
Exterminator: Automatically Correcting Memory Errors
with High Probability

Gene Novark
Dept. of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

gnovark@cs.umass.edu

Emery D. Berger
Dept. of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

emery@cs.umass.edu

Benjamin G. Zorn
Microsoft Research
One Microsoft Way

Redmond, WA 98052
zorn@microsoft.com

Abstract
Programs written in C and C++ are susceptible to memory er-
rors, including buffer overflows and dangling pointers. These er-
rors, which can lead to crashes, erroneous execution, and security
vulnerabilities, are notoriously costly to repair. Tracking down their
location in the source code is difficult, even when the full memory
state of the program is available. Once the errors are finally found,
fixing them remains challenging: even for critical security-sensitive
bugs, the average time between initial reports and the issuance of a
patch is nearly one month.

We present Exterminator, a system that automatically corrects
heap-based memory errors without programmer intervention. Ex-
terminator exploits randomization to pinpoint errors with high
precision. From this information, Exterminator derives runtime
patches that fix these errors both in current and subsequent execu-
tions. In addition, Exterminator enables collaborative bug correc-
tion by merging patches generated by multiple users. We present
analytical and empirical results that demonstrate Exterminator’s ef-
fectiveness at detecting and correcting both injected and real faults.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Error handling and recovery; D.2.0 [Software Engineer-
ing]: Protection mechanisms; D.3.3 [Programming Languages]:
Dynamic storage management; G.3 [Probability and Statistics]:
Probabilistic algorithms

General Terms Algorithms, Languages, Reliability, Security

Keywords DieFast, Exterminator, dynamic memory allocation,
error correction, memory errors, probabilistic memory safety, ran-
domized algorithms

1. Introduction
The use of manual memory management and unchecked memory
accesses in C and C++ leaves applications written in these lan-
guages susceptible to a range of memory errors. These include
buffer overruns, where reads or writes go beyond allocated regions,
and dangling pointers, when a program deallocates memory while
it is still live. Memory errors can cause programs to crash or pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

duce incorrect results. Worse, attackers are frequently able to ex-
ploit these memory errors to gain unauthorized access to systems.

Debugging memory errors is notoriously difficult and time-
consuming. Reproducing the error requires an input that exposes
it. Since inputs are often unavailable from deployed programs, de-
velopers must either concoct such an input or find the problem via
code inspection. Once a test input is available, software develop-
ers typically execute the application with heap debugging tools like
Purify [21] and Valgrind [30, 40], which slow execution by an or-
der of magnitude. When the bug is ultimately discovered, develop-
ers must construct and carefully test a patch to ensure that it fixes
the bug without introducing any new ones. According to Syman-
tec, the average time between the discovery of a critical, remotely
exploitable memory error and the release of a patch for enterprise
applications is 28 days [44].

As an alternative to debugging memory errors, researchers have
proposed a number of systems that either detect or tolerate them.
Fail-stop systems are compiler-based approaches that require ac-
cess to source code, and abort programs when they performs illegal
operations like buffer overflows [1, 2, 14, 16, 29, 45, 46]. They
rely either on conservative garbage collection [9] or pool alloca-
tion [15, 17] to prevent or detect dangling pointer errors. Failure-
oblivious systems are also compiler-based, but manufacture read
values and drop or cache illegal writes for later reuse [35, 36]. Fi-
nally, fault-tolerant systems mask the effect of errors, either by log-
ging and replaying inputs in an environment that pads allocation
requests and defers deallocations (e.g., Rx [32]), or through ran-
domization and optional voting-based replication that reduces the
odds that an error will have any effect (e.g., DieHard [3]).

Contributions: This paper presents Exterminator, a runtime sys-
tem that not only tolerates but also detects and corrects heap-based
memory errors. Exterminator requires neither source code nor pro-
grammer intervention, and fixes existing errors without introducing
new ones. To our knowledge, this system is the first of its kind.

Exterminator relies on an efficient probabilistic debugging allo-
cator that we call DieFast. DieFast is based on DieHard’s alloca-
tor [3, 4], which ensures that heaps are independently randomized.
However, while DieHard can only probabilistically tolerate errors,
DieFast probabilistically detects them.

When Exterminator discovers an error, it dumps a heap image
that contains the complete state of the heap. Exterminator’s proba-
bilistic error isolation algorithm then processes one or more heap
images to locate the source and size of buffer overflows and dan-
gling pointer errors. This error isolation algorithm has provably low
false positive and false negative rates.

Once Exterminator locates a buffer overflow, it determines the
allocation site of the overflowed object, and the size of the over-

1

Error DieHard [3] Exterminator
invalid frees tolerate tolerate
double frees tolerate tolerate
uninitialized reads detect∗ N/A
dangling pointers tolerate∗ tolerate∗ & correct∗
buffer overflows tolerate∗ tolerate∗ & correct∗

Table 1. A summary of how Exterminator handles particular mem-
ory errors (Section 2): invalid and double frees have no effect, and
Exterminator probabilistically corrects dangling pointers and buffer
overflows. The asterisk superscript means “probabilistically.”

flow. For dangling pointer errors, Exterminator determines both the
allocation and deletion sites of the dangled object, and computes
how prematurely the object was freed.

With this information in hand, Exterminator corrects the errors
by generating runtime patches. These patches operate in the con-
text of a correcting allocator. The correcting allocator prevents
overflows by padding objects, and prevents dangling pointer errors
by deferring object deallocations. These actions impose little space
overhead because Exterminator’s runtime patches are tailored to
the specific allocation and deallocation sites of each error.

After Exterminator completes patch generation, it both stores
the patches to correct the bug in subsequent executions, and triggers
a patch update in the running program to fix the bug in the current
execution. Exterminator’s patches also compose straightforwardly,
enabling collaborative bug correction: users running Extermina-
tor can automatically merge their patches, thus systematically and
continuously improving application reliability.

Exterminator can operate in three distinct modes: an iterative
mode for runs over the same input, a replicated mode that can
correct errors on-the-fly, and a cumulative mode that corrects
errors across multiple runs of the same application.

We experimentally demonstrate that, in exchange for modest
runtime overhead (geometric mean of 25%), Exterminator effec-
tively isolates and corrects both injected and real memory errors,
including buffer overflows in the Squid web caching server and the
Mozilla web browser.

Outline: The remainder of this paper is organized as follows. First,
Section 2 describes the errors that Exterminator detects and cor-
rects. Next, Section 3 introduces Exterminator’s software architec-
ture. Section 4 presents Exterminator’s error isolation algorithms
for its iterative and replicated modes, and Section 5 describes the
isolation algorithms for its cumulative mode. Section 6 describes
the correction algorithm that applies the patches that the error iso-
lator generates. Section 7 empirically evaluates their cost and effec-
tiveness on real applications, both with injected and actual mem-
ory errors. Finally, Section 8 discusses key related work, Section 9
presents directions for future work, and Section 10 concludes.

2. Memory Errors
Table 1 summarizes the memory errors that Exterminator ad-
dresses, and its response to each. Exterminator identifies and cor-
rects dangling pointers, where a heap object is freed while it is still
live, and buffer overflows (a.k.a. buffer overruns) of heap objects.
Notice that this differs substantially from DieHard, which tolerates
these errors probabilistically but cannot detect or correct them.

Exterminator’s allocator (DieFast) inherits from DieHard its im-
munity from two other common memory errors: double frees, when
a heap object is deallocated multiple times without an intervening
allocation, and invalid frees, when a program deallocates an object
that was never returned by the allocator. These errors have serious

00000001 1010 10
����������	 ���
 ����

�

��������� ��� ��

3 5
3

A3 A1

A2
D2

00100000 0000 00

���������		
��
��� ��

D2 D3

1 2 4

����

���������

�

�� ����

���

�� ����

���

�� ��� �

�������� �����

� �
� ���� �
� ���

���
�� ���������
�� ������

A4 A2 A9

Figure 1. An abstract view of Exterminator’s heap layout. Meta-
data below the horizontal line contains information used for error
isolation and correction (see Section 3.2).

consequences in other systems, where they can lead to heap cor-
ruption or abrupt program termination.

Exterminator prevents these invalid deallocation requests from
having any impact. DieFast’s bitmap-based allocator (Section 3.2)
makes multiple frees benign since a bit can only be reset once. By
checking ranges, DieFast detects and ignores invalid frees.

2.1 Limitations
Exterminator’s ability to correct both dangling pointer errors and
buffer overflows has several limitations. First, Exterminator as-
sumes that buffer overflows always corrupt memory at higher
addresses—that is, they are forward overflows. While it is possible
to extend Exterminator to handle backwards overflows, we have
not implemented this functionality. Exterminator can only correct
finite overflows, so that it can contain any given overflow by over-
allocation. Similarly, Exterminator corrects dangling pointer errors
by inserting finite delays before freeing particular objects. Finally,
in iterated and replicated modes, Exterminator assumes that over-
flows and dangling pointer errors are deterministic. However, the
cumulative mode does not require deterministic errors.

Unlike DieHard, Exterminator does not detect uninitialized
reads, where a program makes use of a value left over in a
previously-allocated object. Because the intended value is un-
known, it is not generally possible to repair such errors without
additional information, e.g. data structure invariants [12]. Instead,
Exterminator fills all allocated objects with zeroes.

3. Software Architecture
Exterminator’s software architecture extends and modifies DieHard
to enable its error isolating and correcting properties. This section
first describes DieHard, and then shows how Exterminator aug-
ments its heap layout to track information needed to identify and
remedy memory errors. Second, it presents DieFast, a probabilistic
debugging allocation algorithm that exposes errors to Exterminator.
Finally, it describes Exterminator’s three modes of operation.

3.1 DieHard Overview
The DieHard system includes a bitmap-based, fully-randomized
memory allocator that provides probabilistic memory safety [3].
The latest version of DieHard, upon which Exterminator is based,
adaptively sizes its heap be M times larger than the maximum
needed by the application [4] (see Figure 2). This version of Die-
Hard allocates memory from increasingly large chunks that we call

2

4 3 6 521
8

16

32

64

allocation space

bitmap

1

object size

2
inUse

4
inUse

1
inUse

6
inUse

1
inUse

miniheaps

Figure 2. The adaptive (new) DieHard heap layout, used by Exter-
minator. Objects in the same size class are allocated randomly from
separate miniheaps, which combined hold M times more memory
than required (here, M = 2).

int computeHash (int * pc)
int hash = 5381;
for (int i = 0; i < 5; i++)

hash = ((hash << 5) + hash) + pc[i];
return hash;

Figure 3. Site information hash function, used to store allocation
and deallocation call sites (see Section 3.2).

miniheaps. Each miniheap contains objects of exactly one size. If
an allocation would cause the total number of objects to exceed
1/M, DieHard allocates a new miniheap that is twice as large as
the previous largest miniheap.

Allocation randomly probes a miniheap’s bitmap for the given
size class for a free bit: this operation takes O(1) expected time.
Freeing a valid object resets the appropriate bit. DieHard’s use of
randomization across an over-provisioned heap makes it probabilis-
tically likely that buffer overflows will land on free space, and un-
likely that a recently-freed object will be reused soon, making dan-
gling pointer errors rare.

DieHard optionally uses replication to increase the probabil-
ity of successful execution. In this mode, it broadcasts inputs to
a number of replicas of the application process, each equipped with
a different random seed. A voter intercepts and compares outputs
across the replicas, and only actually generates output agreed on
by a plurality of the replicas. The independent randomization of
each replica’s heap makes the probabilities of memory errors inde-
pendent. Replication thus exponentially decreases the likelihood of
a memory error affecting output, since the probability of an error
striking a majority of the replicas is low.

3.2 Exterminator’s Heap Layout
Figure 1 presents Exterminator’s heap layout, which includes five
fields per object for error isolation and correction: an object id, al-
location and deallocation sites, deallocation time, which records
when the object was freed, and a canary bitset that indicates if the
object was filled with canaries (Section 3.3).

An object id of n means that the object is the nth object allo-
cated. Exterminator uses object ids to identify objects across multi-
ple heaps. These ids are needed because the object’s address cannot
be used to identify it across differently-randomized heaps.

The site information fields capture the calling context for allo-
cations and deallocations. For each, Exterminator hashes the least
significant bytes of the five most-recent return addresses into 32
bits using the DJB2 hash function [6] (see Figure 3).

This out-of-band metadata accounts for approximately 16 bytes
plus two bits of space overhead for every object. This overhead is

void * diefast_malloc (size_t sz) {
void * ptr = really_malloc (sz);
// Check if the object wasn’t
// canary-filled or is uncorrupted.
bool ok = verifyCanary (ptr);
if (!ok) { mark allocated; signal error }
return ptr;

}

void diefast_free (void * ptr) {
really_free (ptr);
// Check preceding and following objects.
bool ok = true;
if (isFree (previous (ptr)))

ok &= verifyCanary (previous(ptr));
if (isFree (next(ptr)))

ok &= verifyCanary (next(ptr));
if (!ok) { signal error; }
// Probabilistically fill with canary.
if (notCumulativeMode || random() < p)

fillWithCanary (ptr);
}

Figure 4. Pseudo-code for DieFast, a probabilistic debugging al-
locator (Section 3.3).

comparable to that of typical freelist-based memory managers like
the Lea allocator, which prepend 8-byte (on 32-bit systems) or 16-
byte headers (on 64-bit systems) to allocated objects [24].

3.3 DieFast: A Probabilistic Debugging Allocator
Exterminator uses a new, probabilistic debugging allocator that we
call DieFast. DieFast uses the same randomized heap layout as
DieHard, but extends its allocation and deallocation algorithms to
detect and expose errors. Figure 4 presents pseudo-code for the
DieFast allocator. Unlike previous debugging allocators, DieFast
has a number of unusual characteristics tailored for its use in the
context of Exterminator.

Implicit Fence-posts
Many existing debugging allocators pad allocated objects with
fence-posts (filled with canary values) on both sides. They can thus
detect buffer overflows by checking the integrity of these fence-
posts. This approach has the disadvantage of increasing space re-
quirements. Combined with the already-increased space require-
ments of a DieHard-based heap, the additional space overhead of
padding may be unacceptably large.

DieFast exploits two facts to obtain the effect of fence-posts
without any additional space overhead. First, because its heap lay-
out is headerless, one fence-post serves double duty: a fence-post
following an object can act as the one preceding the next object.
Second, because allocated objects are separated by E(M−1) freed
objects on the heap, we use freed space to act as fence-posts.

Random Canaries
Traditional debugging canaries include values that are readily dis-
tinguished from normal program data in a debugging session, such
as the hexadecimal value 0xDEADBEEF. However, one drawback
of a deterministically-chosen canary is that it is always possible
for the program to use the canary pattern as a data value. Because
DieFast uses canaries located in freed space rather than in allocated
space, a fixed canary would lead to a high false positive rate if that
data value were common in allocated objects.

3

DieFast instead uses a random 32-bit value set at startup. Since
both the canary and heap addresses are random and differ on every
execution, any fixed data value has a low probability of colliding
with the canary, thus ensuring a low false positive rate (see The-
orem 2). To increase the likelihood of detecting an error, DieFast
sets the last bit of the canary. Setting this bit will cause an align-
ment error if the canary is dereferenced, but keeps the probability
of an accidental collision with the canary low (1/231).

Probabilistic Fence-posts
Intuitively, the most effective way to expose a dangling pointer er-
ror is to fill all freed memory with canary values. For example,
dereferencing a canary-filled pointer will likely trigger a segmenta-
tion violation.

Unfortunately, reading random values does not necessarily
cause programs to fail. For example, in the espresso bench-
mark, some objects hold bitsets. Filling a freed bitset with a ran-
dom value does not cause the program to terminate but only affects
the correctness of the computation.

If reading from a canary-filled dangling pointer causes a pro-
gram to diverge, there is no way to narrow down the error. In the
worst-case, half of the heap could be filled with freed objects, all
overwritten with canaries. All of these objects would then be po-
tential sources of dangling pointer errors.

In cumulative mode, Exterminator prevents this scenario by
non-deterministically writing canaries into freed memory randomly
with probability p, and setting the appropriate bit in the canary
bitmap. This probabilistic approach may seem to degrade Exter-
minator’s ability to find errors. However, it is required to isolate
read-only dangling pointer errors, where the canary itself remains
intact. Because it would take an impractically large number of iter-
ations or replicas to isolate these errors, Exterminator always fills
freed objects with canaries when not running in cumulative mode
(see Sections 5.2 and 7.2 for discussion).

Probabilistic Error Detection
Whenever DieFast allocates memory, it examines the memory to
be returned to verify that any canaries are intact. If not, in addition
to signalling an error (see Section 3.4), DieFast sets the allocated
bit for this chunk of memory. This “bad object isolation” ensures
that the object will not be reused for future allocations, preserving
its contents for Exterminator’s subsequent use. Checking canary
integrity on each allocation ensures that DieFast will detect heap
corruption within E(H) allocations, where H is the number of
objects on the heap.

After every deallocation, DieFast checks both the preceding and
subsequent objects. For each of these, DieFast checks if they are
free. If so, it performs the same canary check as above. Recall that
because DieFast’s allocation is random, the identity of these adja-
cent objects will differ from run to run. Checking the predecessor
and successor on each free allows DieFast to detect buffer overruns
immediately upon object deallocation.

3.4 Modes of Operation
Exterminator can be used in three modes of operation: an iterative
mode suitable for testing or whenever all inputs are available, a
replicated mode that is suitable both for testing and for restricted
deployment scenarios, and a cumulative mode that is suitable for
broad deployment. All of these rely on the generation of heap im-
ages, which Exterminator examines to isolate errors and compute
runtime patches.

If Exterminator discovers an error when executing a program,
or if DieFast signals an error, Exterminator forces the process
to emit a heap image file. This file is akin to a core dump, but
contains less data (e.g., no code), and is organized to simplify

processing. In addition to the full heap contents and heap metadata,
the heap image includes the current allocation time (measured by
the number of allocations to date).

Iterative Mode
Exterminator’s iterative mode operates without replication. To find
a single bug, Exterminator is initially invoked via a command-line
option that directs it to stop as soon as it detects an error. Exter-
minator then re-executes the program in “replay” mode over the
same input (but with a new random seed). In this mode, Extermi-
nator reads the allocation time from the initial heap image to abort
execution at that point; we call this a malloc breakpoint. Extermi-
nator then begins execution and ignores DieFast error signals that
are raised before the malloc breakpoint is reached.

Once it reaches the malloc breakpoint, Exterminator triggers
another heap image dump. This process can be repeated multiple
times to generate independent heap images. Exterminator then per-
forms post-mortem error isolation and runtime patch generation.
A small number of iterations usually suffices for Exterminator to
generate runtime patches for an individual error, as we show in
Section 7.2. When run with a correcting memory allocator that in-
corporates these changes (described in detail in Section 6.3), these
patches automatically fix the isolated errors.

Replicated Mode
The iterated mode described above works well when all inputs
are available so that re-running an execution is feasible. However,
when applications are deployed in the field, such inputs may not
be available, and replaying may be impractical. The replicated
mode of operation allows Exterminator to correct errors while the
program is running, without the need for multiple iterations.

Like DieHard, Exterminator can run a number of differently-
randomized replicas simultaneously (as separate processes), broad-
casting inputs to all and voting on their outputs. However, Extermi-
nator uses DieFast-based heaps, each with a correcting allocator.
This organization lets Exterminator discover and fix errors.

In replicated mode, when DieFast signals an error or the voter
detects divergent output, Exterminator sends a signal that triggers a
heap image dump for each replica. If the program crashes because
of a segmentation violation, a signal handler also dumps a heap
image.

If DieFast signals an error, the replicas that dump a heap im-
age do not have to stop executing. If their output continues to be in
agreement, they can continue executing concurrently with the er-
ror isolation process. When the runtime patch generation process is
complete, that process signals the running replicas to tell the cor-
recting allocators to reload their runtime patches. Thus, subsequent
allocations in the same process will be patched on-the-fly without
interrupting execution.

Cumulative Mode
While the replicated mode can isolate and correct errors on-the-
fly in deployed applications, it may not be practical in all situa-
tions. For example, replicating applications with high resource re-
quirements may cause unacceptable overhead. In addition, multi-
threaded or non-deterministic applications can exhibit different al-
location activity and so cause object ids to diverge across replicas.
To support these applications, Exterminator uses its third mode of
operation, cumulative mode, which isolates errors without replica-
tion or multiple identical executions.

When operating in cumulative mode, Exterminator reasons
about objects grouped by allocation and deallocation sites instead
of individual objects, since objects are no longer guaranteed to be
identical across different executions.

4

seed

votebroadcast

input output

DieFast replica1seed

DieFast replica2seed

Error isolator

correcting allocator

correcting allocator

correcting allocator

DieFast replica3

runtime
patches

Figure 5. Exterminator’s replicated architecture (Section 3.4).
Replicas are equipped with different seeds that fully randomize
their DieFast-based heaps (Section 3.3), input is broadcast to all
replicas, and output goes to a voter. A crash, output divergence, or
signal from DieFast triggers the error isolator (Section 4), which
generates runtime patches. These patches are fed to correcting al-
locators (Section 6), which fix the bug for current and subsequent
executions.

Because objects from a given site only occasionally cause er-
rors, often at low frequencies, Exterminator requires more execu-
tions than in replicated or iterative mode in order to identify these
low-frequency errors without a high false positive rate. Instead of
storing heap images from multiple runs, Exterminator computes
relevant statistics about each run and stores them in its patch file.
The retained data is on the order of a few kilobytes per execution,
compared to tens or hundreds of megabytes for each heap image.

4. Iterative and Replicated Error Isolation
Exterminator employs two different families of error isolation al-
gorithms: one set for replicated and iterative modes, and another
for cumulative mode.

When operating in its replicated or iterative modes, Extermina-
tor’s probabilistic error isolation algorithm operates by searching
for discrepancies across multiple heap images. Exterminator relies
on corrupted canaries to indicate the presence of an error. A cor-
rupted canary (one that has been overwritten) can mean two things:
if every object has the same corruption, then it is likely a dangling
pointer error, as Theorem 1 shows. If canaries are corrupted in mul-
tiple objects, then it is likely to be a buffer overflow. Exterminator
limits the number of false positives for both overflows and dangling
pointer errors.

4.1 Buffer Overflow Detection
Exterminator examines heap images looking for discrepancies
across the heaps, both in overwritten canaries and in live objects. If
an object is not equivalent across the heaps (see below), Extermi-
nator considers it to be a candidate victim of an overflow.

To identify victim objects, Exterminator compares the contents
of both objects identified by their object id across all heaps, word-
by-word. Exterminator builds an overflow mask that comprises
the discrepancies found across all heaps. However, because the
same logical object may legitimately differ across multiple heaps,
Exterminator must take care not to consider these as overflows.

First, a freed object may differ across heaps because it was filled
with canaries only in some of the heaps. Exterminator uses the
canary bitmap to identify this case.

Second, an object can contain pointers to other objects, which
are randomly located on their respective heaps. Exterminator uses
both deterministic and probabilistic techniques to distinguish inte-
gers from pointers. Briefly, if a value interpreted as a pointer points

inside the heap area and points to the same logical object across
all heaps, then Exterminator considers it to be the same logical
pointer, and thus not a discrepancy. Exterminator also handles the
case where pointers point into dynamic libraries, which newer ver-
sions of Linux place at random base addresses.

Finally, an object can contain values that legitimately differ
from process to process. Examples of these values include pro-
cess ids, file handles, pseudorandom numbers, and pointers in data
structures that depend on addresses (e.g., some red-black tree im-
plementations). When Exterminator examines an object and en-
counters any word that differs at the same position across the heaps,
it considers it to be legitimately different, and not an overflow.

For small to modest overflows, the risk of missing an overflow
by ignoring overwrites of the same objects across multiple heaps is
low:

Theorem 1. Let k be the number of heap images, S the length
(in number of objects) of the overflow string, and H the number of
objects on the heap. Then the probability of an overflow overwriting
k objects identically is at most:

P(identical overflow) ≤ 1
2k ×

1
(H −S)k .

Proof. Assume that buffer overflows overwrite past the end of an
object. Thus, for an overflow from object i to land on a given object
j, it must both precede it and be large enough to span the distance
from i to j. An object i precedes j in k heaps with probability
(1/2)k. Objects i and j are separated by S or fewer objects with
probability at most (1/(H − S))k. Combining these terms yields
the above formula.

We now bound the worst-case false negative rate for buffer
overflows; that is, the odds of not finding a buffer overflow because
it failed to overwrite any canaries.

Theorem 2. Let M be the heap multiplier, so a heap is never more
than 1/M full. The likelihood that an overflow of length b bytes
fails to be detected by comparison against a canary is at most:

P(missed overflow) ≤
(

1− M−1
2M

)k
+

1
256b .

Proof. Each heap is at least (M − 1)/M free. Since DieFast fills
free space with canaries with P = 1/2, the fraction of each heap
filled with canaries is at least (M − 1)/2M. The likelihood of a
random write not landing on a canary across all k heaps is thus
at most (1− (M− 1)/2M)k. The overflow string could also match
the canary value. Since the canary is randomly chosen, the odds of
this are at most (1/256)b.

Culprit Identification
At this point, Exterminator has identified the possible victims of
overflows. For each victim, it scans the heap images for a matching
culprit, the source of the overflow into a victim. Because Extermi-
nator assumes that overflows are deterministic when operating in
iterative or replicated modes, the culprit must be the same distance
δ bytes away from the victim in every heap image. In addition, Ex-
terminator requires that the overflowed values have some bytes in
common across the images, and ranks them by their similarity.

Exterminator checks every other heap image for the candidate
culprit, and examines the object that is the same δ bytes forwards.
If that object is free and should be filled with canaries but they are
not intact, then it adds this culprit-victim pair to the candidate list.

5

We now bound the false positive rate. Because buffer overflows
can be discontiguous, every object in the heap that precedes an
overflow is a potential culprit. However, each additional heap dra-
matically lowers this number:

Theorem 3. The expected number of objects (possible culprits)
the same distance δ from any given victim object across k heaps is:

E(possible culprits) =
1

(H −1)k−2 .

Proof. Without loss of generality, assume that the victim object
occupies the last slot in every heap. An object can thus be in any of
the remaining n = H−1 slots. The odds of it being in the same slot
in k heaps is p = 1/(H −1)k−1. This is a binomial distribution, so
E(possible culprits) = np = 1/(H −1)k−2.

With only one heap image, all (H−1) objects are potential culprits,
but one additional image reduces the expected number of culprits
for any victim to just 1 (1/(H − 1)0), effectively eliminating the
risk of false positives.

Once Exterminator identifies a culprit-victim pair, it records the
overflow size for that culprit as the maximum of any observed δ to
a victim. Exterminator also assigns each culprit-victim pair a score
that corresponds to its confidence that it is an actual overflow. This
score is 1− (1/256)S, where S is the sum of the length of detected
overflow strings across all pairs. Intuitively, small overflow strings
(e.g., one byte) detected in only a few heap images are given lower
scores, and large overflow strings present in many heap images get
higher scores.

After overflow processing completes and at least one culprit has
a non-zero score, Exterminator generates a runtime patch for an
overflow from the most highly-ranked culprit.

4.2 Dangling Pointer Isolation
Isolating dangling pointer errors falls into two cases: a program
may read and write to the dangled object, leaving it partially or
completely overwritten, or it may only read through the dangling
pointer. Exterminator does not handle read-only dangling pointer
errors in iterative or replicated mode because it would require
too many replicas (e.g., around 20; see Section 7.2). However, it
handles overwritten dangling objects straightforwardly.

When a freed object is overwritten with identical values across
multiple heap images, Exterminator classifies the error as a dan-
gling pointer overwrite. As Theorem 1 shows, this situation is
highly unlikely to occur for a buffer overflow. Exterminator then
generates an appropriate runtime patch, as Section 6.2 describes.

5. Cumulative Error Isolation
When operating in cumulative mode, Exterminator isolates mem-
ory errors by computing summary information accumulated over
multiple executions, rather than by operating over multiple heap
images. This mode lets Exterminator isolate memory errors with-
out the need for replication, identical inputs, or deterministic exe-
cution.

5.1 Buffer Overflow Detection
Exterminator’s buffer overflow isolation algorithm proceeds in
three phases. First, it identifies heap corruption by looking for over-
written canary values. Second, for each allocation site, it computes
an estimate of the probability that an object from that site could
be the source of the corruption. Third, it combines these indepen-
dent estimates from multiple runs to identify sites that consistently
appear as candidates for causing the corruption.

After computing the set of corrupt object slots, Exterminator
examines allocation sites and finds possible culprits. To reason
about an individual allocation site, Exterminator must consider all
observed objects from that site.

An object that causes corruption by a forward overflow (i.e.,
it corrupts memory at higher addresses) must satisfy two crite-
ria. First, it must lie on the same miniheap as the corruption. Be-
cause miniheaps are randomly located throughout the whole ad-
dress space, we assume that the probability that an overflow crosses
miniheap boundaries to cause corruption without first causing a
segmentation violation is negligible. Second, the overflowed object
must lie at a lower address than the corruption.

For each object, the error isolation algorithm computes the prob-
ability that the object satisfies these criteria. The total probability is
the product of the probabilities of being allocated in the same mini-
heap (the left-hand term below), times the probability of it falling
on the left side of the corruption (the right-hand term). The first
term is the size of the corrupt miniheap, divided by the sum of the
sizes of all miniheaps available in the size class at the time the ob-
ject was allocated. Let Mc be the corrupted miniheap, k the index
of the corrupted slot in Mc, τ(i) and τ(M j) the allocation time of
object i or miniheap M j, respectively, and size(Mi) the number of
object slots in miniheap Mi. The probability P(Ci) that object i sat-
isfies the criteria is then:

P(Ci) =
size′(i,Mc)

∑M j
size′(i,M j)

· k
size(Mc)

where

size′(i,M j) =

{
0 τ(M j) > τ(i)

size(M j) τ(M j) ≤ τ(i).

For each allocation site A, Exterminator then computes the
probability P(CA) that at least one object from the site satisfied the
criteria (1 minus the probability of all objects not satisfying) as

P(CA) = 1−
(

∏
i from A

(
1−P(Ci)

))
.

This value P(CA), combined with the actual observed value CA,
is the complete summary that Exterminator computes and stores
between runs. Intuitively, each run can be thought of as a coin flip,
where P(CA) is the probability of heads, and CA = 1 if the coin flip
resulted in heads.

Using the estimates from multiple runs, Exterminator then iden-
tifies allocation sites that satisfy the criteria more than expected by
random chance. These allocation sites are those that generate over-
flowed objects. Let θA be the probability that an observed corrupted
object was caused by an overflow from an object allocated from site
A. For sites with no overflow errors, θA = 0. For sites with errors, θA
is some value greater than zero, depending on the number of other
bugs in the program. The algorithm compares the likelihoods of the
two competing hypotheses: H0 : θA = 0 (no errors), and H1 : θA > 0
(some error).

Exterminator’s error classifier takes as input the sequence of
computed probabilities Xi = P(CA) and the observed values Yi =CA
from each run. Using a Bayesian model, Exterminator rejects H0
and identifies A as an error source when P(H1|X̄ ,Ȳ) > P(H1|X̄ ,Ȳ).
This condition is equivalent (using Bayes’ rule) to

P(X̄ ,Ȳ |H1)
P(X̄ ,Ȳ |H0)

>
P(H0)
P(H1)

.

Because the true prior probabilities of the hypotheses are un-
known, Exterminator estimates them. Different estimates trade off
between false positive rate and the number of runs required to iden-
tify true errors. Using a prior probability P(H1) = 1/cN, where N is
the total number of allocation sites and c a small constant (currently,

6

c = 4) generally produces a well-behaved classifier. This prior is
reasonable because there is some probability that the corruption
was caused by an overflow (as opposed to a dangling pointer), rep-
resented by the 1/c factor, and a small probability that each alloca-
tion site is the culprit (the 1/N factor).

Finally, Exterminator computes the above values and compares
them. Assuming H0, each independent run i has a Xi = P(CA)
chance that Yi = 1. By the product rule,

P(X̄ ,Ȳ |H0) = ∏
i

(
(1−Xi)(1−Yi)+XiYi

)
.

Computing the likelihood of H1 requires consideration of all
possible values of θA. The probability of Yi is then the causation
probability θA, plus the probability due to random chance, (1−
θA)Xi. We assume a uniform prior distribution on θA, that is,

P(θA) =
{

1 0 < θA ≤ 1
0 otherwise

The likelihood is then:

P(X̄ ,Ȳ |H1) =
∫ 1

0
∏

i

((
1− (1−θA)Xi −θA

)(
1−Yi

)
+

(
(1−θA)Xi +θA

)
Yi

)
dθ.

Once Exterminator identifies an erroneous allocation site A, it
produces a runtime patch that corrects the error. To find the correct
padding value, it searches backwards from the corruption found
during the current run until it finds an object allocated from A.
It then uses the distance between that object and the end of the
corruption as the padding value.

5.2 Dangling Pointer Isolation
As with buffer overflows, dangling pointer isolation proceeds by
computing summary information over a number of runs. To force
each run to have a different effect, Exterminator fills freed objects
with canaries with some probability p, turning every execution into
a series of Bernoulli trials. If overwriting a prematurely-freed ob-
ject with canaries leads to an error, then its overwrite will correlate
with a failed execution with probability greater than p. Conversely,
if an object was not prematurely freed, then overwriting it with ca-
naries should have no correlation with the failure or success of the
program.

For each failed run, Exterminator computes the probability that
an object was canaried from each allocation site. As in the buffer
overflow case, the summary information required is simply this
probability (Xi) and whether or not a canary was observed (Yi).

Because the meaning of this data is the same as in the buffer
overflow algorithm, Exterminator uses the same hypothesis test to
compute the likelihood that each allocation site is the source of a
dangling pointer error.

The choice of p reflects a tradeoff between the precision of
the buffer overflow algorithm and dangling pointer isolation. Since
overflow isolation relies on detecting corrupt canaries, low values
of p increase the number of runs (though not the number of failures)
required to isolate overflows. However, lower values of p increase
the precision of dangling pointer isolation by reducing the risk that
certain allocation sites will always observe one canary value. We
currently set p = 1/2, though some dangling pointer errors may
require lower values of p to converge within a reasonable number
of runs.

Exterminator then estimates the required lifetime extension by
locating the oldest canaried object from an identified allocation
site, and computing the number of allocations between the time
it was freed and the time that the program failed. The correcting
allocator then extends the lifetime of all objects corresponding to
this allocation/deallocation site by twice this number.

void * correcting_malloc (size_t sz)
// Update the allocation clock.
clock++;
// Free deferred objects.
while (deferralQ.top()->time <= clock)

really_free (deferralQ().pop()->ptr);
int allocSite = computeAllocSite();
// Find the pad for this site.
int pad = padTable (allocSite);
void * ptr = really_malloc (sz + pad);
// Store object info and return.
setObjectId (ptr, clock);
setAllocSite (ptr, allocSite);
return ptr;

void correcting_free (void * ptr)
// Compute site info for this pointer.
int allocS = getAllocSite (ptr);
int freeS = computeFreeSite();
setFreeSite (ptr, freeS);
// Defer or free?
int defer = deferralMap (allocS, freeS);
if (defer == 0)

really_free (ptr);
else

deferralQ.push (ptr, clock + defer);

Figure 6. Pseudo-code for the correcting memory allocator, which
incorporates the runtime patches generated by the error isolator.

6. Error Correction
We now describe how Exterminator uses the information from its
error isolation algorithms to correct specific errors. Exterminator
first generates runtime patches for each error. It then relies on a cor-
recting allocator that uses this information, padding allocations to
prevent overflows, and deferring deallocations to prevent dangling
pointer errors.

6.1 Buffer overflow correction
For every culprit-victim pair that Exterminator encounters, it gen-
erates a runtime patch consisting of the allocation site hash and the
padding needed to contain the overflow (δ + the size of the over-
flow). If a runtime patch has already been generated for a given
allocation site, Exterminator uses the maximum padding value en-
countered so far.

6.2 Dangling pointer correction
The runtime patch for a dangling pointer consists of the combi-
nation of its allocation site info and a time by which to delay its
deallocation.

Exterminator computes this delay as follows. Let τ be the
recorded deallocation time of the dangled object, and T be the
last allocation time. Exterminator has no way of knowing how long
the object is supposed to live, so computing an exact delay time
is impossible. Instead, it extends the object’s lifetime (delays its
free) by twice the distance between its premature free and the last
allocation time, plus one: 2× (T − τ)+1.

This choice ensures that Exterminator will compute a correct
patch in a logarithmic number of executions. As we show in Sec-
tion 7.2, multiple iterations to correct pointer errors are rare in prac-
tice, because the last allocation time can be well past the time that
the object should have been freed.

7

It is important to note that this deallocation deferral does not
multiply its lifetime but rather its drag [39]. To illustrate, an object
might live for 1000 allocations and then be freed just 10 allocations
too soon. If the program immediately crashes, Exterminator will
extend its lifetime by 21 allocations, increasing its lifetime by less
than 1% (1021/1010). Section 7.3 evaluates the impact of both
overflow and dangling pointer correction on space consumption.

6.3 The Correcting Memory Allocator
The correcting memory allocator incorporates the runtime patches
described above and applies them when appropriate. Figure 6
presents pseudo-code for the allocation and deallocation functions.

At start-up, or upon receiving a reload signal (Section 3.4), the
correcting allocator loads the runtime patches from a specified file.
It builds two hash tables: a pad table mapping allocation sites to
pad sizes, and a deferral table, mapping pairs of allocation and
deallocation sites to a deferral value. Because it can reload the run-
time patch file and rebuild these tables on-the-fly, Exterminator can
apply patches to running programs without interrupting their exe-
cution. This aspect of Exterminator’s operation may be especially
useful for systems that must be kept running continuously.

On every deallocation, the correcting allocator checks to see if
the object to be freed needs to be deferred. If it finds a deferral value
for the object’s allocation and deallocation site, it pushes onto the
deferral priority queue the pointer and the time to actually free it
(the current allocation time plus the deferral value).

The correcting allocator then checks the deferral queue on every
allocation to see if an object should now be freed. It then checks
whether the current allocation site has an associated pad value. If
so, it adds the pad value to the allocation request, and forwards the
allocation request to the underlying allocator.

6.4 Collaborative Correction
Each individual user of an application is likely to experience dif-
ferent errors. To allow an entire user community to automatically
improve software reliability, Exterminator provides a simple util-
ity that supports collaborative correction. This utility takes as input
a number of runtime patch files. It then combines these patches by
computing the maximum buffer pad required for any allocation site,
and the maximal deferral amount for any given allocation site. The
result is a new runtime patch file that covers all observed errors.
Because the size of patch files is limited by the number of alloca-
tion sites in a program, we expect these files to be compact and
practical to transmit. For example, the size of the runtime patches
that Exterminator generates for injected errors in espresso was
just 130K, and shrinks to 17K when compressed with gzip.

7. Results
Our evaluation answers the following questions: (1) What is the
runtime overhead of using Exterminator? (2) How effective is Ex-
terminator at finding and correcting memory errors, both for in-
jected and real faults? (3) What is the overhead of Exterminator’s
runtime patches?

7.1 Exterminator Runtime Overhead
We evaluate Exterminator’s performance with the SPECint2000
suite [43] running reference workloads, as well as a suite of
allocation-intensive benchmarks. We use the latter suite of bench-
marks both because they are widely used in memory management
studies [3, 19, 22], and because their high allocation-intensity
stresses memory management performance. For all experiments,
we fix Exterminator’s heap multiplier (value of M) at 2.

All results are the average of five runs on a quiescent, dual-
processor Linux system with 3 GB of RAM, with each 3.06GHz

0

0.5

1

1.5

2

2.5

N
o

rm
a
li

z
e
d

 E
x
e
cu

ti
o

n
 T

im
e

Exterminator Overhead

GNU libc Exterminator

allocation-intensive SPECint2000

Figure 7. Runtime overhead for Exterminator across a suite of
benchmarks, normalized to the performance of GNU libc (Linux)
allocator.

Intel Xeon processor (hyperthreading active) equipped with 512K
L2 caches. Our observed experimental variance is below 1%.

We focus on the non-replicated mode (iterative/cumulative),
which we expect to be a key limiting factor for Exterminator’s
performance and the most common usage scenario.

We compare the runtime of Exterminator (DieFast plus the cor-
recting allocator) to the GNU libc allocator. This allocator is based
on the Lea allocator [24], which is among the fastest available [5].
Figure 7 shows that, versus this allocator, Exterminator degrades
performance by from 0% (186.crafty) to 132% (cfrac), with
a geometric mean of 25.1%. While Exterminator’s overhead is sub-
stantial for the allocation-intensive suite (geometric mean: 81.2%),
where the cost of computing allocation and deallocation contexts
dominates, its overhead is significantly less pronounced across the
SPEC benchmarks (geometric mean: 7.2%).

7.2 Memory Error Correction
Injected Faults
To measure Exterminator’s effectiveness at isolating and correcting
bugs, we used the fault injector that accompanies the DieHard
distribution to inject buffer overflows and dangling pointer errors.
For each data point, we run the injector using a random seed until
it triggers an error or divergent output. We next use this seed to
deterministically trigger a single error in Exterminator, which we
run in iterative mode. We then measure the number of iterations
required to isolate and generate an appropriate runtime patch. The
total number of images (iterations plus the first run) corresponds
to the number of replicas that would be required when running
Exterminator in replicated mode.

Buffer overflows: We triggered 10 different buffer overflows
each of three different sizes (4, 20, and 36 bytes) by underflowing
objects in the espresso benchmark. The number of images re-
quired to isolate and correct these errors was 3 in every case. Notice
that this result is substantially better than the analytical worst-case.
For three images, Theorem 2 bounds the worst-case likelihood of
missing an overflow to 42% (Section 4.1), rather than the 0% false
negative rate we observe here.

Dangling pointer errors: We then triggered 10 dangling
pointer faults in espresso with Exterminator running in iter-
ative and in cumulative modes. In iterative mode, Exterminator
succeeds in isolating the error in only 4 runs. In another 4 runs,
espresso does not write through the dangling pointer. Instead, it

8

reads a canary value through the dangled pointer, treats it as valid
data, and either crashes or aborts. Since no corruption is present
in the heap, Exterminator cannot isolate the source of the error. In
the remaining 2 runs, writing canaries into the dangled object trig-
gers a cascade of errors that corrupt large segments of the heap. In
these cases, the corruption destroys the information Exterminator
requires to isolate the error.

In cumulative mode, however, Exterminator successfully iso-
lates all 10 injected errors. For runs where no large-scale heap cor-
ruption occurs, Exterminator requires between 22 and 30 execu-
tions to isolate and correct the errors. In each case, 15 failures must
be observed before the erroneous site pair crosses the likelihood
threshold. Because objects are overwritten randomly, the number
of runs required to yield 15 failures varies. Where writing canaries
corrupts a large fraction of the heap, Exterminator requires 18 fail-
ures and 34 total runs. In some of the runs, execution continues
long enough for the allocator to reuse the culprit object, preventing
Exterminator from observing that it was overwritten.

Real Faults
We also tested Exterminator with actual bugs in two applications:
the Squid web caching server, and the Mozilla web browser.

Squid web cache: Version 2.3s5 of Squid has a buffer over-
flow; certain inputs cause Squid to crash with either the GNU libc
allocator or the Boehm-Demers-Weiser collector [3, 32].

We run Squid three times under Exterminator in iterative mode
with an input that triggers a buffer overflow. Exterminator contin-
ues executing correctly in each run, but the overflow corrupts a ca-
nary. Exterminator’s error isolation algorithm identifies a single al-
location site as the culprit and generates a pad of exactly 6 bytes,
fixing the error.

Mozilla web browser: We also tested Exterminator’s cumula-
tive mode on a known heap overflow in Mozilla 1.7.3 / Firefox 1.0.6
and earlier. This overflow (bug 307259) occurs because of an error
in Mozilla’s processing of Unicode characters in domain names.
Not only is Mozilla multi-threaded, leading to non-deterministic al-
location behavior, but even slight differences in moving the mouse
cause allocation sequences to diverge. Thus, neither replicated nor
iterative modes can identify equivalent objects across multiple runs.

We perform two case studies that represent plausible scenarios
for using Exterminator’s cumulative mode. In the first study, the
user starts Mozilla and immediately loads a page that triggers the
error. This scenario corresponds to a testing environment where a
proof-of-concept input is available. In the second study, the user
first navigates through a selection of pages (different on each run),
and then visits the error-triggering page. This scenario approxi-
mates deployed use where the error is triggered in the wild.

In both cases, Exterminator correctly identifies the overflow
with no false positives. In the first case, Exterminator requires
23 runs to isolate the error. In the second, it requires 34 runs.
We believe that this scenario requires more runs because the site
that produces the overflowed object allocates more correct objects,
making it harder to identify it as erroneous.

7.3 Patch Overhead
Exterminator’s approach to correcting memory errors does not im-
pose additional execution time overhead in the presence of patches.
However, it consumes additional space, either by padding alloca-
tions or by deferring deallocations. We measure the space overhead
for buffer overflow corrections by multiplying the size of the pad
by the maximum number of live objects that Exterminator patches.
The most space overhead we observe is for the buffer overflow ex-
periment with overflows of size 36, where the total increased space
overhead is between 320 and 2816 bytes.

We measure space overhead for dangling pointer corrections by
multiplying the object size by the number of allocations for which
the object is deferred; that is, we compute the total additional drag.
In the dangling pointer experiment, the amount of excess memory
ranges from 32 bytes to 1024 bytes (one 256 byte object is deferred
for 4 deallocations). This amount constitutes less than 1% of the
maximum memory consumed by the application.

8. Related Work
8.1 Randomized Memory Managers
Several memory management systems employ some degree of
randomization, including locating the heap at a random base ad-
dress [7, 31], adding random padding to allocated objects [8], shuf-
fling recently-freed objects [23], or a mix of padding and object
deferral [32]. This level of randomization is insufficient for Exter-
minator, which requires full heap randomization.

Exterminator builds on DieHard, which tolerates errors prob-
abilistically; Section 3.1 provides an overview. Exterminator sub-
stantially modifies and extends DieHard’s heap layout and alloca-
tion algorithms. It also uses probabilistic algorithms that identify
and correct errors.

8.2 Automatic Repair
Demsky et al.’s automatic data structure repair [11, 12, 13] en-
forces data structure consistency specifications, guided by a formal
description of the program’s data structures (specified manually or
derived automatically by Daikon [18]). Exterminator attacks a dif-
ferent problem, namely that of isolating and correcting memory er-
rors, and is orthogonal and complementary to data structure repair.

Sidiroglou et al. propose STEM, a self-healing runtime that ex-
ecutes functions in a transactional environment so that if they de-
tect the function misbehaving, they can prevent it from doing dam-
age [41]. Using STEM, they implement error virtualization, which
maps the set of possible errors in a function onto those that have an
explicit error handler. The more recent SEAD system goes beyond
STEM requiring no source code changes, handling I/O with virtual
proxies, and by specifying the repair policy explicitly through an
external description [42]. While STEM and SEAD are promising
approaches to automatically recovering from errors, neither pro-
vides solutions for as broad a class of errors as Exterminator, nor
do they provide mechanisms to semantically eliminate the source
of the error automatically, as Exterminator does.

8.3 Automatic Debugging
Two previous systems apply techniques designed to help isolate
bugs. Statistical bug isolation is a distributed assertion sampling
technique that helps pinpoint the location of errors, including but
not limited to memory errors [25, 26, 27]. It works by injecting
lightweight tests into the source code; the result of these tests, in
bit vector form, can be processed to generate likely sources of the
errors. This statistical processing differs from Exterminator’s prob-
abilistic error isolation algorithms, although Liu et al. also use hy-
pothesis testing [27]. Like statistical bug isolation, Exterminator
can leverage the runs of deployed programs. However, unlike sta-
tistical bug isolation, Exterminator requires neither source code nor
a large deployed user base in order to find errors, and automatically
generates runtime patches that correct them.

Delta debugging automates the process of identifying the small-
est possible inputs that do and do not exhibit a given error [10, 28,
48]. Given these inputs, it is up to the software developer to ac-
tually locate the bugs themselves. Exterminator focuses on a nar-
rower class of errors, but is able to isolate and correct an error given
just one erroneous input, regardless of its size.

9

8.4 Fault Tolerance
Recently, there has been an increasing focus on approaches for tol-
erating hardware transient errors that are becoming more common
due to fabrication process limitations. Work in this area ranges from
proposed hardware support [33] to software fault tolerance [34].
While Exterminator also uses redundancy as a method for detect-
ing and correcting errors, Exterminator goes beyond tolerating soft-
ware errors, which are not transient, to correcting them perma-
nently. Like Exterminator, other efforts in the fault tolerance com-
munity seek to gather data from multiple program executions to
identify potential errors. For example, Guo et al. use statistical tech-
niques on internal monitoring data to probabilistically detect faults,
including memory leaks and deadlocks [20]. Exterminator goes be-
yond this previous work by characterizing each memory error so
specifically that a correction can be automatically generated for it.

Rinard et al. present a compiler-based approach called bound-
less buffers that caches out-of-bound writes in a hash table for later
reuse [35]. This approach eliminates buffer overflow errors (though
not dangling pointer errors), but requires source code and imposes
higher performance overheads (1.05x to 8.9x).

Rx operates by checkpointing program execution and logging
inputs [32]. Rx rolls back crashed applications and replays inputs
to it in a new environment that pads all allocations or defers all
deallocations by some amount. If this new environment does not
yield success, Rx rolls back the application again and increases the
pad values, up to some threshold. Unlike Rx, Exterminator does
not require checkpointing or rollback, and precisely isolates and
corrects memory errors.

8.5 Memory Managers
Conservative garbage collection prevents dangling pointer er-
rors [9], but does not prevent buffer overflows. Exterminator’s error
isolation and correction is orthogonal to garbage collection.

Finally, there have been numerous debugging memory alloca-
tors; the documentation for one of them, mpatrol, includes a list of
over ninety such systems [38]. Notable recent allocators with de-
bugging features include dnmalloc [47], Heap Server [23], and ver-
sion 2.8 of the Lea allocator [24, 37]. Exterminator either prevents
or corrects errors that these allocators can only detect.

9. Future Work
While Exterminator can effectively locate and correct memory
errors on the heap, it does not yet address stack errors. We are
investigating approaches to apply Exterminator to the stack.

In addition, while Exterminator’s runtime patches contain infor-
mation that describe the error location and its extent, it is not in a
human-readable form. We plan to develop a tool to process runtime
patches into bug reports with suggested fixes.

10. Conclusion
This paper presents Exterminator, a system that automatically cor-
rects heap-based memory errors in C and C++ programs with
high probability. Exterminator operates entirely at the runtime level
on unaltered binaries, and consists of three key components: (1)
DieFast, a probabilistic debugging allocator, (2) a probabilistic er-
ror isolation algorithm, and (3) a correcting memory allocator. Ex-
terminator’s probabilistic error isolation isolates the source and ex-
tent of memory errors with provably low false positive and false
negative rates. Its correcting memory allocator incorporates run-
time patches that the error isolation algorithm generates to correct
memory errors. Exterminator is not only suitable for use during
testing, but also can automatically correct deployed programs.

Acknowledgments
The authors would like to thank Sam Guyer, Mike Hicks, Erik
Learned-Miller, Sarah Osentoski, Martin Rinard, and the anony-
mous reviewers for their valuable feedback. This material is based
upon work supported by Intel, Microsoft Research, and the Na-
tional Science Foundation under CAREER Award CNS-0347339
and CNS-0615211. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

References
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection

of all pointer and array access errors. In Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, pages 290–301, New York, NY, USA, 1994. ACM
Press.

[2] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving
software security with a C pointer analysis. In Proceedings of the
27th International Conference on Software Engineering, pages 332–
341, New York, NY, USA, 2005. ACM Press.

[3] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 158–168, New York, NY, USA, 2006. ACM Press.

[4] E. D. Berger and B. G. Zorn. Efficient probabilistic memory safety.
Technical Report UMCS TR-2007-17, Department of Computer
Science, University of Massachusetts Amherst, Mar. 2007.

[5] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. In Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Snowbird, Utah, June 2001.

[6] D. Bernstein. Usenet posting, comp.lang.c. http://groups.google.com/
group/comp.lang.c/msg/6b82e964887d73d9, Dec. 1990.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. In Proceedings of the 12th USENIX Security Symposium,
pages 105–120. USENIX, Aug. 2003.

[8] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In
Proceedings of the 14th USENIX Security Symposium, pages 271–
286. USENIX, Aug. 2005.

[9] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18(9):807–820,
1988.

[10] H. Cleve and A. Zeller. Locating causes of program failures.
In Proceedings of the 27th International Conference on Software
Engineering, pages 342–351, 2005.

[11] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. Rinard. Inference and enforcement of data structure consistency
specifications. In Proceedings of the 2006 International Symposium
on Software Testing and Analysis, pages 233–244, New York, NY,
USA, 2006. ACM Press.

[12] B. Demsky and M. Rinard. Automatic detection and repair of errors
in data structures. In Proceedings of the 18th annual ACM SIGPLAN
Conference on Object-oriented Programing, Systems, Languages,
and Applications, pages 78–95, New York, NY, USA, 2003. ACM
Press.

[13] B. Demsky and M. Rinard. Data structure repair using goal-directed
reasoning. In Proceedings of the 27th International Conference on
Software Engineering, pages 176–185, 2005.

[14] D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead. In Proceedings of the 2006
International Conference on Software Engineering, Shanghai, China,
May 2006.

10

comp.lang.c
http://groups.google.com/group/comp.lang.c/msg/6b82e964887d73d9
http://groups.google.com/group/comp.lang.c/msg/6b82e964887d73d9

[15] D. Dhurjati and V. Adve. Efficiently Detecting All Dangling
Pointer Uses in Production Servers. In International Conference
on Dependable Systems and Networks (DSN’06), pages 269–280,
2006.

[16] D. Dhurjati, S. Kowshik, and V. Adve. SAFEcode: enforcing alias
analysis for weakly typed languages. In Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 144–157, New York, NY, USA, 2006. ACM
Press.

[17] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. In ACM SIGPLAN
2003 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’2003), San Diego, CA, June 2003. ACM Press.

[18] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In Proceedings of the 22nd
International Conference on Software Engineering, pages 449–458,
New York, NY, USA, 2000. ACM Press.

[19] D. Grunwald, B. Zorn, and R. Henderson. Improving the cache local-
ity of memory allocation. In Proceedings of SIGPLAN’93 Conference
on Programming Languages Design and Implementation, volume
28(6) of ACM SIGPLAN Notices, pages 177–186, Albuquerque, NM,
June 1993. ACM Press.

[20] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira. Tracking probabilistic
correlation of monitoring data for fault detection in complex systems.
In Proceedings of the 2006 International Conference on Dependable
Systems and Networks, pages 259–268, Los Alamitos, CA, USA,
2006. IEEE Computer Society.

[21] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Proc. of the Winter 1992 USENIX Conference, pages
125–138, San Francisco, California, 1991.

[22] M. S. Johnstone and P. R. Wilson. The memory fragmentation
problem: Solved? In P. Dickman and P. R. Wilson, editors, OOPSLA
’97 Workshop on Garbage Collection and Memory Management, Oct.
1997.

[23] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and
M. Prvulovic. Comprehensively and efficiently protecting the heap.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
207–218, New York, NY, USA, 2006. ACM Press.

[24] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html.

[25] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation
via remote program sampling. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and
Implementation, 2003.

[26] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation,
pages 15–26, New York, NY, USA, 2005. ACM Press.

[27] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. In Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 286–295, New York, NY, USA, 2005. ACM
Press.

[28] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging.
In Proceedings of the 28th International Conference on Software
Engineering, pages 142–151, New York, NY, USA, 2006. ACM
Press.

[29] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pages 128–139, New York, NY, USA, 2002. ACM Press.

[30] N. Nethercote and J. Fitzhardinge. Bounds-checking entire programs
without recompiling. In SPACE 2004, Venice, Italy, Jan. 2004.

[31] PaX Team. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[32] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies: A safe method to survive software failures. In Proceedings
of the Twentieth Symposium on Operating Systems Principles,
volume XX of Operating Systems Review, Brighton, UK, Oct. 2005.
ACM.

[33] M. K. Qureshi, O. Mutlu, and Y. N. Patt. Microarchitecture-based
introspection: a technique for transient-fault tolerance in micropro-
cessors. In Proceedings of the 2005 International Conference on
Dependable Systems and Networks (DSN 2005), pages 434–443,
2005.

[34] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
SWIFT: Software Implemented Fault Tolerance. In Proceedings of
the International Symposium on Code Generation and Optimization,
pages 243–254, Washington, DC, USA, 2005. IEEE Computer
Society.

[35] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, and T. Leu. A dynamic
technique for eliminating buffer overflow vulnerabilities (and other
memory errors). In Proceedings of the 2004 Annual Computer
Security Applications Conference, Dec. 2004.

[36] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and J. William
S. Beebee. Enhancing server availability and security through failure-
oblivious computing. In Sixth Symposium on Operating Systems
Design and Implementation, San Francisco, CA, Dec. 2004. USENIX.

[37] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time
detection of heap-based overflows. In Proceedings of the 17th
Large Installation Systems Administration Conference, pages 51–
60. USENIX, 2003.

[38] G. S. Roy. mpatrol: Related software. http://www.cbmamiga.demon.
co.uk/mpatrol/mpatrol 83.html, Nov. 2006.

[39] C. Runciman and N. Rojemo. Lag, drag and postmortem heap
profiling. In Implementation of Functional Languages Workshop,
Bastad, Sweden, Sept. 1995.

[40] J. Seward and N. Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. In Proceedings of the USENIX’05
Annual Technical Conference, Anaheim, California, USA, Apr. 2005.

[41] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis.
Building a reactive immune system for software services. In USENIX
Annual Technical Conference, pages 149–161. USENIX, 2005.

[42] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. From
STEM to SEAD: Speculative execution for automated defense. In
USENIX Annual Technical Conference. USENIX, 2007.

[43] Standard Performance Evaluation Corporation. SPEC2000.
http://www.spec.org.

[44] Symantec. Internet security threat report. http://www.symantec.com/
enterprise/threatreport/index.jsp, Sept. 2006.

[45] W. Xu, D. C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs.
In Proceedings of the 12th ACM SIGSOFT Twelfth International
Symposium on Foundations of Software Engineering, pages 117–126,
New York, NY, USA, 2004. ACM Press.

[46] S. H. Yong and S. Horwitz. Protecting C programs from attacks via
invalid pointer dereferences. In 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 307–316,
New York, NY, USA, 2003. ACM Press.

[47] Y. Younan, W. Joosen, F. Piessens, and H. V. den Eynden. Security
of memory allocators for C and C++. Technical Report CW 419,
Department of Computer Science, Katholieke Universiteit Leuven,
Belgium, July 2005.

[48] A. Zeller. Yesterday, my program worked. Today, it does not. Why?
In Proceedings of the 7th European Software Engineering Conference
held jointly with the 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 253–267, London, UK,
1999. Springer-Verlag.

11

http://pax.grsecurity.net/docs/aslr.txt
http://www.cbmamiga.demon.co.uk/mpatrol/mpatrol_83.html
http://www.cbmamiga.demon.co.uk/mpatrol/mpatrol_83.html
http://www.symantec.com/enterprise/threatreport/index.jsp
http://www.symantec.com/enterprise/threatreport/index.jsp

	Introduction
	Memory Errors
	Limitations

	Software Architecture
	DieHard Overview
	Exterminator's Heap Layout
	DieFast: A Probabilistic Debugging Allocator
	Modes of Operation

	Iterative and Replicated Error Isolation
	Buffer Overflow Detection
	Dangling Pointer Isolation

	Cumulative Error Isolation
	Buffer Overflow Detection
	Dangling Pointer Isolation

	Error Correction
	Buffer overflow correction
	Dangling pointer correction
	The Correcting Memory Allocator
	Collaborative Correction

	Results
	Exterminator Runtime Overhead
	Memory Error Correction
	Patch Overhead

	Related Work
	Randomized Memory Managers
	Automatic Repair
	Automatic Debugging
	Fault Tolerance
	Memory Managers

	Future Work
	Conclusion

