
Role Mining with ORCA

Jürgen Schlegelmilch
OFFIS e. V.

Escherweg 2
26121 Oldenburg, Germany

juergen.schlegelmilch@offis.de

Ulrike Steffens
OFFIS e. V.

Escherweg 2
26121 Oldenburg, Germany

ulrike.steffens@offis.de

ABSTRACT
With continuously growing numbers of applications, enter-
prises face the problem of efficiently managing the assign-
ment of access permissions to their users. On the one hand,
security demands a tight regime on permissions; on the other
hand, users need permissions to perform their tasks. Role-
based access control (RBAC) has proven to be a solution
to this problem but relies on a well-defined set of role def-
initions, a role concept for the enterprise in question. The
definition of a role concept (role engineering) is a difficult
task traditionally performed via interviews and workshops.
However, often users already have the permissions that they
need to do their jobs, and roles can be derived from these
permission assignments using data mining technology, thus
giving the process of role concept definition a head-start.

In this paper, we present the ORCA role mining tool and
its algorithm. The algorithm performs a cluster analysis on
permission assignments to build a hierarchy of permission
clusters and presents the results to the user in graphical
form. It allows the user to interactively add expert knowl-
edge to guide the clustering algorithm. The tool provides
valuable insights into the permission structures of an enter-
prise and delivers an initial role hierarchy for the definition
of an enterprise role concept using a bottom-up approach.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Access controls;
H.1.2 [Information Systems]: Models and Principles—
User/Machine Systems, Human factors; K.6.5 [Computing

Milieux]: Security and Protection

General Terms
Security, Management, Algorithms, Human Factors

Keywords
Role-based access control, role definition, role hierarchy, role
engineering, role mining, data mining, cluster analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’05,June 1–3, 2005, Stockholm, Sweden.
Copyright 2005 ACM 1-59593-045-0/05/0006 ...$5.00.

1. INTRODUCTION
Since the early 1990s [7], Role-Based Access Control has

become more popular. There are standard models (RBAC96
[23], NIST2001 [4]) and active research on both extensions
[23, 22, 15, 10, 11] and methodologies [5, 17, 6]. Mainly
enterprises with many users and high security demands like
banking companies are now considering RBAC and role con-
cepts, and therefore facing the problem of how to define
roles. This has prompted new approaches in role engineer-
ing. The traditional top-down approach [17, 6] has been
complemented with bottom-up approaches using data min-
ing techniques [24]. This application of data mining to iden-
tify roles from existing data is called role mining.

The few proposals for role mining differ in the choice of
algorithm as well as source data. In this paper, we discuss
role mining based on existing permission assignments and
present ORCA, the OFFIS Role mining tool with Cluster
Analysis, and its algorithm. This algorithm builds a hierar-
chy of permission clusters using a bottom-up cluster analy-
sis. The tool provides the user with valuable insights into
the existing permission structures and allows to iteratively
transform the cluster hierarchy into an initial role hierarchy.

The remainder of this document is organised as follows:
Section 2 describes role mining along with its benefits and
pitfalls. Section 3 presents a data mining algorithm tailored
for role mining. The algorithm has been implemented within
the ORCA tool which is introduced in Section 4. We dis-
cuss some related work in Section 5 before closing with a
conclusion and a prospect on future work in Section 6.

2. THE CONCEPT OF ROLE MINING
Role engineering is a tedious, error-prone and politically

difficult task. Once role definitions are established, there is
no more slack to shift responsibilities or to demand addi-
tional permissions. So, people are hesitant to specify roles
and reluctant to co-operate. Any tool supporting the pro-
cess of role engineering with objective data helps putting
discussions on a firm base and avoids intentional as well as
accidental errors, thereby accelerating the process.

There are generally two approaches to role engineering [6]:
Either working top-down from an initial description to roles
and permissions or else aggregating permissions bottom-up
into roles. The first approach starts with business process
definitions or scenarios, extracts role candidates from these
descriptions, and then transforms them into an enterprise
role concept [5, 17, 18]. The roles are then fitted with the
necessary permissions. This approach is time-consuming
and may deliver process descriptions as an unwanted side-

168

product (unwanted because of their potential for process op-
timization and hence reorganisation). It also requires early
co-operation of employees and/or experts and is harder to
support with a tool: the necessary knowledge is in people’s
minds and has to be externalised first.

The second approach starts bottom-up by analysing arti-
facts of roles [12] and then transforms and aggregates them
into the roles themselves. The idea here is that roles are al-
ready implicitly in use [23] and have to be identified rather
than defined. Roles describe tasks within a process and in
modern enterprises, these tasks often involve applications.
So, to act in a role a person has to access applications and
therefore has to have permissions. In short, roles leave pat-
terns in the permission assignments and it is possible to find
those patterns using data mining technology. This provides
the role engineering process with an impartial and reliable
base for discussions and refinements.

Caveats of Role Mining.The usual precautions of data
mining apply to role mining, too: The more permissions
are needed for a role, and the more specialised they are, the
better will be the mining result. For example, the permission
to use Microsoft Word is not very specific and will therefore
not distinguish any role. On the other hand, access rights for
a geo-information system, a database of telecommunication
lines, and certain transactions in an ERP system may well
identify a specific engineering role in a Tele-Communications
company.

Of course, data mining in permission assignments will not
automagically deliver a complete and error-free role concept.
Not all roles have an impact on permission assignments, and
even then, there are a number of considerations to make.

• First of all, unless a permission management system is
used – which is likely to use roles anyway – there will
be noise in the data, for example access rights that
have been granted erroneously or exceptionally. So,
prior to role mining data cleansing [8] must be applied
to weed out anomalies.

• Second, even single functions in typical enterprise ap-
plications may support more than one role, and associ-
ated permissions will hence be ambiguous. The effect
is worse if only few systems and their access control
can be considered, as motivated above.

• Third, employees in an enterprise usually have more
than one role, so that associated permissions will be
mixed up and hard to group by role. Some combi-
nations of permissions may be entirely accidental, or
due to effects like people retaining permissions despite
changed responsibilities.

• Fourth, one person may have several digital identities.
This may hide useful combinations of permissions if
they may belong to different identities of one person.
Such multiple identities conflict with RBAC [23] in
general and should be replaced with multiple roles for
one identity.

• Fifth, a combination of permissions does not provide
a name or semantics for the role it may represent.

Reviewing of the mining result with experts is therefore in-
dispensable. However, we believe the mining result to still

provide a more reliable base for decisions than the early
rounds of approaches based on interviews and expert judge-
ment alone, and thus to deliver better role concepts, giving
the bottom-up approach a head-start into the whole role
definition process.

3. DISCOVERING ROLE PATTERNS
Patterns of roles can be found in the access control of vari-

ous application systems in a company. Any person acting in
a role has to have permissions for some applications and the
combination of these permissions hints at the role. There
may be other roles that need the very same combination, so
there is no one-to-one correspondence. However, the more
applications and permissions we consider, the better can we
identify roles with certain combinations.

With data mining, we are able to retrace this relationship
and look for combinations of permissions. If we find a sig-
nificant set of persons sharing the same set of permissions,
we can assume that those persons share – at least part of
their time – a role, namely one that requires those permis-
sions. So we scan the permission assignments for combina-
tions shared by many persons and propose them as roles.
This technique is known as cluster analysis: We put permis-
sions into a cluster iff a significant number of persons share
them. A cluster c has two characteristics:

• a set of permissions: rights(c)

• a set of persons, namely those that have all the per-
missions: members(c)

So, the cluster is defined by the permissions that it com-
bines. The clustering algorithm groups permissions into
clusters, associates any person with the cluster that has all
the permissions in the cluster, and keeps those clusters with
a significant set of persons. To avoid the combinatorial ex-
plosion of all permissions we chose a hierarchical bottom-up
algorithm (a Single Linkage variant [9]) and consider not all
sets of permissions but only those defined by combinations
of clusters.

Let Persons be the (given) set of all persons, Clusters the
set of all clusters, and ≺ ⊆ Clusters×Clusters a partial order
on clusters.

1. Initialise the variables:

Clusters := ∅
≺ := ∅

2. For all single permissions r, define clusters cr with

rights(cr) = {r}
members(cr) = {p ∈ Persons : p has permission r}

and add the new clusters cr to the set of all clusters:

Clusters := Clusters ∪ {cr}

3. Now, find the pairs of clusters with a maximal overlap
among their members. For this, we only consider clus-
ters that have not already been placed in the hierarchy,
namely the maximal elements of ≺:

⊤≺ = {c ∈ Clusters : ¬∃d ∈ Clusters : c ≺ d}

For any pair 〈c, d〉 of clusters c, d ∈ ⊤≺ define

members(〈c, d〉) = members(c) ∩ members(d)
rights(〈c, d〉) = rights(c) ∪ rights(d)

169

Table 1: Activities and permissions
rAcc wAcc cdAcc cTrans rTrans

CH × ×
MT × ×
AT × ×
MA ×

The maximum member overlap between clusters is de-
fined as

m = max {|members(〈c, d〉)| : c, d ∈ ⊤≺}

So, these are the pairs with maximal overlap:

S = {〈c, d〉 : |members(〈c, d〉)| = m ∧ c, d ∈ ⊤≺}

And with r = max {|rights(〈c, d〉)| : 〈c, d〉 ∈ S}, pick
from S the tuples with the largest set of rights:

E = {〈c, d〉 : |rights(〈c, d〉)| = r ∧ 〈c, d〉 ∈ S}

Now, randomly choose a pair 〈c, d〉 from E and define
the new cluster e with

rights(e) = rights(c) ∪ rights(d)
members(e) = members(c) ∩ members(d)

In the cluster hierarchy, e is placed as a super-cluster
above both c and d (c and d are sub-clusters of e):

Clusters := Clusters ∪ {e}
≺ := ≺ ∪{〈c, e〉, 〈d, e〉}

This excludes both c and d from further iterations of
this step since they are no longer elements of ⊤≺.

4. Repeat Step 3 until Clusters is stable.

The algorithm works its way up in the set hierarchy of per-
missions and stops when there are no suitable pairs of clus-
ters with overlapping member sets.

An example
Imagine a bank where employees perform tasks like handling
cash payments (deposits or withdrawals), prepare or approve
money transfers, or manage accounts. Let us assume that

• Cash handling (CH) requires read and write access to
customer accounts (rAcc, wAcc).

• Making transfers (MT) requires read access to cus-
tomer accounts (rAcc) and create access to internal
transfer transactions (cTrans).

• Approval of transfers (AT) requires read access to cus-
tomer accounts (rAcc), plus read access to internal
transfer transactions (rTrans).

• Managing accounts (MA) requires create/delete access
to customer accounts. (cdAcc)

These assumptions are summarised in Table 1.
Our sample bank has 6 employees with permission assig-

ments as shown in Table 2.

Table 2: Permission assignments
rAcc wAcc cdAcc cTrans rTrans

Ann × × ×
Bob × × ×
Carl × × ×
Doro × × ×
Ed × × ×
Fay × × × × ×

Constructing the cluster hierarchy.Now we apply the
algorithm to construct the cluster hierarchy.

1. In the first two steps, variables are initialised and single
clusters for all five permissions are created:

Clusters := {crAcc, cwAcc, ccdAcc, ccTrans, crTrans}

2. Now, Step 3 builds pairs of clusters and compares their
amount of member overlap. There are

• 3 pairs with overlap 4:
〈crAcc, cwAcc〉, 〈crAcc, ccTrans〉, 〈cwAcc, ccTrans〉

• 3 pairs with overlap 3:
〈crAcc, ccdAcc〉, 〈crAcc, crTrans〉, 〈ccdAcc, crTrans〉

• 3 pairs with overlap 1:
〈cwAcc, crTrans〉, 〈cwAcc, ccdAcc〉, 〈ccTrans, crTrans〉

The algorithm randomly picks a pair from the list for
overlap 4 and creates the cluster c1 with

rights(c1) = {rAcc,wAcc}
members(c1) = {Ann, Bob, Ed, Fay}

making it a super-cluster of the constituent clusters:

≺ := ≺ ∪{〈crAcc, c1〉, 〈cwAcc, c1〉}

Hence we get ⊤≺ = {ccdAcc, ccTrans, crTrans, c1}.

3. The next iteration of Step 3 finds

• 1 pair with overlap 4: 〈ccTrans, c1〉

• 1 pair with overlap 3: 〈ccdAcc, crTrans〉

• 3 pairs with overlap 1:
〈ccTrans, crTrans〉, 〈c1, crTrans〉, 〈c1, CcdAcc〉

So, the cluster c2 is created with

rights(c2) = {rAcc,wAcc, cTrans}
members(c2) = {Ann, Bob, Ed, Fay}

This cluster is a super-cluster of ccTrans and c1:

≺ := ≺ ∪{〈ccTrans, c2〉, 〈c1, c2〉}

We now have ⊤≺ = {ccdAcc, crTrans, c2}

4. In the next iteration of Step 3, we get:

• 1 pair with overlap 3: 〈ccdAcc, crTrans〉

• 2 pairs with overlap 1: 〈c2, ccdAcc〉, 〈c2, crTrans〉

Now the algorithm creates the cluster c3 with

rights(c3) = {cdAcc, rTrans}
members(c3) = {Carl, Doro, Fay}

and makes it a super-cluster of ccdAcc and crTrans:

≺ := ≺ ∪{〈ccdAcc, c3〉, 〈crTrans, c3〉}

⊤≺ is now {c2, c3}

170

c 4

c 3

3
create/delete Accounts

3
read Transfers

c 1

2
4

write Accounts
4

6
read Accounts

c 2

4
create Transfers3

41
5

2
3

Figure 1: Cluster hierarchy of the example

5. The next iteration of Step 3 yields just one pair, namely
{c2, c3}. So we get a new cluster c4 with

rights(c4) = rights(c2) ∪ rights(c3)
= {rAcc,wAcc, cdAcc, cTrans, rTrans}

members(c4) = members(c2) ∩ members(c3)
= {Fay}

with ≺ := ≺ ∪{〈c2, c4〉, 〈c3, c4〉} and ⊤≺ = {c4}.

6. Since ⊤≺ has now only one element, no candidate pairs
can be formed, hence no further clusters created. So,
Clusters is stable and the algorithm stops.

The resulting cluster hierarchy is shown in Figure 1. Each
rectangular node represents a cluster, with the number of
members |members(c)| and below that, for inner nodes, the
number of permissions |rights(c)|. The partial order among
the clusters is shown as connecting lines, with super-clusters
left of sub-clusters. Next to trivial clusters, the name of their
only permission is given.

Deriving the role hierarchy.Now that we have a cluster
hierarchy, we can try to derive a role hierarchy from it. Each
of the clusters might represent a role, with the leaf clusters
being unlikely candidates. The hierarchy in Figure 1 has
four non-trivial clusters which may represent roles:

• The cluster aggregating the rAcc and wAcc permis-
sions has the same members as its parent, so its only
information value is the set of rights it contributes to
its parent. We consider it to be an intermediate clus-
ter and remove it from the hierarchy, by redirecting its
children to its parent. The hierarchy tree (or forest, in
general) is then no longer binary.

• The cluster aggregating the cdAcc and rTrans permis-
sions has three members, just as the respective trivial
clusters. This proves that both permissions are always
granted together, a good indicator for them represent-
ing a role. From the semantics of the aggregated per-
missions, a banking expert could derive that this is
some kind of JuniorManager role.

• The cluster for the rAcc, wAcc, and cTrans permis-
sions has four members, which are identical with the
members of the trivial clusters for the cTrans and wAcc
permissions; the rAcc cluster has two more members.
The aggregated permissions suggest that this cluster
represents the role Clerk. The two extra members of
the rAcc cluster hint at either inconsistencies in the
permission assignments (see Section 3.1), or an alter-
native clustering (see Section 3.2).

• The root of the cluster hierarchy combines all permis-
sions and has only one member. These are both un-
likely properties for a role and may for example indi-
cate an accidental combination of permissions.

The analysis has produced two roles that are not in hier-
archical order. If we accepted the root cluster as a role,
it would be a sub-role (see Section 3.1) of the Clerk and
JuniorManager since it has more responsibilities.

Note that the tasks introduced in the beginning are not
needed to interpret the clustering result. We only used them
to motivate the permission assignment, and the expert may
use them to guide her judgement about the validity and
semantics of clusters.

3.1 The cluster hierarchy
We have shown in Section 3 that along with the clusters,

the algorithm automatically constructs a partial order for
them: A cluster subsumes all permissions of its sub-clusters,
and the resulting hierarchy is therefore called a set hierarchy
or subsumption hierarchy. This hierarchy may correspond
to a hierarchy of roles.

The basic idea here is that a sub-role has more responsibil-
ities or tasks than its super-roles, and additional permissions
are necessary to perform them [21]; with this definition of
a role hierarchy, a role inherits all the permissions of all its
super-roles. Therefore, the cluster corresponding to the sub-
role has to include those permissions and will consequently
be formed later than the cluster representing the super-role.

Note that the clusters and their corresponding roles are in
reverse hierarchical order—i. e., the higher up in the cluster
hierarchy, the lower in the role hierarchy, respectively. Also
note that the cluster hierarchy may form a forest instead of
a single tree.

Although it seems that the cluster hierarchy and the role
hierarchy should match very well, there a two problems. One
is accumulation (gathering permissions by promotion), and
the second is the definition of the role hierarchy itself. We
discuss both problems in the following paragraphs.

Accumulation.Persons in enterprises tend to accumulate
permissions as they move within the enterprise, working in
new departments and roles. Often, permissions are not re-
voked, once they have been granted. Over the long term, a
single person may act in many roles sequentially but not at
the same time, but still retain all the permissionsThis ac-
cumulation of roles and permissions over time shows up in
the cluster hierarchy as chains of sub-/super-roles not unlike
those originating from a role hierarchy.

In the example cluster hierarchy in Figure 1, the root
cluster may be interpreted as the result of accumulation.
Its only member may have started as a Clerk and later been
promoted to JuniorManager without giving up the permis-
sions of a Clerk. To explain why the root cluster cannot

171

correspond to a role, a banking domain expert might rea-
son that it is very unlikely for a bank employee to be both a
Clerk and the JuniorManager that may approve the Clerk ’s
transfers.

In general, both the role hierarchy and the accumulation
hierarchy are unrelated. They correspond only if people of-
ten get promoted along the role hierarchy; if cross-promotion
prevails, the hierarchies may differ significantly, making it
difficult to extract the role hierarchy from the cluster hier-
archy.

Alternative Role Hierarchy Definitions.Up to now, we
have assumed a specific kind of role hierarchy, namely one
where sub-roles inherit all permissions of all their super-
roles; this is called a generalisation hierarchy in [13]. There
may be other definitions of a role hierarchy where sub-roles
have incomparable sets of responsibilities. These hierarchies
cannot be reconstructed using hierarchical data mining al-
gorithms based on permissions alone but need additional
knowledge, for example the organisational structure of the
enterprise in question or user attributes. Of course, data
mining techniques can be applied to those data sets as well,
in order to construct hierarchies.

[13] specifically discusses the problems of inheritance of
permissions in the light of enterprise control principles like
separation of duties, delegation, supervision and review, and
in [14], alternative role hierarchies and their consequences
for access control are presented. We consider the arguments
of [14] in Section 5. In general, one should contemplate
whether hierarchies for managing permissions and hierar-
chies for organising responsibilities should coincide. The
focus of ORCA is primarily on the efficient analysis of per-
missions.

3.2 The matching criterion
In Step 3 of the algorithm, clusters are formed from per-

missions that share the maximal number of members. The
maximality condition ensures that each cluster gets at most
one super-clusterand results in a tree with single permis-
sions as leafs and sets of permissions as inner nodes. Con-
sequently, single permissions show up in exactly one path of
clusters from the leaf to the root of the tree in which it is
enclosed. The permission is therefore treated as if it is used
exclusively in one role and all its super-roles.

This assumption may not be the best choice from a se-
mantical point of view: Permissions are seldom used by
one role only and may be necessary for incomparable roles.
Translated into the cluster hierarchy, this means that cor-
responding clusters would have to have permissions in com-
mon. However, the chosen algorithm does not yet support
this.

Relaxing Exclusiveness.It is possible to let the algorithm
define clusters for the n best combinations of permissions,
instead of for the optimal match alone, or for all combi-
nations down to a limit of shared users.Then, permissions
would not be locked exclusively into one cluster (and its
ancestors) but may show up in several clusters.

This has consequences for the construction of the cluster
hierarchy, namely the improved algorithm will deliver a di-
rected acyclic graph (DAG) rather than a tree. Since there
is no single hierarchy in a DAG, it is more challenging to
transform the cluster hierarchy into a role hierarchy.

On the other hand, the cluster hierarchy will be more sta-
ble with respect to noise in the data. With exclusiveness, few
accidentally granted permissions can influence large parts of
the cluster hierarchy and lead to an erroneous clustering.

For example, if the difference between the optimal and the
second best match for a cluster is very small, then the clus-
tering might be wrong due to minor inconsistencies in the
permission assignment. In the cluster hierarchy in Figure 1,
the rAcc permission shows up only in the upper part of the
hierarchy. However, we know that it also occurs almost as
often with the rTrans and cdAcc permissions aggregated in
the lower part. One person makes the difference here, and
we have already argued in Section 3.1 that this assignment
might be due to accumulation, meaning that it should be
revoked anyway.

With the relaxed clustering criterion, alternative clusters
will be constructed, too, thus placing the burden of choice on
the analyst instead of letting the algorithm make a narrow
decision which might be based on dirty data.

Avoiding Coincidence.The algorithm has yet no means
to check the semantics of permissions and may build clus-
ters that have no semantic counterpart in roles, e. g., due
to a person combining several roles, or accumulation (see
Section 3.1). Since it requires expert knowledge to identify
these invalid clusters, the algorithm has been adapted to
respect these judgements in its matching criterion. To this
end, clusters can interactively be marked as invalid, which
will put the corresponding combination of permissions into
a list. The algorithm ignores all permission combinations
from the list. This list of invalid combinations of permis-
sions is stored persistently with the cluster data and over
time accumulates the expert knowledge.

4. THE ORCA TOOL
ORCA is a Java-based tool intended as an instrument to

visualise the hierarchy of existing permissions and to support
the transformation of the cluster hierarchy into an enterprise
role concept. ORCA is based on the clustering algorithm de-
scribed in Section 3. It displays the result of the clustering
in a so-called cluster hierarchy view and supports the ana-
lysis of this hierarchy by highlighting clusters according to
different criteria. Besides the permission assignment matrix,
ORCA can use detail data about persons and organisational
units of the enterprise. This data is shown on demand for
the members of any cluster.

4.1 Visualising the cluster hierarchy
The main view of ORCA is the cluster hierarchy view

which shows the result of the cluster algorithm of Section 3
giving the user an overview over the existing permission as-
signments. Figure 2 shows an excerpt from the graphical
overview provided by ORCA1.

The nodes.Each node in the graph represents a cluster as
a rectangle with the number of members |members(c)| in
the upper half and, for inner nodes, the number of aggre-
gated rights |rights(c)| in the lower half. For leaf nodes, the

1The data shown in the examples comes from a real com-
pany and covers about 4 800 user accounts and more than
1 600 permissions. All names have been anonymised for the
presentation, leaving the structures intact.

172

Figure 2: The cluster hierarchy view in ORCA

number of rights is always 1, so it is not shown in the node;
instead, the access right itself is shown next to the node. In
the example in Figure 2, the root node of the tree combines
6 permissions which are held by a total of 34 users. The leaf
nodes hold permissions named ‘ResourceX’.

Sub-clusters and super-clusters are connected by lines,
where the super-cluster is shown left of the sub-cluster. The
cluster hierarchy thus resembles a tree or forest, with root
clusters on the left and trivial clusters as leaf nodes stretch-
ing out to the right. While the algorithm in Section 3 con-
structs a binary tree, ORCA removes all intermediate nodes
(cf. Section 3) so the tree is no longer binary.

Besides normal cluster trees, the cluster hierarchy may
also hold degenerated trees consisting of single nodes, which
appear as unconnected leaf nodes. These are shown on de-
mand below the other trees.

The co-ordinate system.The position of a cluster node
along the x-axis of the graph corresponds directly with the
number of members of the node. The further to the right
a cluster appears the more persons share the permissions
represented by it. Consequently, clusters at about the same
vertical line have about the same number of members, and if
they are connected, they even share most of those members.

In Figure 2 for example, the cluster ‘Resource0023’ and
the cluster ‘Resource0073’ are placed close to each other
because their memberships differ only by 3 persons. Since
their closest common super-cluster has the same x-position
as ‘Resource0073’, both have all members of that cluster in
common.

Since super-clusters aggregate all permissions of their sub-
clusters, nodes on the left side of the graph represent larger
sets of access rights and therefore smaller groups of persons
sharing them. However, there is no direct relationship be-
tween number of members and number of permissions; even
leaf nodes may have a very small set of members if they
represent very special permissions.

Along the y-axis, the trees are sorted in descending order
of the number of members of their root clusters and shown
one below the other.

4.2 Cluster detail information
To adapt existing permission assignments or to make de-

cisions with respect to a role definition, details about the
clustered rights and the associated users are needed. ORCA
offers this information in cluster detail dialogs which are
non-modal and can thus stay open for as many clusters as
needed. This enables the detailed comparison of clusters.

Figure 3: The cluster information dialog

Figure 3 shows the cluster detail dialog with its four tabs.

• With the input line at the bottom of the dialog, a clus-
ter may be given a name. This name is then shown
as a tool tip in the cluster hierarchy view (see Sec-
tion 4.1). The name should be chosen to reflect the
semantics of the cluster which is most likely the role
that it corresponds to. Thus, the ORCA user can use
cluster naming to identify those clusters that are part
of the role hierarchy under development.

• The first tab shows the list of the access rights that
are aggregated in the cluster.

• The second tab holds the list of members with their
personal details like login name, full name, description,
and the organisational unit to which the user belongs.

• The third tab shows all the organisational units of
cluster members, together with the number of clus-
ter members belonging to that unit. This information
gives an idea of the degree of congruence between the
cluster hierarchy (and possibly the role hierarchy) with
the organisational hierarchy.

• The fourth tab is only shown for non-root clusters.
Here, ORCA lists all those members of the cluster that
are not members of its immediate super-cluster

As shown in Figure 2, the clusters ‘Resource0023’ and
‘Resource0073’ share 153 members with their closest
common super-cluster. Since cluster ‘Resource0023’
has 156 members, there are 3 persons (shown in Fig-
ure 3) that do not have access to ‘Resource0073’.

Each tab shows the number of list elements in its name for
quick reference. All lists can be sorted in both directions
and incrementally by arbitrary columns. The person lists
can be customized by hiding arbitrary columns.

All in all, the cluster information can help the ORCA user
to understand how a clustering has been accomplished and
form a basis for further decisions with respect to the role
concept and the management of access rights.

4.3 Highlighting clusters
In a cluster hierarchy, there can be certain patterns which

can either be a clue for how to form organisational roles
or reveal weaknesses in the current permission assignments.
ORCA offers ways to help users spot such patterns in the
cluster hierarchy.

173

Figure 4: Clusters marked by organisational unit

Man is the proverbial visual animal and recognizes pat-
terns best when they show up visually. To support the dis-
covery of patterns in the cluster hierarchy, ORCA therefore
does not have a search function that sequentially directs the
user’s attention to single clusters but rather offers marking
algorithms that take a criterion and mark all clusters that
match the criterion, by changing their colour. The colour
of a node is gradually intensified according to the degree
of conformance to the given criterion. This way, potential
patterns show up in the cluster hierarchy view and provide
entry points for closer examination.

Up to date, ORCA implements two marking algorithms:
one for marking organisational unit quotas in clusters and
the other marking deviations in memberships between clus-
ters. Both are discussed in the following paragraphs.

Marking organisational unit quotas.To get an overview
over the involvement of organisational units in the clusters of
a hierarchy, ORCA offers the organisation unit quota mark-
ing algorithm. It lets the user select some organisational
units from a list and then marks clusters containing persons
belonging to one of these units in linear relation to the share
of these members. The higher the percentage of members
belonging to one of the selected units, the more intense the
node colour. With this marking algorithm, users can easily
find all clusters with members from certain departments, or
check the correlation between the cluster hierarchy and the
organisational structure of the enterprise.

Figure 4 shows an example where the marking algorithm
has been employed to find members of the ‘orgUnit0063’
department. Since the leaf node ‘Resource0033’ has been
marked with intense colour, we know that a large share of
the employees with permission ‘Resource0033’ belongs to
this unit. The figure also reveals that no other cluster in the
depicted tree has members from that department. This pat-
tern makes the marked cluster worth analysing to find the
reason for this exceptional state of cluster ‘Resource0033’
with respect to department ‘orgUnit0063’.

A single node marked in a whole cluster tree is only one
example of patterns that might emerge when marking clus-
ters according to their organisational unit share. There may
be other patterns that might warrant closer examination of
a cluster with respect to organisational units, too.

Marking membership difference.In Section 4.2, we have
already motivated the significance of small deviations in the
membership of neighbouring clusters: If only few persons

Figure 5: Clusters marked by member difference

differ in their permission assignments from a larger group,
this may be due to inconsistencies in the assignments. It
is however too time-consuming to find critical clusters by
checking the fourth tab of their cluster info dialog. To get a
quick overview over all clusters concerned ORCA offers the
membership difference marking algorithm. This algorithm
marks clusters according to their membership distance to
their direct super-cluster2. Here, membership distance is
defined to be the cardinality of the set of persons that are
members of the sub-cluster but not the super-cluster—i. e.
|members(c) \ members(d)| for a cluster c and its immediate
super-cluster d. If this distance is below an user-adjustable
upper limit, the sub-cluster will be highlighted, and the
smaller the distance, the more intense the node colour.

The upper limit on membership difference to indicate up
to which amount the deviation between two adjacent clus-
ters might be questionable must be chosen by the user. It
depends on the size of the organisation as well as on the
granularity of the permissions. Deviations larger than the
limit are considered too substantial to be caused by mistakes
and therefore indicate real differences between clusters.

The lower limit shows a difference in the analysis of mem-
bership deviation for role concept design on the one hand
and for permission assignment inconsistencies on the other
hand. For role concept design, clusters with no member-
ship difference are interesting and should be marked. In
contrast, in permission assignment analysis a membership
difference of 0 does not indicate any problem but perfectly
consistent assignments. Thus, the respective cluster should
not be marked, and the lower limit for the algorithm should
be 1. ORCA offers both alternatives and leaves it to user to
select which lower limit to use.

In Figure 5 we see the result of applying the difference
algorithm with an upper limit of 10 and a lower limit of 1.
The cluster ‘Resource0077’ is marked lightly because the
difference of 9 between its 77 members and the 68 members
in the direct super-cluster is slightly under the limit. The
cluster representing the combination of ‘Resource0023’ and
‘Resource0033’ is marked more intensely because its mem-
bership of 156 persons overlaps much more with that of its
super-cluster which has 153 members.

The interpretation of small membership differences among
clusters depends on the focus of the user. In role concept
design, clusters differing only by a few persons might repre-

2If we relax the matching criterion as described in Sec-
tion 3.2 we’ll have to use the minimal distance since there
may then be more than one direct super-cluster.

174

sent rather one role than two. In the analysis of permission
assignments, a low deviation might indicate that persons
who are only contained in the sub-cluster are accidentally
deprived of the access rights added by the super-cluster.

5. RELATED WORK
The growing interest in Role-Based Access Control as a

means of efficient and secure permissions management in
larger enterprises has stipulated work on role engineering
[5, 17]. Some publications discuss various approaches for
the role definition process, while others concentrate on the
qualities of role hierarchies. We now look at related work
for each aspect in turn.

Data Mining Techniques in Role Engineering.The tra-
ditional top-down approach to role engineering [18, 6, 16]
starts from process or scenario descriptions and extracts
roles, or starts from initial ‘job functions’ defined by experts
and refines those into roles. The roles are then decomposed
into suitable sets of permissions. Since permissions enter
late into this process, they are not analysed to help the role
definition process.

The top-down approaches have been complemented with
bottom-up approaches which start from the actual permis-
sion assignments and/or user details, and aggregate them
into roles [24, 6]. Only few publications discuss the use of
data mining algorithms to support this aggregation process,
however there are two products, namely Eurekify Sage and
betasystems’ SAM Role Miner.

To our knowledge, the term ‘role mining’ has been coined
by [24]. The author is closely related to the SAM Role
Miner product. [12] presents some details about the algo-
rithm used by SAM Role Miner. It starts with a set of
sample users given by an expert and iteratively lets the user
apply two techniques called Association, to define rules, and
Demographic Clustering, to define a given number of clus-
ters; the latter sounds like k-means clustering. Applying
demographic clustering repeatedly allows then to build up a
role hierarchy but the authors list this as an open question
which they intend to solve using association. In contrast,
ORCAs algorithm does not require pre-defined samples or a
given number of clusters, and automatically delivers a role
hierarchy. It therefore seems better suited to the job at
hand. Furthermore, SAM Role Miner uses clustering only
to find so-called organisational roles, as opposed to func-
tional roles for which it uses association; these functional
roles do not cross system boundaries. This seems an unfor-
tunate decision since the combination of data from several
systems should enhance the clustering results. Parameteri-
sation of roles is an open question for SAM Role Miner as
well as for ORCA.

There are no scientific publications about Eurekify Sage
but the founder of Eurekify, Dr. R. Rymon, has published
papers about Set Enumeration [19] which is one technique
used by Sage. According to white papers [20, 25], Sage
finds role hierarchies just like ORCA does but uses its own,
patented algorithms. However, a fundamental difference is
the target of clustering: Sage builds clusters of users based
on their access rights, while ORCA build clusters of access
rights based on the users having those rights. Since we be-
lieve (combinations of) permissions to be more promising
indicators for roles than groups of persons, we expect ORCA
to perform better than Sage in defining role hierarchies.

Role hierarchies.[13, 14] discuss the influence of different
types of role hierarchies on access control, specifically the
use of inheritance in those hierarchies. They argue that en-
terprise control principles favor role hierarchies where inher-
itance of permissions might be dangerous. However, inher-
itance of permissions is automatic iff users may have more
than one role, as is usually the case: A user has all per-
missions of all his or her roles, and if two of the roles are
related hierarchically, the effect is that of permission inher-
itance. So, rather than blaming permission inheritance, one
could question role hierarchies based on the subset relation-
ship of members, that is where members of sub-roles are also
automatically members of super-roles.

6. CONCLUSION AND FUTURE WORK
Role Mining in combination with the bottom-up approach

to role concept definition as required for example for RBAC
can be a viable alternative to the top-down approach of role
engineering. It can be implemented by applying data min-
ing algorithms to permission assignments within an enter-
prise. In this paper, we have described one such clustering
algorithm in detail, together with ORCA as a prototypical
implementation of a tool for the visualisation and analysis
of permission cluster hierarchies.

Right now, we are about to evaluate ORCA in an en-
terprise with about 3 500 employees, more than 4 800 user
accounts and more than 1 600 permissions. The focus here
is on the visualisation of permission structures, but a subse-
quent evaluation regarding its support for role definition is
intended.

Possible improvements.Beyond an evaluation of the cur-
rent ORCA prototype, we are going to investigate some pos-
sible improvements.

• We want to examine other data mining algorithms
with respect to their applicability for role mining. One
drawback of the current algorithm is its strict parti-
tioning of the permissions set (see Section 3.2): Once
a permission is part of a tree in the forest of permis-
sion hierarchies, it at cannot be clustered elsewhere
again. This runs contrary to the fact that one per-
mission may very well be connected to a number of
different roles within a role concept. Alternative, non-
partitioning algorithms which allow the repeated ap-
pearance of permissions in different clusters in the first
place may remedy this problem.

• From the angle of usability, rules are better suited to
support users in identifying invalid permission combi-
nations than manual tagging. Instead of having users
mark the invalid clusters one by one, these clusters
could also be described by rules evaluated by ORCA
for automatically excluding invalid combinations from
the clustering.

As can be seen, there are still several opportunities to im-
prove both the ORCA tool as well as the algorithm to better
support role mining.

7. REFERENCES
[1] ACM. Proceedings of the 3rd ACM Workshop on

Role-Based Access Control (RBAC 1998). ACM Press,
1998.

175

[2] ACM. Proceedings of the 4th ACM workshop on
Role-Based Access Control (RBAC 1999). ACM Press,
1999.

[3] ACM. Proceedings of the 5th ACM workshop on
Role-Based Access Control (RBAC 2000). ACM Press,
2000.

[4] Information Technology – Role Based Access Control.
Number ANSI/INCITS 359-2004. InterNational
Committee for Information Technology Standards,
2004.

[5] E. J. Coyne. Role engineering. In RBAC’95:
Proceedings of the 1st ACM Workshop on Role-Based
Access Control, page 4. ACM Press, 1996.

[6] P. Epstein and R. S. Sandhu. Engineering of
role/permission assignments. In 17th Annual
Computer Security Applications Conference (ACSAC
2001), pages 127–136. IEEE Computer Society, Dec.
2001.

[7] D. Ferraiolo and R. Kuhn. Role-based access controls.
In 15th NIST-NCSC National Computer Security
Conference, pages 554–563, 1992.

[8] U. Grimmer and H. Hinrichs. A methodological
approach to data quality management supported by
data mining. In E. M. Pierce and R. Katz-Haas,
editors, 6th Conference on Information Quality (IQ
2001), pages 217–232. MIT, 2001.

[9] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[10] J. Joshi, E. Bertino, and A. Ghafoor. Hybrid role
hierarchy for generalized temporal role based access
control model. In 26th International Computer
Software and Applications Conference (COMPSAC
2002), pages 951–956. IEEE Computer Society, Aug.
2002.

[11] A. Kern. Advanced features for enterprise-wide
role-based access control. In 18th Annual Computer
Security Applications Conference (ACSAC 2002),
pages 333–342. IEEE Computer Society, Dec. 2002.

[12] M. Kuhlmann, D. Shohat, and G. Schimpf. Role
mining - revealing business roles for security
administration using data mining technology. In
SACMAT 2003: Proceedings of the 8th ACM
Symposium on Access Control Models and
Technologies, pages 179–186. ACM Press, 2003.

[13] J. D. Moffett. Control principles and role hierarchies.
In Proceedings of the 3rd ACM Workshop on
Role-Based Access Control (RBAC 1998) [1], pages
63–69.

[14] J. D. Moffett and E. Lupu. The uses of role
hierarchies in access control. In Proceedings of the 4th
ACM workshop on Role-Based Access Control (RBAC
1999) [2], pages 153–160.

[15] M. J. Moyer and M. Ahamad. Generalized role-based
access control. In Proceedings of the 21st International
Conference on Distributed Computing Systems
(ICDCS 2001), pages 391–398. IEEE Computer
Society, Apr. 2001.

[16] G. Neumann and M. Strembeck. A scenario-driven
role engineering process for functional RBAC roles. In
SACMAT 2002: Proceedings of the 7th ACM
Symposium on Access Control Models and
Technologies, pages 33–42. ACM Press, 2002.

[17] H. Roeckle. Role-finding/role-engineering (panel
session). In Proceedings of the 5th ACM workshop on
Role-Based Access Control (RBAC 2000) [3], page 68.

[18] H. Roeckle, G. Schimpf, and R. Weidinger.
Process-oriented approach for role-finding to
implement role-based security administration in a
large industrial organization. In Proceedings of the 5th
ACM workshop on Role-Based Access Control (RBAC
2000) [3], pages 103–110.

[19] R. Rymon. SE-trees outperform decision trees in noisy
domains. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining
(KDD-96), pages 331–334. AAAI Press, 1996.

[20] R. Rymon. Sage – Enabling Role-Based User
Management. Presentation slides, Eurekify, Dec. 2002.

[21] R. S. Sandhu. Role activation hierarchies. In
Proceedings of the 3rd ACM Workshop on Role-Based
Access Control (RBAC 1998) [1], pages 33–40.

[22] R. S. Sandhu, V. Bhamidipati, E. J. Coyne, S. Canta,
and C. E. Youman. The ARBAC97 model for
role-based administration of roles: Preliminary
description and outline. In Proceedings of the 2nd
Workshop on Role-Based Access Control (RBAC
1997), pages 41–54, 1997.

[23] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[24] G. Schimpf. Role-engineering: Critical success factors
for enterprise security administration. Position paper
for [17], Dec. 2000.

[25] M. Sel. RBAC & Role Mining. Technical report,
COSIC, 2004.

176

