
2005 ACM Symposium on Applied Computing

Preventing Race Condition Attacks on File-Systems

Prem Uppuluri Uday Joshi Arnab Ray
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

University of Missouri - University of Missouri - State University of New York at
Kansas City, MO, 641 10 Kansas City, MO, 641 10 Stony Brook, NY, 1 1790

ABSTRACT
Race condition attacks occur when a process performs a se-
quence of operations on a fi le, under the assu.m,ption that
the operations are being executed "ato~mically". This can be
exploited by a malicious process which changes the charac-
teristics of that f i le between two successive operations on i t
by a victi,m process, thus, inducing the victi,m process to op-
erate on a ,modified or diflerent file. I n this paper we present
a practical approach to detect and prevent such race condi-
t ion attacks. We ,monitor f i le operations and enforce poli-
cies which prevent the exploitation of the temporal window
between any consecutive f i le operations by a process. Our
approach does not rely on knowledge of previously known at-
tacks. I n addition, our experiments on L inux de,monstrated
that attacks can be detected wi th false alarms of less than 3%
wi th performance overheads less than 8% of the processes ex-
ecution tisme.

Keywords
Security, Race conditions, system calls

1. INTRODUCTION
Race condition attacks on file systems exploit tlie follow-

ing flaw in process beliavior: wlien a process performs a
sequence of operations on a file, it assumes tliat tlie file does
not cliange between any two successive operations. An at-
tack can tli~ts manifest itself by changing the file during tlie
temporal interval between two successive operations on it
by a victim process. We call the temporal window as a
race window. Potential damage can be caused tlirougli the
following two scenarios: (a) the victim process operates on
tlie clianged file, unwittingly, causing damage, or, (b) infor-
mation is leakedlwritten fromlinto the file illegally if the
victim's operations allow tlie attacker to get permissions on
tlie file during the race window. A number of such attacks
in the former category liave been reported [6, 161. Wliile to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission andlor a fee.
SAC 0 5 , March 13-17,2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-581 13-964-0/05/0003 ... $5.00.

our knowledge based on tlie CERT advisories, no attack in
tlie later category lias been reported, it lias tlie potential to
be exploited.

A classic example of a race condition attack is tlie at-
tack on tlie program Binmail [14, 121 in UNIX. Binmail is a
setuid-to-root program - a program which can be invoked by
an ordinary user to perform some operations witli super-user
privileges. Tlie Binmail program when delivering a mail to
a user, cliecks for tlie existence of a temporary file using a
stat system call. If tlie file exists, it deletes it. Next, it
creates tlie file and writes tlie mail into it, using tlie open
system call witli one of O-CREAT (create the file if it does
not exist) or 0-TRUNC (truncate the file if it exists and is not
empty) or 0-WRONLY (open the file for writing if it exists and
is empty) modes. An attacker can exploit the time interval
between the stat call and tlie open call as sliown in Figure I.
This attack induces Binmail to truncate the password file,
/etc/passwd.

Previous research lias usually focused on detecting only
known race condition attacks [7, 10, 141 and/or do not de-
tect attacks in scenario (b) [13, 211. In this paper, we present
a practical approach to detect and prevent both known and
unknown race condition attacks. The core of our approacli is
in identifying, non-co.m,mutable file operations. Specifically,
wlien a process P is performing two consecutive file opera-
tions 01 and 0 2 on a file, then any operation 0' on that
file by some other process, between 01 and 0 2 , is said to be
non-commutable witli 01 if 0' changes the filena,me-space
tliat results in damage either due to scenarios (a) or (b).
Tlie salient contributions of our paper are:

Characterizing commutability of file operations in terms
of independent sets [2] calculated on the Labeled Tran-
sition System (LTS) defined by the system-call beliav-
ior of the processes. Tliis is achieved by constructing
the system-call graph of a process, and then by pro-
viding a cliaracterization of "safety" in the framework
created. We use this cliaracterization to develop poli-
cies. (Section 4 and Section 5).

Addressing the practical issues in attack detection. In
particular, we discuss tlie need to consider the associ-
ations between filename, inode number, file attributes
and content wlien considering race conditions. In ad-
dition we discuss the issues related to false alarms and
efficiency of detection. (Section 2 and Section 6).

Demonstrate tlic practical fcasibility of our approacli.

Steps Subject Operation Comment
1. binmail tmp file = mktemp() Generate unique temp filename
2. binmail stat(tmp file) Check for the existence of the file
3. binmail if file exists(tmp file) unlink(tmp file) if the file exists delete it
4. attacker link -s /etc/passwd tmp file attacker creates a symbolic link

from tmp file to a privileged file
5. binmail open(tmp file, O CREAT|O TRUNC|O WRONLY) open resolves the symbolic link tmp file

to /etc/passwd and truncates the file

Figure 1: Attack on binmail program

Specifically we show through experimentation the ef-
fectiveness of our approach in attack detection as well
as its efficiency and ease of use (Section 7)

In the next section we discuss the practical issues in de-
tecting attacks.

2. PRACTICAL ISSUES
We motivate this section with the following examples:

• Simple access-open attack. This attack exploits the
race window between the following two successive oper-
ations of a setuid-to-root process P : checking user’s
permissions to create/write a file Y using the access

system call, and then opening the file Y using an open

call for writing. Setuid-to-root programs perform these
two operations to ensure that when a user wants to
write into a file, the user has the permissions to do so.
Without this check, the setuid-to-root program can be
used to open any file writing, since it runs with admin-
istrator (root) privileges. An attacker can exploit this
race window by running the setuid-to-root program.
After the process executes the access call, to check if
the attacker has permissions to write Y , the attacker
deletes Y . She then creates a new symbolic link Y to
some privileged file X. When the setuid-to-root pro-
gram opens file Y as part of its second operation, it
resolves the symbolic link Y and ends up opening X,
causing the program to write into X. The attacker has
exploited the race window with the observation that
any user can create a symbolic link to a privileged file
and the open system call does not check for the permis-
sions of the user running the program – rather it uses
the effective user id of the program, which is, root.

• Directory redirection attack (Figure 2): In this attack
the attacker replaces the directory in which a file was
being accessed by a setuid-to-root program. When the
program opens the file, it is actually referring to a dif-
ferent file with the same filename.

• filelogger attack (Figure 3): filelogger is a privileged
program which appends messages to a logfile. If the
logfile reaches the maximum size (i.e., it fills the filesys-
tem), the process moves it to another filesystem and
creates a new logfile. The process checks the file size
(using stat) before opening it (open) for writing. An
attacker can exploit the time interval between stat and
open by appending a large message to the file, forcing
it to run out of space. The open system call then fails,
possible causing loss of key log-messages.

• Readfile attack: (Figure 4) Consider a privileged pro-
gram which opens a file (using open) and then changes
the files permissions (using chmod), to ensure that it
is not read by any other program. An attacker can
read the information between the open and chmod, thus
causing privileged information leak.

The above examples illustrate some key lessons:

• Changes to filesystem name-space can manifest in dif-
ferent ways: Files in UNIX are characterized by a
unique id (inode number), one or more filenames, at-
tributes such as permissions and the data blocks which
store the file content. Hence, a change to the filesystem
can be defined as a change in the association between
either (a) inode number and file name, or (b) the inode
number and file data or attributes.

• An operation’s malicious intent is application specific:
Defining if a particular operation during the race win-
dow constitutes an attack is dependent on application
semantics. For instance, if two editors are simultane-
ously editing a file, it may be an error but not nec-
essarily an attack, unlike in the filelogger attack.
Similarly, two or more applications reading a file con-
currently do not constitute an attack, unlike in the
case of the readfile attack. Therefore, any approach
to detect race condition attacks must consider applica-
tion specific semantics. This is a key issue not only to
detect stealthy attacks but also to reduce false alarms.

In addition to the above requirements, to detect attacks
pro-actively, i.e, before they cause damage, the approach
has to be efficient. This is a challenge because a race can be
between any two file operations between any two processes –
making the number of operations/files to be considered very
high.

3. OVERVIEW OF OUR APPROACH
In our approach we define the notion of commutability.

We then develop security policies which capture this notion.
Policies are expressed as patterns over sequences of file re-
lated system calls and their arguments. The choice of using
system calls is based on the observation that, all file opera-
tions manifest themselves as system calls. This observation
is valid in most cases, since, the only way to modify files
is (a) using systemcalls on UNIX or (b) by covert channels.
Files can modified by covert channels, e.g., by mapping the
file into memory using the mmap system call and then mod-
ifying the memory by directly modifying the /dev/mem file
– an image of the main memory. We do not address covert
channels in this paper.

347

Steps Subject Operation Comment
1. setuid program access(file, W OK) determine if it is ok for the real user to write into file.

Assume file is in /tmp/a/b/c/file directory
2. attacker replace(/tmp/, /etc) replace the /tmp directory with some other directory
3. setuid program open(file, O RDWR) opens the file, but this refers to a different file since

the directory has been changed

Figure 2: Abstract attack based on directory relocation

Steps Subject Operation Comment
1. filelogger lf=stat(log file) check the size of log file
2. filelogger if (size(lf)<MAX ALLOWED+bytes) file size should be within some system defined limit
3. attacker append(log file, HUGE DATA) append data to make log file go over the limit
4. filelogger s = write(log file, buf, bytes) attempt to write the buffer, but s = no file space !

Figure 3: Attack on filelogger

System call policies are specified using a high-level policy
language called, behavior modeling specification language
(BMSL) [20, 23]. BMSL extends the familiar pattern-matching
constructs of regular expressions (regexs) to the domain of
events (in this paper system calls) with arguments.

Two types of policy specifications are developed in our
approach: generic and application specific. Generic policies
capture commutability relation between file operations that
are applicable to most of the processes. On the other hand,
application specific policies are tailored to the semantics of
specific applications. Specifications in BMSL are compiled
into efficient enforcement mechanisms called detection en-
gines (DEs). The DEs match the system calls with the poli-
cies in the specification using an efficient pattern matching
algorithm [22] and trigger a reaction when an attack is de-
tected.

The runtime system is shown in Figure 5. It includes
the following: a configuration file which allows a user
to associate specific applications with their specific DEs (if
applicable), a kernel runtime system (KRT), which intercepts
all the system calls both at the time of entry into the ker-
nel and at the time of their return, a base kernel detection
engine (KDE) whose functionality is to keep track of files be-
ing operated on by the processes, and, DEs which enforce
the security policies. In this figure, each process P1, · · ·Pn

is monitored by a DE DEn – the enforcement mechanism
for the generic specification. Certain processes such as P1
are also being monitored by one or more application specific
policies (DE1).

4. DEFINING COMMUTABILITY
A process graph is an abstract representation of a pro-

cess’s externally observable behavior. In general, in a multi-
threaded operating system each process executes in its own
space and makes a series of system calls. [For the purpose of
our discussion all system calls are file operation related]. A
system call graph is a process graph or a Labeled Transition
System (LTS) that encodes sequences of system calls made
by the process in terms of states and transitions – with each
state of the system call graph representing a ”snapshot” [val-
uation to variables] of the process before (after) executing a
system call transition while the labels are simply the system
call names.

When a system consists of multiple process graphs oper-
ating in parallel, then the set of traces of the entire system
may be looked upon as the interleaving of the individual
traces of the process graphs. This brings us to the issue of
characterizing file commutativity in the LTS framework for
representing system call behavior of processes. In order to
do this we adapt the concept of independent actions.

Let α be a high privileged file operation [i.e., it is per-
formed by a privileged process] and β be a low privileged
file operation [i.e., it is performed by a normal process]. The
two actions α and β are independent if for all states s: (1)
if α is enabled at a state s then after the execution of α it
should be possible for β to be enabled; (2) if β is enabled at a
state s then after the execution of β it should be possible for
α to be enabled and (3) if both α and β are enabled at the
same state s then the result of executing α first and β second
would be equivalent to the result of executing β first and α

next. In other words, α and β cannot enable or disable each
other and their order is irrelevant with respect to a partic-
ular kind of equivalence. For our purpose, this equivalence
is defined with respect to identical file-system name spaces.
For reasons of space we do not provide the formal definition
of the equivalence relation but merely provide the intuition
that two states are deemed to be equivalent if they have the
same ”file-system view” that is they cannot be distinguished
by the file system. [Note two equivalent states may provide
very different valuations to non-file system parameters]

The automata theoretic characterization of file commutabil-
ity is significant because it lifts the purely mathematical
concept of commutability to a trace-based finite state do-
main. In other words we transform the denotational char-
acterization of commutability to an equivalent operational
characterization which in turn enables us to formulate im-
plementation polices in a more natural fashion. We use this
commutability definition to develop security policies using
system calls.

5. SECURITY POLICIES
BMSL policies is used to specify the commutability rela-

tionshiops. Associated with them are reactions which are
triggered when actual file related system calls match the
policies.

As a first step to policy development (to make it easier to

348

Steps Subject Operation Comment
1. readfile lf=chmod(privX,777) change permissions to world read/write privX
2. attacker open and read(privX) open and read the filefile
3. readfile do something and chmod(privX, 700) remove permissions

Figure 4: Attack on readfile

{

DEn

DE1

file history table

Pn

processes

P1

KDE

Process P1 DE1

Program1,Program2::DE

Interceptor (KRT)

. . .

. . .
Configuration File
(Program to Detection Engine Map)

Process <−> Detection Engine Map

KERNEL

USER SPACE
. . .

. . .

D
etection E

ngines (D
E

)

}

DE: Policy Enforcement
Notations:

 Mechanisms
KDE: Base Detection
 Engine

Figure 5: Runtime System Architecture

handle the large number of system calls) we group system
calls and associate abstract events with each group. Poli-
cies are written using the abstract events. Use of abstract
events rather than low-level system calls in policies allow
them to be portable. This is because the system call API
among UNIX variants mostly differ only in the type and
number of parameters in each system call and not in their
names. Examples of such groups are shown in Figure 6.
Each group has a set of system calls, separated by disjunc-
tion (||) and associated with an abstract event. For in-
stance, the fileWriteOps(pathname) event, maps to a dis-
junction of all the system calls which perform a write oper-
ation on a pathname such as,
open(pathname, O RDWR) and creat. The pid argument tracks
the process making the call. Semantically, when a process
executes a system call, the call matches the abstract event,
if and only if, it matches one of the system calls represented
by the event. A more extensive discussion of grouping was
presented in [22].

As a next step, we identify pairs of abstract events which
are not commutable for most of the programs. Specifically,
when any of following operations occur within a race win-
dow, the events causing these operations are deemed non-
commutable:

a. changing the filename-inode association.

b. replacing the file contents when the victim process is
performing write operations on the file.

In the first case, the victim process starts operating on a
completely different file. This causes the intended behavior
of the victim process to change – and hence, can be con-
sidered as an attack. In such a case, the security policies
terminate the process executing the malicious operation.

The second case is however not clear-cut. Such cases can
also be part of intended behavior, e.g., multiple processes
writing into a logfile. To prevent false alarms, in such cases,
the policies trigger a reaction which delay’s the process caus-
ing the potentially malicious system call by putting the pro-

cess in a wait queue and moving it to the runqueue queue
only when the victim process closes the file or exits. This
type of delay reaction was, to our knowledge, first proposed
by [21]. Note that, the delay reaction has the simple effect
of serializing concurrent file transactions and hence can be
used for all file-related race conditions. We however, use
it conservatively, since we believe that interactive processes
can get unresponsive if they are delayed. Figure 7 shows the
security policy that specify these checks in BMSL. In the
policies “|” symbol associates a condition/assignment with
a system call, the “·” stands for a sequence operation and
the “*” is the standard Kleene-closure symbol.

In addition, we developed application-specific policies for
the filelogger and readfile programs, to demonstrate the
need for a high level language such as BMSL. Specifically,
the following policies were developed:

• appending to a file, when filelogger process is ac-
cessing it is disallowed.

• reading a file, when readfile process is accessing it is
disallowed.

Figure 8 shows the BMSL policies corresponding to the
above operations. Note that, for the filelogger program,
the response move file is launched - it moves the log file into
backup and creates a new file with that pathname and then
allows the append operation to proceed. This prevents any
false alarms when, for instance, multiple file logger programs
are accessing the same file.

6. IMPLEMENTATION
Our code was implemented as a loadable kernel module on

Linux. The module code was kept simple, running to about
1000 lines of code. In addition to the runtime infrastruc-
ture discussed in Section 3, some of the key implementation
details are:

• Runtime structures and functions to keep the low-level
details of virtual file systems (VFS) hidden from policy

349

/* write system calls on a pathname */
writeOps(path, pid) := {open(path,O RDWR|O CREAT |O APPEND|O WRONLY |O TRUNC, pid)

||truncate(path, length, pid)||creat(path,mode, pid)||mkdir(path,mode, pid)}
/* replace operations on a pathname */

fileReplaceOps(path, pid) := {unlink(path, pid)||link(path, pid)||symlink(path, pid)
||rename(path,newpath, pid)||rmdir(path, pid)}

/* privileged operations on a file - can be performed only by a root */
privilegedF ileOps(path, pid) := {chown(path, owner, group, pid)||chroot(path, pid)}

/* file attribute change system calls */
fileAttribChange(path, pid) := {chmod(path,mode, pid)||utimes(path, buf, pid)}

/* file attribute check system calls */
fileAttribCheck(path, pid) := {stat(path, buf, pid)||lstat(path, buf, pid)||access(path, pid)}

/* write or privileged system calls */
writeOrPrivilegedOps(path, pid) := {writeOps(path, pid)||privilegedF ileOps(path, pid)||fileAttribCheck(path, pid)}

/* append operations */
fileAppendOps(path, pid) := {open(path,O APPEND, pid)}

/* all file operations: disjunction of all the above events */
allF ileOps(path, pid) := writeOps(path, pid)|| · · · ||fileAppendOps(path, pid)

Figure 6: Classification of file related calls. Disjunction between the calls is represented using || symbol

/* A file cannot be replaced after a stat or access call */
1. (fileAttribCheck(path, pid))

·(!fileOps(path, pid))*· (fileReplaceOps(path, pid2)|pid 6= pid2) → {term(pid2)}
/* No process can must change the inode number of the file when it is being accessed by another process */
2. ((allF ileOps(path, pid) · (!allF ileOps(path, pid))*

·(fileReplaceOps(path, pid2)|pid 6= pid2) → term(pid2)
/* Checks for the change in the contents of an inode across two successive operations by the same process */
3. ((writeOps||PrivilegedF ileOps(path,pid) · (!closeF ileOps(path, pid))*

·(fileContentReplaceOps(path, pid2)|pid 6= pid2) → delay(pid2)

Figure 7: Generic policies. && : conjunction, ·: sequence, |: such that, *: kleene-closure

writers. In addition, these structures were designed
to prevent conflicts and redundant information from
being maintained when multiple processes access the
same file. The salient implementations were:

– Methods to access VFS file details: They probe
the struct nameidata of VFS, for inode number,
file size and mode.

– Structure to keep track of files being accessed by
processes: We maintain, globally, two instances of
a hashtable, called file history. Each instance
is indexed by either the filename or inode number
and points to the structure:

struct fileinfo {
int pid[256]; // pid’s accessing the file
char* pathname; //canonicalized pathname
int de_ino; // file’s inode number
int refcount; //#processes accessing file

}

An entry in the hash-table is deleted when
refcount=0.

7. EXPERIMENTATION
We conducted experiments to test: the effectiveness of our

prototype in detecting known/unknown attacks at runtime,
and its performance. All the experiments were conducted on
a Pentium 4 machine with 256 Mb RAM running Red Hat

7.3. In the experiments, the prototype was used to monitor
all programs on the system. In addition, we specifically ran,
I/O intensive applications (to measure performance), setuid
to root programs and commonly used daemons providing re-
mote services. The specific programs were: gcc, mount, tar,
gzip, filelogger, make, in.ftpd, in.telnetd and sshd.

7.1 Attack Datasets
To create an attack dataset, we searched through CERT

advisories [6] and the GIAC practical repository on race con-
dition attacks [16]. The latter categorizes race condition
attacks into: file redirection, setuid scripts and relocated
subdirectory attacks. In the CERT advisories we found at-
tacks in the file redirection and setuid scripts categories.
We selected the following three attacks from these two cate-
gories: periodic cron process temporary file attack, mkdir-
chown file redirection attacks, and setuid to root attack: the
access-open attack. For the relocated subdirectory attack
category, we developed an attack called mount random direc-
tory attack – a concrete version of the relocated-subdirectory
attack discussed earlier in Figure 2. In addition, we devel-
oped an attack, which has not yet been exploited called
the filelogger attack discussed earlier in Figure 3 and
readfile of Figure 4. Note that since, the experiments were
on RedHat 7.2, in which all flaws which these attacks exploit
were fixed. Hence, to run the attacks the source code of the
programs was downloaded and the flaws were reinserted.

350

/* After fileLogger checks a file’s size, and before it opens it for writing, no unprivileged process can append the file */
1. fileAppendOps(path, pid)|path ∈ LogF ileList && pid ∈ PrivilegedProcessList

·(!fileOps(path, pid))*· fileAppendOps(path, pid2) → {move file(path)}
/* No reading of the file in race window for the readfile program */
2. (fileAttribChange(path,mode, pid)|pid = readfile pid && mode = 777)

·(!fileAttribChange(path,mode, pid)|mode = 700)*
·(fileReadOps(path, pid2)||fileWriteOps(path, pid2))

→ {term(pid2)}

Figure 8: Application specific policies

7.2 Attack Detection
We executed the attacks randomly. When only the generic

policies were used, we could detect all the attacks except:
filelogger and readfile, which were detected by the ap-
plication specific policies. Table 9 summarizes these results.

7.3 Performance Measurement
Performance is affected by overheads due to: (a) system

call interception, (b) pattern matching of system calls with
the DEs and (c) storage and lookup of file information. Out
of these parameters, we were only concerned with (b) and
(c). This is because, system call interception introduces con-
stant overheads. Specifically, I/O bound processes (such as
tar and gzip) typically have interception overheads of about
20%, while the overhead due to CPU bound processes (such
as in.ftpd – ftp server) is 5% [11]. This overhead is directly
proportional to the number of system calls being executed
and is independent of the nature of DEs – the contribution
of this paper.

To measure overheads due to (b) and (c), we developed
the following test suite:

• gcc on a large file (∼5200 source lines), which mea-
sures the overhead due to (b) and (c) without taking
into consideration the overheads caused by possible in-
terferences by other gcc processes also accessing the
same file history tables.

• multiple gcc’s, by compiling our prototype (using a
make file). Specifically, this compiles 28 C++ source
files, over 8 subdirectories. It resulted in 28 total gcc
invocations, of which we noticed around 22 parallel in-
vocations. The overhead here include overheads due to
performing multiple inode lookups as well as takes into
account interferences by processes in accessing same
file history tables.

• two I/O intensive programs gzip and tar, which make
numerous file operations. Both these programs were
run on our prototype directory.

Figure 10 presents the results. I/O intensive programs show
greater overheads than CPU bound since they make a larger
percentage of file related calls than the CPU intensive pro-
grams.

7.4 Discussion of Effectiveness Results

7.4.1 False Alarm Rate
The prototype detected all the attacks with few false alarms.

This is mainly due to the delay reaction. Another reason for

Program Percent of Overhead
file-related calls percent

(s)
gcc 10% 1.33%
make 30% 3.171%
tar 73% 7.34%
gzip 49% 3.69%

Figure 10: Total overhead due to enforcement of poli-

cies.

few false alarms is the use of application-specific policies. We
must note that, if the attack data set were larger, we might
have experienced more false alarms. Our results, however,
indicate the high signal-to-noise ratio of our approach.

7.4.1.1 Novel attacks.
The specifications depend on the knowledge of program

behavior and not on the actual attack signatures. For in-
stance, the specifications for the filelogger program con-
sidered the behavior of filelogger. The signature of the
attack, which involved, a malicious append operation was
not considered. Hence, our approach differs from traditional
misuse based approaches. A standardized intrusion detec-
tion evaluations on a similar scale as that of DARPA Lincoln
Labs evaluations of 1998,1999,2000 [15] needs to be however
performed to better justify the ability of our approach to
detect known/unknown attacks.

8. RELATED WORK
Preventing race conditions is a well researched area in

concurrent and multi-threaded systems [3, 18]. More re-
cent works have looked at races in multi-threaded programs.
They include approaches based on static analysis [5, 19],
runtime detection of races [8, 17] and a combination of both
[1]. However, these approaches cannot be directly applied
to detecting race condition attacks, because of the following
reasons:

• The underlying assumption in these approaches are
that they have the source code available for all the
processes involved in a race. However, this is not al-
ways the case. Moreover, in race condition attacks, the
information about all the programs involved in the at-
tack may not available. This is because any malicious
process may cause the attack by interfering with the
execution of a privileged process.

• Not all races conditions can be characterized as at-

351

Percent instances detected
Attack Name

Description (gc) (ps/pg)
periodic attacker guesses name of temporary file

used by privileged process and replaces it 100 100
mkdir-chown Exploits time interval between a process

creating a directory and changing its ownership 100 100
Simple access-open See Section 2 0 100

mount attack See Figure 2 100 100
filelogger See Figure 3 0 100
readfile See Figure 4 0 100

Figure 9: Attack Information. gc: only generic specification, ps/pg: program specific/program group specifications

tacks. For instance a race condition in which a user
opens the same file using two editors is not an attack
– just an error.

In the area of computer security, there have been approaches
which are aimed at preventing race condition attacks. These
include the static analysis approach of [4], where programs
are statically analyzed to detect operations that have been
exploited previously. However, it suffers from the same prob-
lem as other static analysis approaches – explosion in state
space. In addition, this approach can only prevent known
attacks. Raceguard [7] is a practical mechanism to prevent
race conditions in UNIX. However, it only prevents race con-
ditions on temporary files.

The non-interference technique [13], provides a theoreti-
cal formulation of what constitutes a race condition attack.
In doing so they draw from the previous works on concur-
rent systems [3, 18]. However, their approach is abstract.
Though, they use a subset of their formalisms to create
a prototype to detect attacks, they neither discuss any of
the practical challenges nor have they presented any results.
Moreover, they do not address the issue of attacks that cause
information leak.

[21] describe a practical approach to dynamically detect
and prevent attacks. Their approach is based on monitoring
file operations using what they call as deny and allow spec-
ifications. A deny specification allows all commutations of
file operations except those which are explicitly denied. This
is similar to a misuse-based approach as they deny only the
attacks which have been exploited. The allow specification
is used to detect unknown attacks. This denies all commu-
tations of file operations except those which are explicitly
specified to be allowed. A key contribution of this work is the
delay reaction we discussed earlier. While this approach is
practical, it differs from our approach in the following ways:

• They only consider filename-space associations. For
instance, their approach cannot detect attacks which
only change the contents of a file not its characteristics.

• They use only inode numbers of files to determine if file
operations commute. Hence, their approach cannot
detect the directory relocation attack of Figure 2, in
which inode numbers of each and every subdirectory
in the pathname of the file have to be considered for
successful detection.

• Allow/deny policies are universally enforced on all the

processes. This leads to one of the following problems:
either their allow policies are very strict, causing lots
of false alarms, or are very flexible thus being unable to
detect unknown attacks. They do not discuss the false
alarms when using the allow policy. We should note
though that in their approach the default action when
they detect an attack is to delay the other process.
Hence, false alarms simply slow down the processes
but do not effect their working.

9. LIMITATIONS
Our approach does not detect attacks which use covert

channels, e.g., modifying the /dev/mem file. This file is an
image of the main memory of the system. Hence, if a file is
already loaded into the main memory, a user can change its
attributes or content by editing this file. However, not only
does this require a user to have super-user privileges, it is
also a difficult task that can easily crash the system if the
edits are not accurate.

Another example of such a covert channel is: files which
are already mapped into the main memory can be modified
using system calls which directly effect memory, such as brk.
Filenames do not appear as arguments for such calls. Hence,
our approach cannot detect such attacks. However, modify-
ing the memory map of a file by a process, other than the one
opening the file, is disallowed in Linux unless that process
is a lightweight process created by the main process using
clone system call. Though there can be other such covert
channels, we did not find any such attacks (or the above
mentioned limitations) reported either in CERT advisories
[6] or in [16].

A more significant limitation is that we did not address
race conditions that might occur within the execution of a
system call itself [24, 9]. A possible solution would be to
use lower-level events such as Linux Security Module (LSM)
hooks [24].

10. REFERENCES
[1] Rahul Agarwal and Scott D. Stoller. Type inference

for parameterized race-free java. In 5th ICVMC,
volume 2937 of LNCS, 2004.

[2] Rajeev Alur, Robert K. Brayton, Thomas A.
Henzinger, Shaz Qadeer, and Sriram K. Rajamani.
Partial-order reduction in symbolic state-space

352

exploration. Formal Methods in System Design,
18:97–116, 2001.

[3] Arthur Bernstein. Analysis of programs for parallel
processing. In IEEE Trans. Electronic Comput. EC-15
5, 757-763, 1966.

[4] Matt Bishop and Michael Dilger. Checking for race
conditions in file accesses. Computing Systems,
9(2):131–152, Spring 1996.

[5] Chandrasekhar Boyapati and Martin Rinard. A
parameterized type system for race-free Java
programs. In 16th OOPSLA, October 2001.

[6] CERT. http://www.cert.org/advisories/index.html.

[7] Crispin Cowan, Steve Beattie, Chris Wrigh, and Greg
Kroah-Hartman. Raceguard. In 10th USENIX Security
Symposium, 2001.

[8] Stefan Savage et al. Eraser: A dynamic data race
detector for multithreaded programs. ACM TCS,
15(4):391–411, 1997.

[9] Tal Garfinkel. Traps and pitfalls: Practical problems
in in system call interposition based security tools. In
NDSS, 2003.

[10] K. Ilgun. A real-time intrusion detection system for
unix. In IEEE S&P, 1993.

[11] K. Jain and R Sekar. User-level infrastructure for
system call int erposition: A platform for intrusion
detection and confinement. In ISOC NDSS, 2000.

[12] C. Ko. Execution Monitoring of Security-Critical
Programs in a Distributed System. PhD thesis,
UCDavis, Dec 1996.

[13] Calvin Ko and Timothy Redmond. Noninterference
and intrusion detection. In IEEE S&P, 2003.

[14] S. Kumar. Classification and Detection of Computer
Intrusions. PhD thesis, CERIAS lab, Purdue
University, December 1995.

[15] R. Lippmann, J.W. Haines, D. Fried, J. Korba, and
K. Das. The 1999 darpa off-line intrusion detection
evaluation. In Computer Networks, 2000.

[16] J. Craig Lowery. A tour of tocttou. In SANS GSEC
practical v1.4b, 2002.

[17] José F. Mart́ınez and Josep Torrellas. Applying
thread-level speculation to explicitly parallel
applications. In ASPLOS, San Jose, CA, 2002.

[18] Robert H. B. Netzer and Barton P. Miller. What are
race conditions?: Some issues and formalizations.
ACM Lett. Program. Lang. Syst., 1(1):74–88, 1992.

[19] Bruno Blanchet Patrick. A static analyzer for large
safety-critical software. In
citeseer.nj.nec.com/581205.html.

[20] R. Sekar and Prem Uppuluri. Synthesizing fast
intrusion prevention/detection systems from high-level
specifications. In USENIX Security Symposium, 1999.

[21] Eugene Tsyrklevich and Bennet Yee. Dynamic
detection and prevention of race conditions in file
accesses. In USENIX Security Symposium, 2003.

[22] P. Uppuluri and R. Sekar. Experiences with
specification-based intrusion detection. In RAID,
LNCS, 2001.

[23] Prem Uppuluri. Intrusion Detection/Prevention Using
Behavior Specfications. PhD thesis, SUNY Stony

Brook, August 2003.

[24] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah. Linux security modules. In
citeseer.nj.nec.com/wright02linux.html, 2002.

353

