
AccMon: Automatically Detecting Memory-related Bugs
via Program Counter-based Invariants ∗

Pin Zhou, Wei Liu, Long Fei†, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel Midkiff† and Josep Torrellas
Department of Computer Science,

University of Illinois at Urbana-Champaign
{pinzhou,liuwei,shanlu,fengqin,yyzhou,torrellas}@cs.uiuc.edu

†School of Electrical and Computer Engineering,
Purdue University

{lfei,smidkiff}@purdue.edu

Abstract

This paper makes two contributions to architectural support for
software debugging. First, it proposes a novel statistics-based, on-
the-fly bug detection method called PC-based invariant detection.
The idea is based on the observation that, in most programs, a given
memory location is typically accessed by only a few instructions.
Therefore, by capturing the invariant of the set of PCs that nor-
mally access a given variable, we can detect accesses by outlier
instructions, which are often caused by memory corruption, buffer
overflow, stack smashing or other memory-related bugs. Since this
method is statistics-based, it can detect bugs that do not violate any
programming rules and that, therefore, are likely to be missed by
many existing tools. The second contribution is a novel architec-
tural extension called the Check Look-aside Buffer (CLB). The CLB
uses a Bloom filter to reduce monitoring overheads in the recently-
proposed iWatcher architectural framework for software debugging.
The CLB significantly reduces the overhead of PC-based invariant
debugging.

We demonstrate a PC-based invariant detection tool called Ac-
cMon that leverages architectural, run-time system and compiler
support. Our experimental results with seven buggy applications
and a total of ten bugs, show that AccMon can detect all ten bugs
with few false alarms (0 for five applications and 2-8 for two appli-
cations) and with low overhead (0.24-2.88 times). Several existing
tools evaluated, including Purify, CCured and value-based invariant
detection tools, fail to detect some of the bugs. In addition, Purify’s
overhead is one order of magnitude higher than AccMon’s. Finally,
we show that the CLB is very effective at reducing overhead.

1. Introduction
Software bugs significantly affect system reliability and avail-

ability, accounting for as many as 40% of computer system fail-
ures [24]. According to NIST, software bugs cost the U.S. econ-
omy an estimated $59.5 billion annually, or 0.6% of the GDP [27].
Memory-related bugs are among the most prevalent and difficult to
catch of all software bugs, particularly in programs written in an un-
safe language such as C/C++. In addition, they are often exploited
to launch security attacks [7].

As micro-architectural innovations have significantly improved
performance, interest has recently risen in the architecture commu-

∗This work was supported in part by NSF under grants CCR-0325603,
EIA-0072102, CHE-0121357, and EIA-0081307; by DARPA under grant
F30602-01-C-0078; by an IBM SUR grant; and by additional gifts from
IBM and Intel.

nity to use transistors to improve software robustness. For exam-
ple, Prvulovic and Torrellas proposed ReEnact [31], which uses the
state buffering, rollback and re-execution features of Thread-Level
Speculation (TLS) to detect data races on the fly. Xu et al designed
the “flight data recorder” [39], which enables off-line deterministic
replay and can be used for postmortem analysis of a bug. Our pre-
vious work on iWatcher [40] provides a convenient and efficient ar-
chitectural framework for dynamic monitoring. While recent work
provides a good foundation, architectural support for software de-
bugging is still far from providing a complete solution. This paper
takes another step toward the goal of improving software robust-
ness.

Many methods have been proposed to detect bugs dynamically
during execution. These methods can be classified into two cat-
egories: the programming-rule-based approach and the statistics-
rule-based approach. Methods in both categories check for viola-
tions of certain rules at run time, but they focus on different types
of rules. The programming-rule-based approach focuses on rules
that should be followed when programming in a specific language
such as C/C++. “An array pointer cannot move out-of-bounds” is an
example of these rules. Much work has been conducted on this ap-
proach, including Purify [15], CCured [6, 28], SafeC [1] and Jones
and Kelly’s tool [19].

The statistics-rule-based approach is a newly explored direction
that extracts rules (e.g., invariants) statistically from multiple suc-
cessful executions (e.g., in-house regression tests) or multiple peri-
ods of a single long-running execution, and then uses these rules to
check for violations in a later execution (or later in the same long-
running execution). This approach is promising because it can catch
bugs that may not violate any programming rules. Many statistics-
based rules such as value-based invariants (i.e., a variable’s value
always falls in a certain range during normal runs) are related to
applications semantics. Such information is difficult to infer from
the code, and is too tedious to be documented or annotated by pro-
grammers.

Only a few studies have been conducted on the statistics-rule-
based approach, and almost all are software-only solutions. Liblit et
al [23] uses statistical analysis to find the difference between abnor-
mal and normal runs for the purpose of providing more information
for postmortem bug analysis. DAIKON [11, 12] and DIDUCE [14]
focus on detecting bugs on the fly by automatically extracting in-
variants and detecting violations during execution. Both DAIKON
and DIDUCE consider only value-based invariants, and therefore
can miss bugs that do not violate these invariants.

Novel architectural support would provide several benefits for
statistics-rule-based bug detection over software-only solutions: (1)

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

Efficiency: Architectural support can significantly lower the over-
head of dynamic monitoring because it does not need extensive
code instrumentation. Note also that such instrumentation can in-
terfere with compiler optimizations. Moreover, it is possible to use
extra hardware to speed up certain operations. Both iWatcher and
AccMon are examples that demonstrate this benefit. (2) Accuracy:
Architectural support can avoid pointer aliasing problems and ac-
curately capture all desired accesses to monitored memory objects.
(3) Portability: Architectural support can be language-independent,
cross-module and easy to use with low-level system code such as
the operating system. Moreover, it can be designed to work directly
with binary code without recompilation.
Our Contributions. This paper proposes two innovative ideas
in architectural support for software bug detection. First, we pro-
pose a novel statistics-based method, called program counter (PC)-
based invariance, to detect memory-related bugs on the fly. This
idea is based on the observation that, in most programs, a given
variable is typically accessed by only a few instructions. We vali-
date this observation using statistical analysis with nine applications
(See Section 3). Based on this observation, if we can capture the in-
variant of the set of PCs that normally access a given key variable,
it is possible to detect accesses by outlier instructions that are of-
ten caused by memory corruption, buffer overflow, stack smashing
or other memory-related bugs. This is regardless of the values that
these instructions assign to the variables.

Second, we propose a novel architectural extension, called the
Check Look-aside Buffer (CLB), that uses a Bloom filter [3] to re-
duce the monitoring overhead in iWatcher. This extension takes ad-
vantage of the good temporal locality that exists in data accesses to
filter out a large percentage of monitored accesses. This extension
reduces the overhead by up to 80.6% in our experiments.

Based on the above two ideas, we have built an automatic, low-
overhead, low-false-alarm, PC-based invariant detection tool called
AccMon (Access Monitor, pronounced as “A-k-Mon”) that uses a
combination of architectural, run-time system, and compiler sup-
port to catch hard-to-find memory-related bugs. First, AccMon
leverages the iWatcher framework with the CLB extension to mon-
itor accesses to key variables. Second, the run-time system auto-
matically infers PC-based invariants and detects violations of these
invariants. Third, AccMon uses compiler support to provide certain
optimizations to reduce the amount of monitoring and prune false
alarms.

Our experimental results with seven buggy applications (with a
total of ten bugs) show that AccMon can detect all ten bugs with few
false alarms (0 for five applications and 2-8 for two applications),
whereas several tested existing tools fail to detect some bugs. In
particular, AccMon catches a bug in the bc application that has
never been reported. AccMon also has low overhead (0.24-2.88
times), which is an order of magnitude lower than Purify [15]. Our
results also show that the CLB architectural extension and other
optimizations significantly reduce overheads.

AccMon complements other existing memory-bug detection
tools, including programming-rule-based approaches and statistics-
rule-based approaches. This is because AccMon provides several
unique advantages, some or all of which are unavailable in other
tools:

• Since AccMon is a statistics-based approach, it does not need
pointer-type/object information. Therefore, it can detect bugs

that either do not have such information (e.g., because of fine-
grained pointer manipulation through various type-casting),
or do not violate pointer-type/object association (such as a
wrong pointer assignment bug caused by copy-paste). Our
experiments identify two such bugs that are detected by Acc-
Mon but are missed by programming-rule-based tools such as
Purify [15] and CCured [6, 28].

• Since AccMon uses architectural support to detect accesses to
monitored memory objects, it can detect memory corruption
that occurs in third-party libraries whose source code is un-
available. We have found one such bug in our experiments
that is detected by AccMon but missed by the other tested
tools.

• AccMon does not rely on variable values, and therefore can
detect bugs that do not violate value-based invariants. In our
experiments, AccMon detects six bugs that are very difficult
to catch using value-based invariant detection tools such as
DAIKON [11, 12] and DIDUCE [14].

• Since AccMon relies on architectural support, it is language-
independent and easy to use for low-level system code, e.g.,
operating system code. In our experiments, AccMon is able to
catch an extracted version of a real bug that exists in the latest
version of Linux.

• Although the current AccMon implementation uses source
code in order to exploit certain compiler-based optimizations,
it can directly use binary code without recompilation.

• AccMon’s overhead is low. Moreover, AccMon uses the
iWatcher framework that can dynamically turn on/off moni-
toring with little overhead, completely eliminating the over-
head in unmonitored code. Therefore, AccMon can be used
on production runs.

2. Background
2.1. Invariant-Based Bug Detection

Similar to previous invariant-based bug detection work such as
DAIKON [11, 12] and DIDUCE [14], AccMon can be used in two
scenarios. The first one is debugging programs that fail on some
inputs. It is common for many programs to work correctly on some
inputs (especially those tested in-house) but to fail on others. In-
variant detection tools can be used to automatically provide debug-
ging information on failing cases by checking for invariants inferred
from successful cases. The second one is debugging failures in
long-running programs. Some bugs occur only after the program
has executed for a long time. These bugs are very common in server
programs, and are usually hard to track down because they cannot
be easily (or quickly) reproduced. Automatic invariant detection
and checking tools can use a period of execution time before the
bug occurs to extract invariants, and then continuously check for
violations of these invariants during the remainder of the execution
to detect bugs.

For the above two usage models, the dynamic invariant detec-
tion and checking process has two phases: the training phase and
the bug-detection phase. The training phase tries to extract invari-
ants from the program’s execution using good inputs in the first

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

usage scenario, or from the initial execution (before a bug occurs)
in the second usage scenario. The bug-detection phase checks for
violations of invariants during the execution on failing or untested
inputs, or the remaining execution after the training phase.

2.2. iWatcher

Our work is based on the iWatcher framework [40], which is
an architecture for dynamically monitoring memory locations. We
use iWatcher because it provides several advantages described in
Section 1, namely efficiency, accuracy and portability.

The main idea of iWatcher is to associate programmer-specified
monitoring functions with monitored memory objects. When a
monitored object is accessed, the monitoring function associated
with this object is automatically triggered and executed by the
hardware without generating an exception to the operating sys-
tem. iWatcher is flexible because monitoring functions are not hard-
wired into the architecture, but are provided by programs or external
software tools.

Programs can use iWatcherOn and iWatcherOff to turn on and
off the monitoring of a memory object. These operations can be
inserted into programs either automatically by a compiler or an in-
strumentation tool, or manually by a programmer. The interfaces of
iWatcherOn and iWatcherOff are:

iWatcherOn(MemAddr, Length, WatchFlag, MonitorFunc,
Param1, Param2, ... ParamN);

iWatcherOff(MemAddr, Length, WatchFlag,
MonitorFunc);

When iWatcherOn is called, it associates a monitoring function
MonitorFunc() with the memory object which begins at MemAddr
and has size Length. The WatchFlag specifies what types of ac-
cesses (read, write, or both) to this memory object should trigger the
specified monitoring function MonitorFunc. After the iWatcherOff
call, monitoring of the memory object with the specified monitoring
function is disabled. There are two more operations, EnableMoni-
toring() and DisableMonitoring(), that enable and disable system-
wide monitoring. After DisableMonitoring() is called, no access
will trigger a monitoring function. In this case, there is no moni-
toring overhead. Monitoring can be re-initiated by EnableMonitor-
ing() when desired.

3. PC-Based Invariants

When observing the behavior of programs, we found an inter-
esting characteristic: program location and data accessed are highly
correlated. This characteristic has two aspects. First, for most mem-
ory objects, only a few instructions access a given object. Second,
in short-running programs, for runs with different inputs, the sets
of instructions that access a given object are remarkably similar; in
long-running programs, the set of instructions that access a given
object is relatively stable across different execution periods (of du-
ration long enough to capture at least one cycle of most computation
phases). The latter is especially the case for long-running server
programs.

Intuitively, this characteristic makes sense. In most programs,
a memory object is accessed at only a few places. For example,
a linked list is usually accessed by the list manipulation functions.
Also, from the programmers’ point of view, it is very difficult to

write or understand a program where a memory object can be ac-
cessed in many places. For convenience, we refer to the set of in-
structions that normally access a given memory object as its AccSet.

Based on this observation, this paper proposes a new type of
invariant, the Program Counter-based (PC-based) invariant. Gen-
erally speaking, a PC-based invariant captures the relationship be-
tween a memory object and its AccSet. Based on this relationship,
it is possible to detect “illegal” accesses by an outlier instruction (an
instruction that is not in the AccSet of the accessed memory object)
due to buffer overflow, stack smashing, dangling pointers, memory
corruption or other memory-related bugs.

To validate this observation and understand the characteristics of
AccSets, we have analyzed the behavior of nine programs (six real
applications used in our evaluation of AccMon and three SPEC2000
benchmarks). In particular, we examine the average size and stabil-
ity of AccSets. If the average AccSet size is large, it will be hard to
detect bugs because the confidence of identifying an outlier instruc-
tion will be low. Similarly, if most AccSets are not stable across
different inputs or different execution periods, they cannot be used
to detect bugs because they may introduce many false alarms.

To find the average size and stability of AccSets, we collect the
AccSets for all global objects in the nine programs, using multiple
runs with different inputs. We then examine the cumulative distri-
bution of the AccSet sizes and measure the similarity of AccSets
across multiple runs with different inputs. We have also conducted
similar statistical analyses for heap objects and the results are simi-
lar.

Figure 1 shows the cumulative distributions of the AccSet sizes
for the three SPEC2000 benchmarks and six real applications. For
the SPEC2000 benchmarks, 96% of the global objects in vpr have
AccSet sizes less than 3, 90% of the global objects in parser have
AccSet sizes less than 5, and 80% of the global objects in gzip have
AccSet sizes less than 9. For the six real applications, around 85-
100% of the global objects have AccSet sizes less than 10. In other
words, the average AccSet size is small, and therefore AccSets can
be used to detect outlier accesses with reasonable confidence.

To measure the stability of AccSets across multiple runs with
different inputs, we introduce a metric called Similarity. For a given
data object OBJ and n runs, the similarity for this object across the
n runs is defined as

Similarity(OBJ) =
| ∩ (S1, S2, . . . , Sn)|
| ∪ (S1, S2, . . . , Sn)|

where Si is the AccSet of OBJ in run i. The similarity of an object
is the size of the intersection of its AccSets across different runs
divided by the size of the union of its AccSets in all the runs. It
measures the fraction of common instructions in the total possible
instructions that access this object. If the AccSet for an object is
very stable, the similarity metric is close to one. If it is very unsta-
ble, the similarity metric is close to zero.

Figure 2 shows the cumulative distributions of the AccSet simi-
larity for different runs. The figure shows that most objects have a
similarity close to one, which indicates that most AccSets are sta-
ble across different runs. In the SPEC2000 benchmarks, 96-100%
of the global objects’ AccSets have similarity values greater than
0.97. For the six real applications shown in Figures 2(b) and 2(c),

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

T
ot

al
 g

lo
ba

l o
bj

ec
ts

 (
%

)

Size of AccSet

SPEC-gzip
SPEC-vpr

SPEC-parser

(a) SPEC2000 benchmarks

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

T
ot

al
 g

lo
ba

l o
bj

ec
ts

 (
%

)

Size of AccSet

gzip-1.2.4
tar-1.13.25

ncompress-4.2.4

(b) Real applications (1)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

T
ot

al
 g

lo
ba

l o
bj

ec
ts

 (
%

)

Size of AccSet

bc-1.06
man-1.5h1

polymorph-0.4.0

(c) Real applications (2)

Figure 1. Cumulative distribution of AccSet size for three SPEC2000 benchmarks and six real applications. Each cumulative distribution
curve gives the percentage of global data objects whose AccSet sizes are smaller than or equal to a given size. A high percentage for a
small size means that most objects have small AccSets sizes. Note that the SPEC-gzip and gzip-1.2.4 applications are different.

0

20

40

60

80

100

00.20.40.60.81

T
ot

al
 g

lo
ba

l o
bj

ec
ts

 (
%

)

Similarity of the AccSets of an object

SPEC-gzip
SPEC-vpr

SPEC-parser

(a) SPEC2000 benchmarks

0

20

40

60

80

100

00.20.40.60.81

T
ot

al
 g

lo
ba

l o
bj

ec
ts

 (
%

)

Similarity of the AccSets of an object

gzip-1.2.4
tar-1.13.25

ncompress-4.2.4

(b) Real applications (1)

0

20

40

60

80

100

00.20.40.60.81

T
ot

al
 g

lo
ba

l o
bj

ec
ts

 (
%

)

Similarity of the AccSets of an object

bc-1.06
man-1.5h1

polymorph-0.4.0

(c) Real applications (2)

Figure 2. Cumulative distribution of AccSet similarity for three SPEC2000 benchmarks and six real applications. Each cumulative
distribution curve shows the percentage of global data objects whose AccSets have a similarity greater than or equal to a given value. A
high percentage at a value close to 1 indicates that most objects’ AccSets are similar across different runs. Note that the x-axis starts at
1 and goes to 0.

around 84-100% of the global objects’ AccSets have similarity val-
ues greater than 0.97. These results show that AccSets are quite
stable across multiple runs with different inputs.

Since our infrastructure for recording AccSets cannot support
long-running server programs (our iWatcher simulator does not run
an OS), we do not have results on similarity analysis for differ-
ent execution periods of a very long run. However, we expect that
the results would be similar because most long-running server pro-
grams perform similar computation in different periods. For exam-
ple, the Apache web server continuously services requests.

Further validation of our observations on PC-based invariants is
provided by the data in Section 6.

4. Design of AccMon

Based on the above observation, a violation of a PC-based in-
variant usually indicates a potential bug in the program. For exam-
ple, if a memory location is accessed by an instruction which has
never accessed this location during normal execution, it is likely
that this access is “illegal”, resulting from a memory-related bug.
In this section, we design a tool to automatically detect these cases.
We call this tool AccMon.

4.1. Overview

AccMon uses some architectural support as well as some com-
piler and run-time software infrastructure. The main functionality
of each of the components of AccMon is shown in Table 1.

AccMon uses iWatcher to catch all memory accesses to mon-
itored memory objects and trigger a monitoring function at such
accesses [40]. The monitoring function will check if the PC used
to access the object is in the object’s AccSet. If the TLS option of
iWatcher is enabled, the main program is speculatively executed in
parallel while the monitoring function runs, to reduce overhead.

Component Main Functionality

Architecture iWatcher Catch accesses to monitored objects, invoke monitor-
ing functions to check if a PC belongs to the AccSet
of an object, and execute the main program in parallel
with monitoring functions

CLB Filter most accesses that do not violate PC-based in-
variants

Compiler Insert iWatcherOn/Off to monitor key memory objects,
and provide hints to reduce overheads and false alarms

Run-time system Extract invariants, detect violations and rank errors

Table 1. Functionality of the components of AccMon.

To further reduce monitoring overhead, we propose the Check
Look-aside Buffer (CLB). The CLB is a hardware cache that, for
most recently-accessed monitored objects, filters out the accesses
that do not violate the PC-based invariant. To do that, the CLB
keeps the AccSets for several recently-accessed monitored objects.
The memory address and PC of each load and store are checked
against the contents of the CLB. If the memory address is found
and the PC is part of the AccSet of the address, the monitoring
function is not executed. If, instead, the memory address is found
but the PC is not part of its AccSet, an access that violates the PC-
based invariant has been found. Finally, if the memory address is

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

not found in the CLB and iWatcher indicates that this access is to a
monitored object (i.e., a triggering access), the monitoring function
is executed to check if the access violates the PC-based invariant. In
addition, the run-time system inserts this address and its AccSet into
the CLB. If necessary, the AccSet of a memory object in the CLB
can be dynamically augmented with a new PC (See Section 4.2 for
details).

The CLB resides in the processor. Figure 3 shows how it inter-
acts with the different pipeline stages and the iWatcher trigger bit.
More details are given in Section 4.2.

iW
atcher’s

T
rigger B

it

Fetch ScheduleDecode/
Rename Commit

Execute

AddrGen Cache/Memory Access

CLB

Addr

PC

trigger monitoring function?

Figure 3. Interaction of the CLB with the processor pipeline and
the iWatcher trigger bit.

We modify the Cetus compiler [21] to select memory objects
to be monitored and to provide hints to reduce the number of false
alarms and the run-time overhead. In our current implementation,
we monitor global data objects, heap objects, and a few key stack
objects, such as the stack locations that store return addresses. The
compiler uses iWatcherOn to request iWatcher to monitor an ob-
ject, and iWatcherOff to stop doing it. While the monitoring is on,
iWatcher will automatically catch accesses to monitored objects.

The compiler also provides hints to reduce overheads and false
alarms. For example, the compiler passes information to the run-
time system regarding what instructions use pointers or access ar-
rays. These instructions are more likely to induce bugs if their PCs
are detected as outliers. The compiler can also temporarily disable
system-wide monitoring using DisableMonitoring() in certain
functions that do not have pointers or array accesses.

Note that although our current implementation uses a compiler
to insert iWatcherOn/Off() into the source code, AccMon can also
leverage a binary-instrumentation tool to avoid recompilation if
source code is unavailable. However, source level instrumenta-
tion can provide some advantages, such as the optimizations de-
scribed above and in Section 4.4. Since most debugging is done in-
house, recompilation may not be a major issue. In addition, since
monitoring can be dynamically turned off for most production runs
by the underlying iWatcher architecture, code can be shipped with
iWatcherOn/Off instrumentation.

The run-time system executes the monitoring function that de-
tects and checks invariants. There are two distinct phases: the train-
ing phase and the bug-detection phase. During the training phase,
the monitoring function dynamically builds AccSets for the moni-
tored objects. In addition, it also tracks the number of occurrences
of each PC in an AccSet. This information will be used later, in the
bug-detection phase, to determine the confidence level for an out-
lier PC. During the bug-detection phase, the monitoring function
checks each triggering access that does not hit in the CLB, to see
if it is an outlier. In addition, the monitoring function dynamically

adjusts the confidence level as execution progresses. Section 4.3
describes the basic algorithms in more detail.

At the end of the bug-detection phase, AccMon produces an er-
ror report with a ranked list of detected violations. The violations
are sorted by their confidence levels as computed by AccMon. Pro-
grammers can go through the list to check for potential bugs. Pro-
grammers can also mark certain errors as false alarms, and add the
newly-observed PCs that cause false alarms into AccSets, so that
AccMon can learn from its mistakes to reduce the number of false
alarms in future runs.

4.2. CLB with a Bloom Filter

The main purpose of the CLB is to reduce overheads by filtering
most of the valid accesses to monitored objects. Such valid accesses
do not need to trigger the monitoring function. By filtering most of
the valid accesses, AccMon can significantly reduce the number of
times the monitoring function is executed. Since the overhead for
the bug-detection phase is more important than the overhead for the
training phase, the CLB is only used for the bug-detection phase in
our current prototype of AccMon.

Designing the CLB is challenging. A major constraint is that the
CLB needs to be very fast. Indeed, as shown in Figure 3, the CLB is
tightly coupled with the processor pipeline. Moreover, it is accessed
by every load and store instruction. In a wide-issue processor, the
CLB is accessed very often and has little time to make a decision.
Consequently, it cannot be built as a large associative table.

In addition, the CLB ideally needs to keep a lot of information.
Since AccMon monitors every global data object, heap object and
stack return address, there can be many monitored objects. For ex-
ample, we have up to 10,000 such objects in our experiments. Sup-
pose that, on average, each AccSet contains 10 PCs, where each PC
is 4 bytes. In this case, an AccSet requires at least 48 bytes, since it
needs 8 bytes to record the memory object’s start and end address.
Therefore, maintaining all AccSets would require a 480,000-byte
CLB. Such information would need to be organized in a two-level
manner: A memory address would first index the table and find
the matching CLB entry; then, the PC would be used to index the
AccSet of the address to find if the PC was there.

Clearly, keeping all this information in a fast CLB is impractical.
Moreover, it is unclear how to handle AccSets that contain more
than 10 PCs.

To address these challenges, AccMon uses two strategies to
make the CLB hardware practical: the first one is to use a Bloom
filter to avoid storing all the PCs of an AccSet in each entry; the
second one is to treat the CLB as a cache, which maintains only the
AccSets of recently-accessed monitored objects.

We use a Bloom filter for the CLB because it can quickly test
whether a PC belongs to the AccSet of the accessed object, and it
uses only a few bytes to maintain a relatively large set. The Bloom
filter was first proposed by Bloom [3] to support fast membership
testing of a set. It uses multiple hash functions to map an element
into a bit vector. For each member element, its corresponding bits
in the vector are set to 1. To test whether an element is a member
or not, its corresponding bits based on the hash functions are tested.
If one of the bits is 0, the element does not belong to the set. Oth-
erwise, the element may belong to the set. A Bloom filter never
has false negatives, but it may introduce false positives due to hash

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

collisions. However, if the vector is long enough and enough bits
are used for hashing, the probability of false positives is very low.

Figure 4 shows the implementation of the CLB. Similar to a
TLB, the CLB is a fully-associative table with only a few entries (4
or 8 in our experiments). At each memory instruction, the memory
address is used to index the CLB. Each CLB entry has 24 bytes,
storing the start address, end address and the Bloom filter vector
for a recently-accessed monitored memory object. The CLB uses
128 bits as the Bloom filter vector. At each memory instruction, 20
bits (bit 2 to bit 21, starting from the least significant bit) are taken
from this instruction’s PC. The 20 bits are broken into 4 parts, with
5 bits each. Each part is used to directly index 32 bits in the Bloom
filter vector of the corresponding CLB entry. This partial address
indexing idea was also used in [30]. We use a direct index instead
of a hash function to simplify the logic as much as possible.

0126111621 12172231Memory Address

Program Counter (PC)

startAddr endAddr

...

32bits 32bits 32bits 32bits

5 5 5 532

7

In AccSet ? (Y/N)

Figure 4. Implementation of the CLB using a Bloom filter.

If all indexed bits in the four parts have value 1, we conclude
that this PC is in the AccSet. Therefore, this access is assumed to be
valid and can be filtered even if it is recorded as a triggering access
by iWatcher (Figure 3). Since we directly index bits 2-21 of a PC to
four bits in the Bloom filter vector, the collision rate is almost zero,
and so is the rate of false positives introduced by the CLB. A false
positive occurs when an outlier PC is incorrectly flagged as part of
the AccSet.

Treating the CLB as a cache exploits the good temporal locality
of data accesses. Most programs have well-clustered memory ac-
cesses: an object such as an array or a structure tends to be accessed
many times in a short period of time. If we keep recently accessed
monitored objects in the CLB (with one entry per object), we only
need a small table with a few entries to filter most valid accesses
to monitored objects. As shown later in Table 6 in Section 6.2,
the CLB hit ratios for most of the evaluated applications are very
high, namely 80.1%-99.9% and 83.8%-99.9% for a 4-entry and an
8-entry CLB, respectively.

The CLB uses the least recently used (LRU) algorithm for re-
placement. After the CLB misses a triggering access, the AccMon
run-time system inserts the accessed object’s AccSet into the CLB.
If the CLB is full, the LRU entry in the CLB is replaced. This is
controlled by the run-time system because CLB misses are handled
by the AccMon monitoring function in the run-time system.

4.3. Basic Algorithms

The basic training and bug-detection algorithms, implemented
mainly in AccMon’s run-time system, have three parts: (1) ex-
tracting invariants, (2) checking for violations of invariants, and (3)
ranking results. All three parts need to access a core software data

structure called “PC-based invariants Table” (PCT), which main-
tains the AccSet for each monitored memory object. The PCT is
maintained as a hash table and can be searched using a memory
object’s name, as described in Section 4.4.1. Initially, the PCT is
empty. Each PCT entry contains both an AccSet and an occurrence
counter for each PC in the AccSet. This information is used to cal-
culate confidence and rank results, as described later.

During the training phase with bug-free runs (or bug-free execu-
tion phases for long-running programs), AccMon builds the AccSet
for each monitored object. At an access to an object obj by an in-
struction, AccMon first looks up obj in the PCT. If this obj is not in
the PCT, it is inserted in it. In any case, the instruction’s PC is added
to the obj’s AccSet if that PC is not already a member. The PC’s
occurrence counter is also incremented. At the end of each training
run, the PCT is saved on disk and is reloaded to memory at the be-
ginning of the next training run. Since all triggering accesses made
during the training phase need to go through the run-time system,
the CLB is disabled during the training phase.

During the bug-detection phase, AccMon detects violations of
PC-based invariants. In this phase, the CLB is enabled. When an
object obj is accessed by a PC, the CLB is checked for obj. If the
access is not filtered by the CLB (either because the CLB misses
this obj or the corresponding Bloom filter indicates that this PC is
not in obj’s AccSet) and the access is a triggering one, the AccMon
monitoring function is triggered to determine if this is an outlier
access. To do that, AccMon first checks the PCT to see if the PC
is already in obj’s AccSet. If it is, then obj and its AccSet are
inserted into the CLB. Otherwise, the AccMon monitoring function
reports the access as a suspect and stores it in a table (the Suspect
Table). Subsequent accesses by the same PC to the same object are
not reported.

To reduce the programmers’ effort in analyzing the error report
produced by AccMon, the errors are ranked based on their confi-
dence values. A programmer only needs to check the top (e.g. 10)
reported errors to find bugs. For an outlier access to object obj,
its confidence value should depend on the number of observed ac-
cesses to obj, and obj’s AccSet size. If obj has been accessed only
a few times, an outlier access to obj is less likely to be a bug. In-
stead, it is more likely to be a false alarm caused by insufficient
training. Similarly, if obj’s AccSet is large, the possibility for this
outlier to be a bug is also relatively low. Similar intuition is also
shared by other work [10, 14].

Moreover, we also consider the historical behavior of the out-
lier instruction. If the instruction has been previously identified as
an outlier for other memory objects, it is more likely to be a bug
because this instruction may have corrupted many other objects.

Combining all these factors, the confidence value of an error is
computed by using the formula:

Confidence =
NumAccesstotal × (NumOccurrencepc + 1)

AccSetSize + 1

where NumAccesstotal is the total number of times obj has
been accessed, NumOccurrencepc is the number of times this
outlier PC has been identified as an outlier for other objects as well,
and AccSetSize is obj’s AccSet size. While it is possible to fur-
ther refine our ranking function, our results show that this ranking
function is already very good.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

4.4. Design Issues

4.4.1. Monitoring and Naming Objects

AccMon currently monitors all global data objects, all heap ob-
jects and key stack objects, e.g. stack locations used to store re-
turn addresses. To monitor heap objects, we intercept all memory
allocation functions and insert instructions to call iWatcherOn im-
mediately after a memory-allocation, and iWatcherOff immediately
before a memory-free. For realloc(), iWatcherOff is called before it
and iWatcherOn after it.

We must name each memory object in the PCT. The primary
constraint on the naming strategy is that the name of an object can-
not change across different runs. For global data objects, their vir-
tual memory addresses are used as their names. A global object’s
address is decided at compile time and will not change across dif-
ferent runs.

However, this simple naming strategy does not work for heap
and stack objects because their virtual addresses can change across
different runs. Instead, we use a call-chain naming strategy, which
has been used in some previous work [2, 4, 20] for other purposes.
When a heap object is allocated, it is named based on the current
call-chain, i.e., the XOR-folding of the call-site address chain. As
suggested in the literature [2, 4, 20], it is sufficient to use the last
four call-sites in the call chain to distinguish heap/stack objects
from one another. Although several heap objects may have the same
call-chain, e.g. those allocated in a for loop, it is not important for
our case since those objects are naturally similar and usually have
similar AccSets.

4.4.2. Pruning False Alarms

It is possible that some corner cases caused by rarely touched
paths end up being reported as violations of an invariant. These
are false alarms. Too many false alarms make a debugging tool
unusable.

To reduce false alarms, we use, in addition to confidence levels,
simple heuristics. Specifically, by analyzing the behavior of buggy
code, we have found that most invalid accesses in C/C++ occur in
pointer dereferences and array accesses. The invariant violations
caused by pointer or array accesses are more likely to be bugs, while
violations caused by other accesses are more likely to be corner
cases caused by rarely executed paths.

Based on the above observation, we use the Cetus compiler [21]
to identify pointer-based dereferences and array accesses. The Ce-
tus compiler generates a list of PCs that may be pointer-based deref-
erences or array accesses. Of course, the compiler has to be conser-
vative, otherwise AccMon may miss some bugs. During the bug-
detection phase, the AccMon monitoring function checks a suspect
PC against this list. If the PC is not in the list, the suspect access
is unlikely to be a bug. This optimization may cause some bugs to
escape detection, but the probability is low based on our program
behavior analysis.

4.4.3. Reducing Overhead

Overhead is another major issue for software debugging. We
consider the two phases in which AccMon is used: the invariant
training phase and the bug-detection phase. Since the training phase
typically takes place in-house using successful regression test runs

before the software is released, or when a long-running server pro-
gram has very light load (e.g. when it receives few requests), the
overhead during this phase is less critical. In contrast, minimizing
the overhead in the bug-detection phase is very important because
such overhead may prevent some time-related bugs from occurring.
In addition, it also affects the length of program execution that can
be realistically monitored.

There are two ways to reduce overheads in AccMon: reducing
the number of accesses monitored, and reducing the overhead of
monitoring an access. The following three optimizations can be
used by AccMon to reduce overheads. The first two belong to the
first type and the third one belongs to the second type:

• Monitor only store accesses. Since corrupting writes are typ-
ically more harmful than illegal reads, it may be enough to
monitor only store instructions. This can be achieved by
setting the WatchF lag in the iWatcherOn call appropri-
ately [40]. It is possible that this will lead to some bugs going
undetected, but we feel that the probability is relatively low. In
any case, users can disable or enable this optimization based
on their overhead tolerance level.

• Disable monitoring in certain functions. If a function
contains no pointer dereference or array access, we can
turn off the monitoring of memory accesses. This op-
timization is performed using EnableMonitoring() and
DisableMonitoring(). We have not implemented this op-
timization in AccMon yet.

• Software optimization. Besides using the CLB to filter out
most valid accesses to monitored objects, AccMon software
can also be optimized to reduce the overhead of the monitor-
ing function. For example, in our current implementation, we
use a hash table to manage the PCT.

5. Evaluation Methodology

5.1. Methodology Overview

We use cycle-accurate execution-driven simulations to model a
workstation with iWatcher [40] and AccMon functionality. The pa-
rameters of the architecture are shown in Table 2. The architecture
includes a 4-context SMT processor with optional TLS support.

CPU frequency 2.4GHz CLB entries 4 or 8
Thread contexts 4 ROB size 360
Fetch width 16 Instruction window 160
Issue width 8 Int FUs 6
Retire width 12 Ld/st FUs 4
Ld/st queue entries 32/thr FP FUs 4
L1 cache 32K, 4-way, 32B/line, 3 cycles latency
L2 cache 1M, 8-way, 32B/line, 10 cycles latency
Main memory 200 cycles latency

Table 2. Architecture modeled.

We compare AccMon to the Purify [15] and CCured [6, 28] (ver-
sion 1.2.5) tools. Purify instruments the object code at link time and
does not require source code changes. It can detect several types of
memory-related bugs, including uninitialized reads, writing to freed
memory and memory leaks. CCured is a hybrid static and dynamic
bug detection tool. It first attempts to enforce a strong type system
in C programs via static analysis. The portions of the program that

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

Application Lines Bug Bug Location Corrupted Bug Description
of Code Type Location

ncompress 1922 Real-Reported compress42.c: Stack Input file name longer than 1024
-4.2.4 line 886 bytes corrupts stack return address
linux-simple 256 Extracted based on Semantic Bug Wrong pointer assignment

memory.c:116 (No Corruption) caused by copy-paste
polymorph 716 Real-Reported polymorph.c: Stack Input file name longer than 2048
-0.4.0 lines 193 and 200 bytes corrupts stack return address
gzip-1.2.4 8163 Real-Reported gzip.c: Data/BSS Input file name longer than 1024

line 1009 bytes overflows a global variable
tar-1.13.25 27137 Real-Reported prepargs.c: Heap Unexpected loop bounds

line 92 causes heap object overflow
man-1.5h1 4675 Real-Reported man.c: Data/BSS Wrong bounds checking

line 998 causes static object corrupted
Real-Reported storage.c: Heap Misuse of bound variable

line 176 corrupts heap objects
Real-Unreported util.c:line 577 Heap Overwrite the heap object bounds

bc-1.06 17042 bc-lib: Injected - Data/BSS Data corrupted inside a
third-party library

bc-free: Injected - Heap Access a freed object that
may be allocated for other data

Table 3. Applications and bugs analyzed. “Real-Reported” means that the bug was introduced by the original programmers and has been
reported and fixed. “Real-Unreported” means that the bug was introduced by the original programmers but has never been reported
before. “Injected” means that the bug was injected by us. “Extracted” means that the bug was extracted from a real program.

cannot be guaranteed by the CCured type system are instrumented
with run-time checks to monitor the safety of the execution.

Because CCured requires significant manual changes to an ap-
plication’s source code to conform to its standard, we have not run
all applications with CCured. We modified four applications to run
with CCured. For the other applications, we estimate the behavior
based on CCured’s functionality, but we cannot predict the over-
head. In contrast, AccMon does not require any manual modifica-
tion of an application’s source code.

We run Purify and CCured on a real machine with a 2.6 GHz
Pentium 4 processor, 32-Kbyte L1 cache, 2-Mbyte L2 cache, and
1-Gbyte main memory. Since AccMon runs on a simulator, we
cannot compare the absolute execution time of AccMon with that of
Purify and CCured. Instead, we compare their execution overheads
relative to the runs without any monitoring.

Since existing value-based invariant detection tools such as
DIDUCE [14] do not work with C/C++ programs, we cannot quan-
titatively compare AccMon with DIDUCE. Instead, we carefully
evaluated each application to see whether value-based invariants
can easily be used to catch the bugs. To be as fair as possible, we
even used tricks (such as assuming perfect pointer aliasing knowl-
edge) beyond those envisioned in the papers [11, 12, 14] describing
these tools.

5.2. Evaluated Applications

We have conducted two sets of experiments. The first one uses
buggy applications to evaluate the functionality and overheads of
AccMon for software debugging. The second one further evaluates
the overheads of AccMon with bug-free SPEC benchmarks.

For the first set of experiments, we selected seven buggy pro-
grams that exhibit a broad spectrum of memory-related bugs. Table
3 gives the details about these applications and their bug character-
istics. Some of these applications, such as tar-1.13.25 and bc-1.06,
are relatively large, with more than 17,000 lines of code.

The six real buggy programs are from the open-source commu-
nity. The bugs come with the code and were introduced by the
original programmers (except the two injected bugs in bc-1.06). For
some programs, we select an older version that had memory-related
bugs. The six programs are: gzip, man, polymorph, ncompress, tar,

and bc. gzip (GNU zip) is a popular compression utility provided
by the GNU project. man is a utility in the UNIX family to format
and display online manual pages. polymorph is a tool to convert
Windows’ style file names to something more portable for UNIX
systems. ncompress is a compression and decompression utility that
is compatible with the original UNIX compress utility. tar is a tool
to create and manipulate tar archives. bc is an arbitrary precision
numeric processing language.

To demonstrate the unique bug-detection strengths of AccMon,
we inject two bugs in bc-1.06. The first, bc-lib, demonstrates the
case where a memory object is corrupted by a third-party library
whose source code is unavailable. Some programming-rule-based
tools, such as CCured or other similar tools, cannot instrument the
library to detect the bug. The second, bc-free, is a bug where a
dangling pointer dereferences an object that is first freed and then
reallocated. Since CCured uses garbage collection to manage mem-
ory allocation, this bug will not occur when the code is linked with
CCured. Consequently, CCured is unable to detect this bug. How-
ever, when the program is not linked with CCured, the bug will
re-occur.

We also construct an extracted version of a bug from the latest
version of Linux (linux-2.6.6/arch/sparc64/prom/memory.c). This
bug is caused by copy-paste and results in an incorrect pointer as-
signment. The wrong pointer assignment causes incorrect results in
some cases. Such copy-paste bugs are common in Linux [5, 22].
Since we cannot run Linux in our simulator, we built a simple
benchmark (linux-simple) to measure the effectiveness of AccMon
on this type of bugs. Since this bug does not violate any program-
ming rule, it is hard for tools such as CCured and Purify to detect
it.

In our experiments, we do not use any specific knowledge about
the bugs. Instead, we blindly monitor all global objects, heap
objects and stack return addresses for all applications. AccMon
can be used in any run (normal or abnormal) to detect potential
bugs. To demonstrate AccMon’s capability to detect a bug, we
need to use abnormal runs, as do other run-time bug detection stud-
ies [6, 11, 12, 14, 28]. To do that, we use bug-exhibiting inputs to
generate these abnormal runs. But this does not mean that AccMon
needs bug-exhibiting inputs to function.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

Application AccMon Purify CCured Value-Based
Invariants

Bug Bug Bug Bug
Detected? Overhead Detected? Overhead Detected? Overhead Detected?

ncompress-4.2.4 Yes 0.24X No 8.33X Yes 0.17X Difficult*
linux-simple Yes 0.60X No 32.84X No 5.50X Difficult

polymorph-0.4.0 Yes 0.76X No 44.65X Yes 0.50X Difficult
gzip-1.2.4 Yes 0.94X Yes 42.45X Yes 0.40X Easy
tar-1.13.25 Yes 1.04X Yes 13.68X NR(Yes) NR Difficult
man-1.5h1 Yes 1.50X Yes 4.83X NR(Yes) NR Easy

Bug1: Yes Yes NR(Yes) Depends
bc-1.06 Bug2: Yes 2.88X Yes 46.11X NR(Yes) NR Difficult

bc-lib: Yes No NR(No) Depends
bc-free: Yes Yes NR(No) Difficult

Table 4. Overall results. For bc, Bug1 is in storage.c and Bug2 is in util.c. For CCured, NR means that we have not modified the
application’s source code to run with CCured; NR(Yes) means that we estimate that CCured should be able to detect the bug if the
application were modified to conform to CCured’s requirement; NR(No) means that we estimate that CCured cannot detect the bug based
on our knowledge about CCured. *Difficult in column 8 means that we could not find an effective way to detect the bug using value-based
invariants.

Application Training
Overhead

Monitored Ac-
cesses

Monitored Accesses af-
ter the CLB

Monitored Sizes
(Bytes)

Ranking of the
Bug

False
Alarms

ncompress-4.2.4 1.20X 158995 13 806180 1 0
linux-simple 1.64X 11769 5 3352 1 0
polymorph-0.4.0 0.99X 520 4 10472 1 8
gzip-1.2.4 3.06X 274594 44441 396641 1 0
tar-1.13.25 1.52X 29729 102 88142 2 2
man-1.5h1 2.83X 1518 90 187898 1 0
bc-1.06 3.98X 260813 84716 467005 1,2,3,4 0

Table 5. Detailed results for AccMon. The column on number of monitored accesses after the CLB is only for the bug-detection phase.
Note that there are four bugs detected for bc.

The second set of experiments evaluates AccMon overheads us-
ing three bug-free SPEC2000 applications running the Test input
data set, namely gzip, parse and vpr.

6. Experimental Results

6.1. Overall Results

AccMon detects all ten bugs in the seven buggy applications,
and found one previously unreported bug (to the best of our knowl-
edge). Table 4 compares the effectiveness and the overhead of Ac-
cMon, Purify, CCured, and value-based invariant detection tools.
Table 5 shows detailed AccMon results. The default setup for Ac-
cMon is a TLS-enabled iWatcher with an 8-entry CLB, and with
only write accesses monitored. The results are obtained using this
default setup unless otherwise mentioned in Sections 6.2 and 6.3.
AccMon’s initialization time to bring the PCT into the cache is also
included in AccMon’s overhead. The monitoring in iWatcher is al-
ways enabled throughout the entire execution of a tested program
(i.e., DisableMonitoring is never called).

The evaluation is done in two ways: actual experiments and
best-knowledge analysis. If a tool is available, and works with an
application, we report the actual experimental results. But if the
tool does not target C/C++ programs, or cannot work with an appli-
cation, we use our best knowledge to estimate whether it can detect
the bug or not. However, we cannot estimate its overhead. All re-
sults with Purify and AccMon are from actual experiments since
these tools work with all applications.

AccMon’s Functionality. From Table 4, we see that AccMon can
catch bugs that cannot be detected by other tools such as Purify,
CCured and value-based invariant detection tools. While AccMon
catches all tested bugs, Purify misses four bugs: ncompress-4.2.4,
linux-simple, polymorph-0.4.0 and bc-lib. Purify misses the bugs

in ncompress-4.2.4 and polymorph-0.4.0 because it does not mon-
itor stack accesses. Purify misses the bug in bc-lib because Purify
cannot detect wrong pointer arithmetic that results in the corruption
of a valid memory object instead of Purify’s “red-zone” (padding
inserted by Purify). Purify fails to detect the bug in linux-simple
because that bug does not violate any programming rule. Instead, it
is just a simple incorrect pointer assignment.

We have modified four applications to run with CCured
(ncompress-4.2.4, polymorph-0.4.0, gzip-1.2.4 and linux-simple).
Of these four applications, CCured detects the bugs in three of them,
but misses the bug in linux-simple because it does not violate any
programming rule. For the other applications, we expect CCured to
miss the bug in bc-free because CCured uses garbage collection to
manage memory allocation (explained in Section 5). Since CCured
cannot monitor accesses by a third-party library whose source code
is unavailable, we believe that CCured would miss the bug in bc-lib
as well. For the other four bugs, we conservatively estimate that
CCured would catch them.

Value-based invariant detection tools would miss six of the ten
tested bugs because these bugs do not violate any value-based in-
variant. To ensure a fair comparison, our evaluation with value-
based invariant detection tools is very conservative. We even used
techniques beyond those described in the previous value-based in-
variant papers, such as assuming perfect aliasing knowledge.

AccMon’s Overhead. Table 4 shows that AccMon has an accept-
able overhead, which is significantly lower than Purify’s. AccMon
has an overhead of only 0.24-2.88 times, even though most applica-
tions monitor hundreds of KBytes data (Table 5). This is an order
of magnitude less than Purify, which has an overhead of 4.83-46.11
times (the Purify results match the numbers reported in [6]). For ex-
ample, in ncompress-4.2.4, AccMon monitors a total of 0.8 MBytes
of memory (Table 5) and almost 92.1% of dynamic memory ac-

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

cesses (not shown in the tables), but it adds only 24% overhead
(Table 4).

For those applications that can run on CCured, AccMon’s over-
head is similar to that of CCured. The only exception is linux-
simple. CCured has performed very aggressive compiler-based
optimizations to reduce the amount of dynamic checks. We be-
lieve that AccMon’s overhead can be further lowered with similar
compiler-based optimizations. In addition, CCured requires non-
trivial modifications to an application’s source code to run. This re-
quirement may not be practical for some programs, especially large
server programs.

CCured has a much higher overhead (5.5 times) than AccMon
(0.60 times) for linux-simple. The reason is that this program
has many accesses to array structures, which cause many dynamic
checks to be inserted by CCured. In contrast, AccMon’s CLB
hardware effectively filters out most of these memory accesses and
leaves a small number of accesses (only 5) to be checked by the
run-time system (See Table 5).
AccMon’s False Alarm Rate. AccMon has a very low false
alarm rate, and the bugs are ranked high in the error reports. Ta-
ble 5 shows that there are no false alarms for five applications, and
only 2-8 false alarms for two applications. Moreover, all bugs are
ranked in the top 2 entries of the error reports. Therefore, a pro-
grammer can easily identify real bugs.

6.2. Impact of the CLB

Figure 5 shows the impact of the CLB on AccMon’s overheads,
and the sensitivity to the number of entries in the CLB. We com-
pare the overheads in three cases: without CLB (CLB0), with a
4-entry CLB (CLB4) and with an 8-entry CLB (CLB8). The over-
head is broken down into two parts: (1) the iWatcherOn/Off over-
head (overhead for executing iWatcherOn/Off calls), and (2) the
monitoring plus other overhead. Since we support TLS, it is hard to
further separate the monitoring overhead from other overhead such
as run-time system initialization (bring the PCT into the cache),
the effect of instrumentation on compiler optimization, or the ef-
fect of resource competition. However, we expect that the monitor-
ing overhead dominates the other overheads for most applications.
Table 6 gives the 4-entry and 8-entry CLB hit ratios for all seven
applications.

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
�� ��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

 O
ve

rh
ea

d
(X

)

CLB0CLB4CLB8 CLB0CLB4CLB8 CLB0CLB4CLB8 CLB0CLB4CLB8 CLB0CLB4CLB8 CLB0CLB4CLB8 CLB0CLB4CLB8

ncompress linux−simple polymorph gzip tar man bc

Monitor+Others iWatcherOn/Off

Figure 5. Overhead introduced by AccMon with and without the
CLB.

#Ent- ncom- linux- poly- gzip tar man bc
ries press simple morph
4 99.9% 99.9% 99.2% 80.1% 51.5% 93.7% 43.2%
8 99.9% 99.9% 99.2% 83.8% 99.7% 94.1% 67.5%

Table 6. CLB hit ratios for monitored accesses.

Figure 5 shows that the CLB reduces AccMon’s overheads by a
significant 28.9-80.6%. For example, the overhead of AccMon with

gzip is reduced by a factor of 3.17 from 3.39 times to 1.07 times
with a 4-entry CLB. This is because the 4-entry CLB filters 80% of
the triggering accesses in gzip, as indicated in Table 6. Only 20%
of the triggering accesses are processed by the AccMon monitoring
function. This effect is shown in the 77.5% reduction in the moni-
tor+other overhead given in the breakdown of gzip in Figure 5.

Except in tar and bc, the overhead is reduced only slightly (0-
12.1%) for most applications as we go from a 4-entry CLB to an
8-entry CLB. The reason is that the CLB hit ratios only increase
slightly (0-3.7%) for these five applications. On the other hand, for
tar and bc, an 8-entry CLB reduces the overheads by 28.2% and
11.9%, benefiting from the 48.2% and 24.3% improvement in the
CLB hit ratios, respectively.

6.3. Impact of the Optimizations

Monitoring only Write Accesses. AccMon’s overhead is re-
duced significantly (7.7-61.9%) by monitoring only write accesses
instead of all accesses. The rationale is discussed in section 4.4.3.
Figure 6 compares the overheads of monitoring both read/write ac-
cesses (rw) and write only accesses (wo). Table 7 shows the number
of monitored accesses before and after the CLB filtering process for
both rw and wo.

In Figure 6, the reduction in overhead as we go from rw to wo
comes from reducing the number of monitored accesses. For ex-
ample, in gzip the number of monitored accesses after the CLB is
reduced by 58.5% as we go rw to wo (Table 7), resulting in a 61.9%
reduction in overhead (Figure 6).

��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
��
��
��
��

��
��
��
��
��
��

�
�
�

�
�
�

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

 O
ve

rh
ea

d
(X

)

rw wo rw wo rw wo rw wo rw wo rw wo rw wo

ncompress linux−simple polymorph gzip tar man bc

Monitor+Others iWatcherOn/Off

Figure 6. Overhead of monitoring different types of accesses.

Application rw wo rw wo
(Before CLB) (Before CLB) (After CLB) (After CLB)

ncompress 334019 158995 27 13
linux-simple 178142 11769 5 5
polymorph 18658 520 5 4

gzip 1048300 274594 107079 44441
tar 107980 29729 188 102

man 3598 1518 737 90
bc 782901 260813 164371 84716

Table 7. Number of monitored accesses before and after CLB
filtering for different types of accesses.

In ncompress, linux-simple, and polymorph, going from rw to
wo induces a very small absolute decrease in the number of moni-
tored accesses after the CLB (Columns 4 and 5 of Table 7). How-
ever, linux-simple and polymorph show a significant overhead re-
duction in Figure 6. The reason is that going from rw to wo causes
a significant reduction of monitored accesses before the CLB for
these applications (Table 7). Since the PCT of an application is
generated based on all monitored accesses before the CLB, the size
of the PCT is significantly reduced from rw to wo for these two ap-
plications. As a result, the overhead of bringing the PCT into the

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

cache (part of other overhead) is reduced significantly, resulting in
a similar reduction in the total overhead.

Compiler-Based False Alarm Pruning. The compiler optimiza-
tion that differentiates pointer/array accesses from other accesses is
effective at pruning false alarms. As shown on Table 8, this opti-
mization reduces the number of false alarms in tar-1.13.25 from 8
to 2. However, this optimization fails for polymorph-0.4.0, because
the bug causes the program to enter an error handler that is never
entered in normal execution, resulting in eight false alarms that are
caused by the pointer/array accesses inside the handler.

ncom- linux- poly- gzip tar man bc
press simple morph

Before Pruning 1 0 8 1 8 0 0
After Pruning 0 0 8 0 2 0 0

Table 8. Number of false alarms before and after pruning.

6.4. Overhead with SPEC Benchmarks

To measure AccMon overheads on bug-free applications, we run
three SPEC2000 benchmarks, namely gzip, parser and vpr1, with
the Test input data set. The experiments use the default setup for
AccMon: TLS-enabled, 8-entry CLB and only monitoring write
accesses.

Table 9 shows the results for the three applications. The over-
heads are 1.29, 3.16 and 1.73 times for gzip, parser and vpr respec-
tively. The size of monitored memory is 6.5-13.5 MBytes. Recall
that the overhead is broken down into iWatcherOn/Off overhead
and monitoring plus other overhead. For all the three applications,
the iWatcherOn/Off overhead is a substantial portion of the total
overhead. The large iWatcherOn/Off overhead is mainly the result
of watching the locations for return addresses. In this case, both
iWatcherOn and iWatcherOff are invoked once per function call.

The monitoring overhead is related to the number of monitored
accesses per 1M instructions after CLB filtering. The CLB hit ra-
tios for all three applications are high: 92.2%, 99.4% and 83.3%
for gzip, parser and vpr, respectively. Therefore, many accesses are
filtered by the CLB, especially for parser. This significantly reduces
the monitoring overhead which, together with other overheads (de-
scribed in Section 6.2), accounts for the non-iWatcherOn/Off com-
ponent of the total overhead.

Appli- Overhead iWatcherOn/Off # Monitored Monitored
cation Overhead Accesses per 1M Sizes

Inst. after CLB (Bytes)
gzip 1.29X 0.80X 5699.1 13533869

parser 3.16X 2.13X 77.5 10244523
vpr 1.73X 0.95X 7563.0 6585702

Table 9. AccMon behavior for SPEC applications.

7. Related Work

Our work builds upon many previous studies on improving soft-
ware robustness. Due to lack of space, we only briefly describe
some closely related work that is not described in previous sections.

1For parser, we fast forward the program’s initialization phase, which
lasts for about 280 million instructions, because its behavior is not represen-
tative of steady state. To reduce simulation time, for both parser and vpr, we
only run them for 300 million instructions.

Many tools have been proposed for dynamic execution moni-
toring. Well-known examples include Eraser [32], StackGuard [7],
Valgrind [34] and others [1, 29], besides those discussed in pre-
vious sections. StackGuard only detects attacks against stack re-
turn addresses — not general memory-related bugs. Eraser targets
multithreaded programming, and detects data races in lock-based
multithreaded programs. Valgrind is a dynamic checker to detect
general memory-related bugs such as memory leaks, memory cor-
ruption and buffer overflow. It simulates every single instruction of
a program, so it incurs a significant 10-20 times overhead [40].

As discussed in Section 1, most dynamic bug detection methods
can be classified into two types: programming-rule-based (PRB)
and statistics-rule-based (SRB). These two are not competing tech-
niques. Instead, they complement each other since both offer
unique advantages that can be integrated to detect a wider range of
bugs. Since both approaches focus on different types of rules, the
types of bugs caught by them often differ. For example, a wrong
pointer assignment bug caused by copy-paste does not violate any
PRB rules, but may violate a SRB rule, such as a PC-based invari-
ant. However, SRB usually requires inferring rules from normal
runs, which may not always be possible. Therefore, PRB is more
useful for catching relatively simple bugs that obviously violate pro-
gramming rules, whereas SRB is more applicable to detecting those
“silent” bugs that successfully pass through many regression tests
before the software is released. These regression tests allow statis-
tical rules to be extracted.

Our work is also related to research on static analysis and model
checking [9, 10, 13, 26]. These methods usually require program
annotations or specification of invariants, and are commonly lim-
ited by pointer aliasing and other compile-time limitations. MC
checker [9, 10] extracts beliefs from system code and applies them
to bug detection. This is an application of the invariants-based
method to static analysis.

Besides iWatcher, AccMon can also use software-based instru-
mentation tools such as ATOM [36] or Dyninst [16], hardware
watchpoints [17, 18, 35, 37], or other tools [8]. However, we expect
that these tools would result in significant overheads. In addition,
it is possible to use special hardware [38] that provides fine-grain
access control to monitor memory accesses in AccMon. We use
iWatcher for the reasons given in Section 1 and 2.2.

Our work is also related to address profiling techniques for
performance optimization. Calder et al proposed a data place-
ment strategy based on temporal relations by profiling memory ac-
cesses [4]. Barrett et al used address profiling to predict the life time
of heap variables and then used this information to reduce the mem-
ory page fault rate [2]. In our work, we monitor memory accesses
to detect software bugs.

There are several works that use Bloom filters in hardware.
They use a Bloom filter to minimize load/store queue (LSQ)
searches [33], to identify cache misses early in the pipeline [30],
and to filter cache-coherence traffic in snoopy bus-based SMP sys-
tems to reduce energy consumption [25].

8. Conclusions and Future Work

This paper made two contributions. First, it proposed the novel
idea of PC-based invariants to detect memory-related bugs. Second,
it proposed the CLB, a new architectural extension to the iWatcher

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

framework that significantly reduces the overhead of PC-based in-
variant debugging. We demonstrated our ideas with a debugging
tool called AccMon. AccMon leverages architectural, run-time sys-
tem and compiler support. It detects all tested bugs with few false
alarms (0 for five applications and 2-8 for two applications) and low
overheads (0.24-2.88 times). The latter is an order of magnitude
smaller than Purify. Since AccMon is a statistics-based approach,
it can catch bugs that do not violate any programming-based rules.
For example, there are 3-4 bugs in our experiments that are detected
by AccMon but are missed by other tested tools such as Purify [15]
and CCured [28, 6].

There are several possible directions for future work. First, due
to the limitations of our simulation infrastructure, we cannot run
tests with long-running server programs. Consequently, we are in
the process of extending the simulation infrastructure to support
Linux and long-running server programs. Second, we will com-
bine AccMon with value-based invariants [11, 12, 14] to build a
more comprehensive tool. Third, it is possible to use a software
instrumentation tool to monitor memory accesses, detect PC-based
invariants and then check for violations. However, we expect this
approach to have a much higher overhead because, due to aliasing
problems, we may have to monitor more memory accesses than the
current approach. Finally, while AccMon uses the invariant of a set
of PCs that access an object, it may be also helpful to capture the
invariant of a set of objects accessed by a PC. Note that this method
may not always work: in a loop that processes objects one-by-one
from a linked list, a given PC is accessing many objects, whereas a
given object is accessed by only a few PCs.

9. Acknowledgments

We thank the anonymous reviewers for useful feedback, and the
UIUC PROBE and Opera groups for useful discussions.

References
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all pointer and

array access errors. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, pages 290–301, 1994.

[2] D. A. Barrett and B. G. Zorn. Using lifetime predictors to improve memory
allocation performance. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 187–196, 1993.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[4] B. Calder, K. Chandra, S. John, and T. Austin. Cache-conscious data placement.
In Proceedings of the Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VIII), 1998.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical study of
operating system errors. In Symposium on Operating Systems Principles, pages
73–88, 2001.

[6] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. CCured in the
real world. In Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation, pages 232–244, 2003.

[7] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In Proceedings of the 7th USENIX Security
Conference, pages 63–78, San Antonio, Texas, Jan 1998.

[8] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Z. Chrysos. Pro-
fileme : Hardware support for instruction-level profiling on out-of-order proces-
sors. In International Symposium on Microarchitecture, pages 292–302, 1997.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In the Fourth Sympo-
sium on Operating Systems Design and Implementation (OSDI), Oct 2000.

[10] D. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior: A general
approach to inferring errors in systems code. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, pages 57–72. ACM Press, 2001.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discov-
ering likely program invariants to support program evolution. In International
Conference on Software Engineering, 1999.

[12] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting rel-
evant program invariants. In International Conference on Software Engineering,
2000.

[13] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata. Ex-
tended static checking for java. In Proceedings of SIGPLAN 2002 Conference on
Programming Language Design and Implementation (PLDI), 2002.

[14] S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the International Conference on Software
Engineering, May 2002.

[15] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the USENIX Winter Technical Conference, 1992.

[16] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program instrumen-
tation for scalable performance tools. In Scalable High Performance Computing
Conference, 1994.

[17] Intel Co. The IA-32 intel architecture software developer’s manual, volume 2:
Instruction set reference. Intel.

[18] M. S. Johnson. Some requirements for architectural support of software de-
bugging. In Proceedings of the first International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-I), 1982.

[19] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds checking for
arrays and pointers in c programs. In Automated and Algorithmic Debugging,
1997.

[20] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC benchmarks: A
case study. IEEE Computer, 27(10):15–26, 1994.

[21] S.-I. Lee, T. A. Johnson, and R. Eigenmann. Cetus - an extensible compiler
infrastructure for source-to-source transformation. In Proceedings of the 16th
Annual Workshop on Languages and Compilers for Parallel Computing (LCPC
’2003), 2003.

[22] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A Tool for Finding Copy-
paste and Related Bugs in Operating System Code. In Proceedings of the Sixth
Symposium on Operating System Design and Implementation, 2004.

[23] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote pro-
gram sampling. In Proceedings of SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI), 2003.

[24] E. Marcus and H. Stern. Blueprints for high availablity. John Willey and Sons,
2000.

[25] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. Jetty: Filtering snoops
for reduced energy consumption in SMP servers. In Proceedings of the Seventh
International Symposium on High Performance Computer Architecture (HPCA-
7), 2001.

[26] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A pragmatic
approach to model checking real code. In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation, Dec. 2002.

[27] National Institute of Standards and Technlogy (NIST), Department of Com-
merce. Software errors cost U.S. economy $59.5 billion annually. NIST News
Release 2002-10, 2002.

[28] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting of
legacy code. In Proceedings of the 29th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), 2002.

[29] H. Patil and C. Fischer. Low-cost, concurrent checking of pointer and array
accesses in C programs. Software–Practice & Experience, 27(1), 1997.

[30] J.-K. Peir, S.-C. Lai, and S.-L. Lu. Bloom filtering cache misses for accurate data
speculation and prefetching. In Proceedings of the 16th Annual ACM Interna-
tional Conference on Supercomputing (ICS), 2002.

[31] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level Speculation Mech-
anisms to Debug Data Races in Multithreaded Codes. In Proceedings of the 30th
Annual International Symposium on Computer Architecture (ISCA), June 2003.

[32] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[33] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W. Keckler. Scal-
abel hardware memory disambiguation for high ILP processors. In Proceedings
of the 36th Annual International Symposium on Microarchitecture (MICRO-36),
Dec 2003.

[34] J. Seward. Valgrind, an open-source memory debugger for x86-GNU/Linux.
available at URL http://developer.kde.org/ sewardj/.

[35] SPARC International. The SPARC architecture manual: Version 8. Prentice-Hall,
1992.

[36] A. Srivastava and A. Eustace. ATOM: A System for Building Customized Pro-
gram Analysis Tools. In Proceedings of SIGPLAN 1994 Conference on Program-
ming Language Design and Implementation (PLDI), June 1994.

[37] R. Wahbe. Efficient data breakpoints. In Proceedings of the fifth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS-V), 1992.

[38] E. Witchel, J. Cates, and K. Asanović. Mondrian memory protection. In Pro-
ceedings of the Tenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-X), Oct 2002.

[39] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for enabling full-
system multiprocessor deterministic replay. In Proceedings of the 30th Annual
International Symposium on Computer Architecture (ISCA), 2003.

[40] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient Architec-
tural Support for Software Debugging. In Proceedings of the 31st International
Symposium on Computer Architecture (ISCA), 2004.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

