JDBC™ patterns. Sun
Microsystems, 2003.

[14] Howard, M., and LeBlanc, D. Writing Secure Code, Second
Edition, Microsoft Press, ch. 12, 2003.

[15] Keller, W. Mapping objects to tables – a pattern language. In
Proceedings of the 1997 European Pattern Languages of
Programming Conference, number 120/SW1/FB in Siemens

Technical Report, Irsee, Germany, X. EA Generali, Vienna,
Austria.

[16] Leijen, D., and Meijer, E., Domain specific embedded
compilers. In Proceedings of the 2nd conference on Domain-
specific languages, pages 109-122. ACM Press, 1999.

[17] Maier, D. Representing database programs as objects. In
Bancilhon, F., and Buneman, P., editors, Advances in
Database Programming Languages, Papers from DBPL-1,
September 1987, Roscoff, France, pages 377-386. ACM
Press / Addison Wesley, 1987.

[18] Matena, V., and Hapner, M. Enterprise Java Beans
Specification 1.0. Sun Microsystems, 1998.

[19] Oracle SQLJ Roadmap, http://www.oracle.com/
technology/tech/java/sqlj_jdbc/pdf/oracle_sqlj_roadmap.pdf,
2004.

[20] Russell, C. Java Data Objects (JDO) Specification JSR-12.
Sun Microsystems, 1998

[21] Sanders, R. E. ODBC 3.5 Developer’s Guide. M&T Books,
1998.

[22] Smith, E. J. CodeSmith. http://www.ericjsmith.net/
codesmith/, 2004.

96

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

