
Fine-grained Access Control to Web Databases

Alex Roichman Ehud Gudes
Department of Computer Science, Department of Computer Science,

The Open University, Raanana, Israel The Open University, Raanana, Israel, and
Alexaro1@012.net.il Department of Computer Science,

 Ben-Gurion University, Beer-Sheva, Israel
 Ehud@cs.bgu.ac.il

ABSTRACT
Before the Web era, databases were well-protected by using the
standard access control techniques such as Views and SQL
authorization commands. But with the development of web
systems, the number of attacks on databases increased and it has
become clear that their access control mechanism is inadequate
for web-based systems. In particular, the SQL Injection and other
vulnerabilities have received considerable attention in recent
years, and satisfactory solutions to these kinds of attacks are still
lacking.

We present a new method for protecting web databases that is
based on fine-grained access control mechanism. This method
uses the databases’ built-in access control mechanisms enhanced
with Parameterized Views and adapts them to work with web
applications. The proposed access control mechanism is
applicable for any existing databases and is capable to prevent
many kinds of attacks, thus significantly decreases the web
databases’ attack surface.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Unauthorized access (e.g., hacking,
phreaking);
H2.7 [Database Administration]: Security, integrity, and
protection.

General Terms
Security

Keywords
Access control, web database security, database vulnerability,
parameterized view, session key, rolling key

1. INTRODUCTION
Information is the most valuable asset for organizations. In our
days information is stored in databases that become accessible

from the Internet. The information disclosure from such databases
may have very serious impact on organization business. So new
access control approaches for databases and especially for web
databases have become a dire necessity.

New web applications replace the old systems. This is an
unstoppable process that started at the mid 1990’s and has
accelerated in recent years. Databases were well-protected from
attacks from old applications. But web applications place
databases in a new situation exposing them to many illegal
accesses and attacks.

Old applications were run from the users’ desktop. These users
were fixed and known in advance and their number was limited.
The applications usually opened a connection to the database and
all the transactions were passed via the same connection. This
two-tier architecture resulted in a model where the user is working
with an application layer that interfaces directly with the database
layer. Consequently, the database would directly identify the user
working with it, the computer from which she connects to, and the
transactions that she runs. Thus it is quite easy to supply the user
with the proper authorizations and follow up single user
transactions to seek signs of intrusion, as all the transactions of the
same user are passed via the same connection.

On the other hand, web applications differ significantly from old
applications in their mode of working with databases. These
applications are run from the users’ browser windows. The users
of web applications can be casual users and their number is not
limited. The browser does not directly connect to the database, but
instead transfer a request to a web server. The server processes the
request and if required it performs a transaction to the database.
The result of this three (or more) -tier architecture, is that the
database does not identify the user who accesses it. From the
database point of view, the user accessing the database is the
super-user of the web application server!

Not only that the database does not identify the user who accesses
it, but it is also impossible to follow transactions of the same user.
This is derived from using the technique of connection pooling. In
this technique the web application does not open a connection for
each request and does not close it after performing a request, but
instead, uses a connection pool mechanism where connections to
the database are stored. Prior to performing a request, the
application pulls a vacant connection from the pool, runs a request
on it and immediately returns it to the pool. This way the time to
open and close the connection is saved per each request. A large
number of users can also be satisfied with a small number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’07, June 20–22, 2007, Sophia Antipolis, France.
Copyright 2007 ACM 978-1-59593-745-2/07/0006...$5.00.

31

connections, so that the application works more efficiently for
each database request.

But the situation described above has serious implications. First,
no user-based access control can be applied since the only
recognized user is the super-user of the web application server.
Databases cannot differentiate anymore between transactions of
different application users. The principle of minimal privilege is
violated! It is impossible to authorize the web application user
with appropriate privileges: all application users have an access to
the same data. This situation results with horizontal (e.g. a student
has access to the data of another student) and vertical (e.g. a
student has access to a professor’s data) privileges escalation. No
more fine-grained access control to the database exists, and the
only mean to prevent attack to web databases is in the application
level. Although many advances have been made in developing
secure applications, trusting applications which are developed
under time constraints by developers which are not security
experts, presents a large risk to the database and therefore
databases are threatened by these applications.

In this paper we first demonstrate that preventing illegal accesses
to the database by means of application layer is not effective, as it
try to shield the vulnerable database by some middleware ad hoc
methods. Instead, we suggest dealing with the root of the problem
and searching for new generic methods for protection databases
by means of proper access control mechanisms that will be
implemented by the databases themselves. We’ll suggest the
Parameter Method as being capable of preventing attacks on
databases by the existing native database protection mechanisms.

The parameter method allows transferring the identity of the user
working with the database to the database and not only to the
application, thus solving the first major problem of fine-grained
authorization at the data level. The parameter method will also
allow distinguishing between the requests of different users thus
solving the second problem of user-session’s traceability for web
systems. Therefore, developers of intrusion detection system will
be able to analyze the transactions of the intruder when they
discover penetrations to databases, as these transactions are
distinguished from transactions of legal users.

We’ll present two design solutions for the parameter method. The
first solution is based on the concept of application session key,
and the second solution enhances the first one by the concept of a
rolling key. Both methods will use the concept of parameterized
views. As our experiments show, the web site based on
parameterized views is much secure and this is accomplished
without a significant performance overhead.

The importance of our solution is that, on the one hand, it
proposes the novel fine-grained access control mechanism to the
web database, and, on the other hand, it enables real-life
development of secure Internet databases by using commercially
available tools.

The next section discusses the background of web databases
access control, the concept of parameterized views and gives
examples for attacks such as SQL injections. Section 3 presents
the Related work. Section 4 presents the main ideas of our
approach. Section 5 discusses in detail the parameter method, and
then describes the way the parameter method and the
parameterized views are integrated to provide the required
protection. The security and performance of our approach are

evaluated in Section 6, and Section 7 discusses some
implementation issues of parameterized views. Section 8
concludes and describes some future work.

2. BACKGROUND AND TERMINOLOGY
2.1 Parameterized Views
Views are the basis for protection and access control in relational
databases, as they enable to determine for a user the only part of
the database that interests her. But because of the existence of the
most powerful user, the web server super-user that is connected to
the database on behalf of all actual users, traditional views cannot
be used as means of access control. We checked many existing
open source web applications and found that in most of these
systems there is no use of views as means of access control.

Our goal is to revive the use of views as access control
mechanisms in the context of web systems. We’ll show that the
replacement of a traditional view in the context of web
applications is the parameterized view. The parameterized view
will transfer the user’s identity to the database and the view will
display the relevant data to this user accordingly, thus providing
fine-grained access control to web databases.

The subject of parameterized views was raised in academic
discussions during the mid 1990’s mainly in the context of Object
Oriented databases. Eder in [4] presents the problem of relational
databases in which the views are dependent on the table’s name
and not on the type of the table. Actually, the predicate (where
clause) of each view is fixed and there is no way to modify it
dynamically.

Jamil in [9] displays the syntax and semantics of parameterized
views and show how parameters affect their predicate. For
instance, a definition sentence (DDL) of a view that determines
the grades of a specific student can appear like this:

Figure 1: definition of parameterized view

The content of this view depends on the value of the parameter
pStudent_No. In Section 7 we’ll discuss in detail the issue of
implementing parameterized views, but for the rest of the paper
we assume their existence.

2.2 SQL Injection and Other Attacks
As explained above, access control to web databases is currently
implemented by applications and not by the database. Since the
applications accessing the database can be very heterogeneous and
their access control can be very inconsistent, this can results in a
situation in which the database is exposed to attacks from web
systems. The description of such attacks appears in many articles
and the attack that received special attention of researchers is the
SQL injection attack [18]. We will present a small example of
such an attack: let’s assume that the application displays a salary
of an employee whose number is 123 for the period chosen by the
employer:

CREATE VIEW Student_Marks_View
WITH pStudent_No
SELECT *
FROM Student_Marks_Table
WHERE Student_No = :pStudent_No

32

Figure 2: example of SQL with user input

It’s possible to see that the SQL sentence is structured as a string
and the parameter is concatenated to this string. In a proper
situation, the user keys in some date which is stored in the
variable dateParam and concatenated to SQL. But if the user
will type 01.2007’ or ‘1’ = ‘1 then we’ll get:

Figure 3: example of SQL injection

As the condition ‘1’ = ‘1’ always holds, the application will return
the salaries of all the workers for all the periods. Such attack is
possible, as the application works with a strong DB user who has
a retrieval authorization from the entire Salary_Table.

Another type of an attack is the Parameters Tampering attack.
Like the SQL injection attack, this attack takes advantage of the
fact that many programmers rely on parameters that come from
the user. Attackers can easily modify these parameters to bypass
the security mechanisms and attack the back-end database. But
this attack is more difficult to detect than SQL injection: in SQL
injection the structure of original SQL sentence is changed, but in
parameter tampering the structure remains the same, only the
parameter range is changed.

For example, in the Book-store application [22] the customer can
view her ordering. For each order she can request its details.
When this happens, the application sends a request to the web
server with the parameter of customer’s Order_No. The SQL
sentence submitted by the application is as following:

Figure 4: SQL vulnerable to parameter tampering

But if the intruder wants to view the details of another customer,
she can change the value of orderParam to the value of a
different order that does not belong to her (bypassing the
application protection). In such a situation, she will be capable of
retrieving the data of a different customer.
As we can see, all the attacks on web databases are caused by the
inadequate access control mechanism of databases. If we will be
able to authorize each application user to the part in the database
relevant only to her, we can minimize the effect of these attacks as
the attacker will be restricted to attack only her data and not the
data of different users! What we need then is fine-grained access
control to web databases.

3. RELATED WORKS
The conventional methods for providing protection in databases
rely heavily on the identity of the entity accessing the database
(User, Program-Id, etc) [2, 5]. Using such identity, the
authorization provided by views and roles and the Grant/Revoke
mechanism can be applied [6, 14]. Furthermore, in case of a

failure in authentication, after the fact intrusion detection may still
be used, since all transactions on behalf of a single user are
properly identified and can be analyzed using the log. But as
explained above, this situation does not exist anymore in the web
environment, and databases are exposed to different attacks that
are very hard to prevent and detect.

Several suggestions were published in the literature to prevent
SQL injection attacks such as: precise checking of parameters that
come from the user, prohibition of running SQL sentences directly
from the application, but instead, running database stored
procedures, use of prepared SQL statements etc [7, 11, 19].

Experiments trying to create signatures for known attacks such as
SQL injections were also carried out. Mookhey and Burghate in
[13] present a way to structure regular expressions for known
instances of SQL injections, but the research displayed by Maor
and Shulman in [12] shows that such signatures are not effective.
For example, instead of injecting 1 = 1 the intruder may inject
1 < 2 or any other predicate that always holds. Some suggestions
are very sophisticated methods, such as the use of SQLRand
technique proposed by Boyd and Keromytis in]3[. The last
technique applies the concept of instruction randomization to each
SQL sentence. In SQL injection attack, the intruder injects some
reserved SQL word, but with randomization this word is
unpredictable by the intruder.

The recent tendency in the architecture of web applications is to
build distributed multi-layered platforms (.NET, Java EE) where
there exists some tier that offers database access control service
which is supposed to shield the database from attacks. Oracle
offers n-tier authentication to the database when the application
can have multiple user sessions within a single database server
session [21]. This mechanism is called "lightweight sessions" and
it can preserve the identity of the real user through the middle tier.
But in order to support the fine-grained authorization, Oracle must
maintain all the application users and attach security policies to
each one. Since the number of web users may be tremendous and
they are created/dropped dynamically by the application (and not
by DBA), this solution is not exactly practical for a typical web
application.

The main disadvantage of the above proposed methods is clear:
these methods are not native for databases and cannot be
implemented by the database built-in mechanisms. We call these
methods the Virtual Patching methods (this terminology is
proposed by Chris Klaus, see [20]) as they try to shield databases
from attacks instead of making databases resistant to them.
Another example for application based protection appeared in
[19]. They use stored procedures or parameterized queries at the
database, but calling them with parameters from the application.
This can prevent SQL injections, but if there exists some place in
the application that can access the database without using this
technique, then the database will be threatened. Furthermore,
stored procedures or parameterized queries can only prevent one
specific kind of attack: the SQL injection. But we need new
approaches, such that the database will be properly protected no
matter how the application is written and what kind of an attack
the intruder will run. We’ll show that our method will make the
database resistant to general kind of attacks instead of trying to
shield vulnerable databases by outside ad hoc methods as the
applicative approaches do.

strSQL= "SELECT Salary
 FROM Salary_Table
 WHERE Employee_No = 123
 AND Salary_Date = ‘" +
 dateParam + "‘"

SELECT Salary
FROM Salary_Table WHERE Employee_No = 123
AND Salary_Date = ‘01/2007’ OR ‘1’ = ‘1’

strSQL = "SELECT * FROM Orders_Table
 WHERE Order No = " + orderParam

33

A companion approach is intrusion detection. Much effort was
invested in developing methods for detecting intrusions to
databases in recent years. The main idea is based on analyzing
transactions that arrive to the database with the purpose of
searching for signs of intrusions. Valeur, Mutz and Vigna in [17]
suggest creating fingerprints for each sentence that the application
can run. Low, Lee and Teoh in [10] and Srivastava and Reddy in
[15] suggest not only to structure fingerprints for single SQL
sentences, but also to refer to the order of sentences within the
transaction. One of the difficulties of this method is that the web
applications have a tendency to use very short transactions and
even use the implicit transaction; namely, each SQL sentence
constitutes of a separate transaction. So there is no point in
searching for order of sentences in a transaction that, in general,
contains only one sentence.

Hu and Panda in [8] suggest a different strategy: it’s possible to
look for dependencies between the different items in SQL
sentences. And these dependencies can be found by data mining
algorithms. But the main disadvantage of all the above methods
for detecting intrusions to databases is that they are not suitable
for web systems. These methods presume that it’s possible to
analyze the log of databases when this log contains SQL sentences
and indication to which user’s session each such sentence belongs
to. But this is impossible for web systems as was explained above.
For example, look for the following sentences:

Figure 5: SQL statements and their dependencies

If we apply the approach proposed in [8], we can find dependency
between C1 and C4. But for the web application these sentences
can be submitted by different users so they can be completely
independent!

In this paper we present the parameter method as a method that
transfers the identity of the user to the database. Such indication
will be reliable and difficult to fake, so the database can rely on it.
We’ll use the built-in access control mechanisms of databases that
much resembles the use of the classical protection mechanism of
views. All the existing methods of detecting intrusions to
databases will also become relevant for web systems with the new
parameter method.

4. OUR APPROACH
Our concept is based on the use of parameterized views as the
means to supervise the accesses to the database from web
systems. In the parameterized view, the parameter will contain the
identity of the user. The main requirement is that the parameter
will be difficult to fake. For example in a University system, the
natural parameter is the student identifier. Then, the sentence that
the application can run for a student whose id is 1 is:

Figure 6: example of parameterized view

But this method is not safe, because it does not prevent the SQL
injection attack. It’s possible, for example, to insert a whole
sentence instead of the course number: 12345 UNION Select *
From Student_Marks_View(2). This way the original sentence
will become:

Figure 7: unsafe parameterized view with SQL injection

So although it may appear that the parameter limits the access,
SQL injection allows to retrieve every row from the table;
namely, access indirectly the entire list of grades.

The solution to this problem as we shall see below is not to use
the explicit user identity in the SQL statement but instead use a
run-time generated identifier which will be very difficult to fake.
We will present two such solutions to the parameter method: the
first solution is based on a key of the application session and the
second is based on the technique of a rolling code.

5. THE PARAMETER METHOD
The parameter method is supposed to distinguish between the
accesses of different users. There are two types of web
applications: applications that do not demand identification and
applications which demand user’s identification. For the
applications that demand identification, the parameter method
transfers this identification to the database and the access control
of the database is based on this identification. The aim of most
attackers is to attack the data of other users. So this method
enables prevention of these attacks.

In case that the application does not request the user’s
identification, the goal of our method is to prevent unauthorized
accesses and to distinguish between the sessions of the different
users. But this will be done without violating the privacy of the
anonymous user. In the next two paragraphs we only refer to
applications that demand a process of identification. We will
detail our method for applications that do not demand user’s
identification in Section 5.3.

5.1 The Application Session Key Based

Parameter Method
This type of solution is similar to the challenge-response protocol.
It uses a random number which is generated at the beginning of
the protocol for each application session, and is sent thereafter
with each SQL statement. It also assumes that the database stores
in an internal table the Ids of the active users. The protocol works
in the following way:
• A user requests to perform a process of identification when

she provides a username and a password to the application.
• The application runs a database stored procedure that accepts

the user’s username and password and returns a random
number (AS_key).

• The database stores the random number in a table of active
users, for example, as follows:

SELECT *
FROM Student_Marks_View(1)
WHERE Course_No = 12345

SELECT *
FROM Student_Marks_View(1)
WHERE Course_No = 12345
UNION
SELECT *
FROM Student_Marks_View(2)

SELECT C1 FROM T2
UPDATE T3 SET C4 = 5

34

Table 1: active users for AS key
AS_keyPass User Student_No
01100…$#Hj#45 Jona 1
10010…*&SD12qFMikes2

• The application knows the user who works with it, and stores

the AS_key as well. Each SQL sentence that will be run on
behalf of the user will be run with a parameter of user’s
corresponding AS_key.

• The AS_key is cleared when a user disconnects from the
application.

This way, when the SQL sentence arrives, the view returns only
the data which belongs to the user with the given identifier. For
example, the following view definition can be used:

Figure 8: parameterized view for AS key

This approach significantly decreases the range of possible attacks
on databases. The intruder still can execute her attacks, but with
parameterized views she cannot affect the data of different users.
Let us return to figure 3 that represented the SQL injection into
select statement from Salary table. With parameterized view, the
select will look as follows:

Figure 9: parameterized view resistant to SQL injection

Because Salary_View returns only the data of the specific
employee with AS_key 11011.. and this must be the key of an
attacker (if not, the attacker must guess the parameter and
probability of this is very small), this attack affects only the
attacker’s data. Namely, the attacker may access information
about her salary from different months, but not the salary of
different employees.

5.2 The Rolling Key Based Parameter Method
This solution uses a rolling key or a rolling code. In order to
understand the concept, we will examine the alarm systems of
vehicles which use a rolling key. Old alarms used remote controls
that sent a signal each time that the driver locked or opened the
vehicle. So the burglars knew to record the signal sent from the
remote control and later to open the car by playing the previous
recording. More sophisticated alarms use a rolling key in a way
that the signal is changed each time that the remote control is
activated, so recording the signal has no meaning. Similar
techniques are used in rolling Secure-Ids tokens provided for
example by RSA. Our protocol works in the following way:

• The first three steps are similar to the previous parameter
method based on the application session key, except that now
AS_key also serves as the seed of the rolling key.

• The database and the application agree on a common
encryption key (Enc_key), for example using the Diffie-
Hellman protocol [16]. This encryption key is used to
generate the next rolling key from the current one as will be
explained below. (Note that in most cases, the web server
and the database server are placed on separated network
segment so the man-in-the-middle attack against the Diffie-
Hellman is not possible. In other cases we can prevent such
attack by encrypting the channel between the web server and
the database server.)

• Now the active users table may look like in Table 2:

Table 2: active users for rolling key
Stdnt
No

User Pass Enc
key

AS
key

Roll
key

1 Jona $#45 001… 011… 011…
2 Mikes *&qF 111… 001… 001…

• Now, when the SQL sentence arrives, it contains a request

for a parameterized view with 2 parameters: the AS_key and
a rolling key. As a result, two things occur:
1. The view returns the filtered data that belongs only to

the user that the session and rolling keys belong to.
2. The rolling key is advanced to the next number both in

the application and in the database.
The database view can use a stored function to perform the
above actions as illustrated in Figures 10 and 11:

Figure 10: Authorize function definition

Figure 11: definition of Student_Marks view

The auxiliary function Compute_Next_Key receives the
encryption key and the last rolling key and computes the next
rolling key. We suggest one of symmetric encryption
protocols as a pseudo random number generator: The next
code can be calculated according to the following formula:

)_(_ _1 mkeyEncm keyRollEkeyRoll =+ , where keyEncE _

CREATE FUNCTION Authorize(pAS_key,
 pRoll_key) AS

Begin
 SELECT Enc_key,Roll_key,Student_No
 INTO :enc, :roll, :stdnt_no
 FROM Users_Table
 WHERE AS_key = :pAS_key
 If roll == pRoll_key Then
 UPDATE Users_Table SET Roll_key =
 Compute_Next_Key(:enc,:roll)
 WHERE AS_key = :pAS_key

COMMIT
RETURN :stdnt_no

 Else
 RETURN NULL
 End If
End

CREATE VIEW Student_Marks_View
WITH pAS_key, pRoll_key
SELECT * FROM Student_Marks_Table
WHERE STUDENT_NO =

 Authorize(:pAS_key,:pRoll_key)

CREATE VIEW Student_Marks_View
WITH pAS_key
SELECT * FROM Student_Marks_Table
WHERE Student_No IN
 (SELECT Student_No
 FROM Users_Table
 WHERE Users_Table.AS_key=:pAS_key)

SELECT Salary
FROM Salary_View(11011…)
WHERE Salary_Date = ‘01/2007’
OR ‘1’ = ‘1’

35

may be the DES algorithm and the Enc_key is the key which
was determined by using the Diffie-Helman protocol.

• Since the database knows the user who works with it, it can
store the Enc_key, the AS_key and the Roll_key for each
active user. For each next SQL sentence it will generate the
next rolling key as the database does. The three numbers are
cleared when the user disconnects from the application.

However, one problem with using the rolling code is known as the
problem of synchronization. The problem of synchronization can
arise when the application will advance the code and send the
SQL statement, but the database will not accept it (for example,
because of a disconnection in communication between a web
server and a database server). In such case the application already
advanced the code, but the database remained with the old code,
as it did not receive the sentence.

It is similar to using of a rolling code in a car alarm. Both the car’s
remote control and the alarm system need to be synchronized. The
solution is for the database (the car) to check n forward rolling
keys and not only the last one. So we need to adapt the function
that checks if the next rolling code is legal and check n next codes
instead of one.

The advantages of the AS key method compared to the method of
rolling key are clear: The calculation of the next key in the rolling
key method is expensive regarding the system’s resources,
especially when the quantity of sentences sent is large. This
method does not use such calculation, so it is more efficient. The
performance of the Update following each calculation is also
saved in this method. So the AS key method is preferable from the
efficiency point of view to the parameter method which is based
on a rolling key.

But the advantages of the rolling key method compared to AS key
method are mainly that it’s more secure! The method is resistant
to replay attacks and a correct guess of a code is only valid for
running one sentence. If the attacker tries to guess the code and
comes to the conclusion that a particular code is not valid, she has
no confidence that this code will not be valid in a few seconds,
while the user under attack will run the next sentence. For the AS
key, if the attacker rules out a particular code, then she knows that
this code will not be valid throughout the entire session of the
user, so the attacker can reduce the number of possibilities of
valid codes according to the AS key method. Therefore, the
rolling key method is much safer.

5.3 The Parameter Method for Anonymous
 Users
Although the application does not authenticate users, it is aware of
each user session, so it can attribute each session with AS key or
rolling key. The table of anonymous users will appear as follows:

Table 3: anonymous users for AS key
AS_keyUser
01100…Anonymous1
10010…2Anonymous

In the case the intruder wants to bypass the application logic and
submit SQL injection or other type of attack, she must know the
random key. So our method can also prevent illegal accesses of
anonymous users. For example, in the University system all the

students can retrieve a course list for a chosen semester. The
select statement can look like this:

Figure 12: course list retrieval

Now if the intruder wants to change this SQL by the SQL
injection attack, she may change her input of Fall 2006 into
some more complicated union form and submit the following
statement:

Figure 13: course list retrieval resistant to SQL injection

But her attack will be unsuccessful as she does not know the
random parameter that must be supplied to the
Student_Mark_View!

Another thing that can be useful is the ability to differentiate
between sessions of different anonymous users. The idea is to use
a separate session key for each application session and after that
to partition the SQL log that can be created by the database. Now
we can employ many existing intrusion detection methods when
they are applied to the appropriate SQL log slice and thus we can
look for intrusions on a session layer instead of a single SQL
statement layer as it happens with traditional approaches.

One important thing for the applications that do not require the
user authentication is privacy preserving. Since our method
transfers a random key that tell the database nothing about the
actual user, our method also preserve privacy of the anonymous
user. In the next section we will describe how to define views for
tables that do not contain identifier in one of its fields- these are
the views required by us for the applications without identification
process.

5.4 DB Schema with Parameterized Views
We presented the use of parameterized views for the control of the
access to databases from web systems. Now we will show how to
structure a database schema, which allows the use of
parameterized views.

For each table in the database the view must be defined, the
access to this view must be granted to the application and the
access to the table must be revoked. Let’s look at an example of a
table with many different access roles to it: in the School system
there is the Students_Table and a student can access her
detailed record or names and e-mails of other students in her class.
For such a case the following definition can be used:

SELECT *
FROM Course_View(01100…)
WHERE Semester = ‘Fall 2006’

SELECT *
FROM Course_View(01100…)
WHERE Semester = ‘Fall 2006’
UNION
SELECT *
FROM Student_Mark_View()--’

36

Figure 14: students parameterized view definition

This definition is polymorphic in the sense that it allows a single
definition to be used with different types of access roles. With this
kind of polymorphic definitions, the number of views expected to
be maintained is exactly the number of tables in the database
schema.

The structuring of views needs to be based on the parameter
which either provides the identity of the user, or the session
identity. In general, a database schema (in Relational systems)
may contain tables of two types:

• Tables which include the user identifier in one of the fields.
In general, this identifier is included in the primary key of the
table.

• Tables which do not contain a user identifier.

A parameterized view for the first type was presented in Sections
5.1 and 5.2. There are three possibilities for access control on
tables of the second type:

• The access to the table is not relevant to the system, so no
authorization should be provided to this table for the DB user
of the application.

• The access to all the rows of a table is relevant to all users.
An example of such table can be the table of courses offered
during the semester, as all the users of the system are allowed
to access this table. So a parameterized view needs to be
structured. But the role of the parameter is not to filter rows,
but to return a full table in case the parameter is valid;
otherwise, it will not return anything. For example, the view
defined in Figure 15 may be used.

Figure 15: course parameterized view definition

The idea of this definition is to allow only the application’s
users to access the table. In other words, it is not enough to
connect to the database with the DB user, in order to access
the table, but you also need to be one of the legal application
users, so that you can access data. Another reason for the use
of such view is to enable intrusion detection. By having the
database storing the AS_key, it can later identify the user
session precisely and thus enable the process of post-mortem
intrusion detection by analyzing the database log.

• Tables without identifiers can also be a subject to individual
user authorizations, but in this case the parameterized view
must join them to some identifier-based table. For example,
the Course Stuff table can contain confidential information
so the natural policy may be that the student can access only
the stuff details of the courses she is enrolled in. In this case
the parameterized view will be constructed on joining the
Student Courses table with the Course Stuff table.

6. ANALYSIS AND EVALUATION
The advantages of the parameter method described above are
clear. Since the parameter enables to identify the user, each SQL
sentence that arrives to the database is attributed to a specific user.
Consequently, the database provides access only to the data
relevant to a particular user, while being assisted by the
mechanism of parameterized views. Furthermore, the log of SQL
sentences which arrive to the database includes the indication of
the user who ran it. This is very important for developers of
intrusion detection systems of databases, because now they can
distinguish between the transactions of different users. Next we
present analytic and experimental evaluation of the parameter
method.

6.1 Analysis of Parameter Method
The safety of the parameter method rests with the difficulties of
guessing the various keys. For the application session key method,
there is a need to guess a session key of some currently active
user. If we assume a key of 64 bits then the probability of

guessing this number is
642
1 . If we assume that the maximum of

active users connected to the system at the time of an attack is X,

the probability for the successful attack will be
642

X . Note that

this is an unselective attack since the attacker cannot control the
attacked user identity when she tries to guess some key.

For the rolling key method, there are two items to guess, the
session key and the rolling key. If we assume a session key of
only 8 bit, rolling key of 64 bit and 256 possible correct codes
(because of dealing with the synchronization problem) then

probability for the correct guess will be
64864

8

22*2
2* XX

= .

CREATE VIEW Courses_View
WITH pAS_key, pRoll_key
SELECT *
FROM Courses_Table
WHERE Authorize(:pAS_key, :pRoll_key)
 IS NOT NULL

CREATE VIEW Students_View WITH pAS_key
SELECT Name, E_Mail, Other_fields...
FROM Students_Table
WHERE Student_No IN
 (

SELECT Student_No FROM Users_Table
 WHERE Users_Table.AS_key=:pAS_key
)
UNION
SELECT Name, E_Mail, ‘dummy’...
FROM Students_Table
WHERE Class_No IN
 (

SELECT Class_No
 FROM Classes_Table, Users_Table
 WHERE Users_Table.AS_key=:pAS_key
 AND Classes_Table.Student_No =
 Users_Table.Student_No
)
AND Student_No NOT IN
 (

SELECT Student_No FROM Users_Table
 WHERE Users_Table.AS_key=:pAS_key
)

37

Obviously, it’s possible to use longer codes, if we want to
increase the level of security; for example, 128 bits and then the
probability for a successful attack will decrease respectively. But
it can be a burden on the system:

1. As the key is longer, the computing of the next key need
more processor’s time.

2. As the key is longer, the length of the SQL sentence
increases and it can be a burden on the communication
between the web server and databases server. The databases
will also need to cope with longer SQL sentences

Note that the method of a rolling parameter is resistant against
replay attacks, as the repetition on the same sentence with the
same parameter does not bring any result because of the rolling
key. Even if the intruder succeeded to obtain the code from the
parameter of another user, it does not help him at all, as without
knowing the encryption key, he does not have the ability to
compute the next valid code.

6.2 Performance Evaluation
The performance evaluation was split into two stages. In the first
stage our target was to compare the performance of a single
regular SQL statement with our two methods: AS key and rolling
key methods. We used a stand alone computer with the SQL
Server with approximately 1,000,000 tuples in relevant tables and
created views like the view from Fig 8. Next we run a transaction
that included Select/Update statement directly on the table and on
the view with AS key and rolling key. To average the processing
time we repeated this for 100, 1000 and 10000 serial transactions:

Select statement

0
10
20
30
40
50
60
70
80
90

100100010000
of transactions

Ti
m

e
in

 s
ec

.

Regular trns. AS Key trns. Rolling Key trns.

Update statement

0

50

100

150

200

250

100100010000
of transactions

Ti
m

e
in

 s
ec

.

Regular trns. AS Key trns. Rolling Key trns.

Figure 16: performance evaluation chart

Our experiment shows that the performance of the AS key method
is the same or even better than the performance of a regular SQL
statement both for select and update statements. We can explain
this by the fact that the AS key method uses function that is stored
in the database in a compiled form so its performance is better
than the regular statement. On the other hand the performance of
the rolling key method is slower than the regular statement or AS
key method. This can be explained by the fact that the rolling key
includes additional computation, so it must be relatively slower.
We can also see that for the select statement the AS key method is

approximately twice as fast as the rolling key method, but for the
update statement the proportion is less than twice.

Additional experiment has been carried out to evaluate the
performance overhead of the view-based web site with many
concurrent sessions. The open source Book-store application (the
source code can be found in [22]) was taken and modified to work
with parameterized views instead of tables. For each table of the
original application a parameterized view was defined, the access
to this view was given to the application and the direct access to
the table was revoked. The from clause of each SQL statement in
the application was modified to include the As key. No additional
modification of the application code or the database schema was
made. The stress test was run on the original table-based
application and on the modified view-based one. The results
appear in the table 4 and compare the average time (in msec.) for
the page response for 1, 10 and 100 concurrent users:

Table 4: stress test evaluation
of concurrent users /
Application Type

1 user 10
users

100
users

Original Table-based app 10.06 136.99 1708.26
Modified View-based app 9.27 135.03 1598.20

Of course, additional tests must be accomplished, but it seems that
there is no performance degradation when the number of
concurrent users grows. It also seems that with comparison to the
traditional table-based application, the parameterized view-based
web application does not require additional definition of indexes
or query normalizations/optimizations.

7. IMPLEMENTATION OF

PARAMETERIZED VIEWS
Despite the fact that at the time of writing this article the
parameterized views are not yet the part of the SQL standard, the
need for it is great and one of the frequent questions in forums of
manufacturers of databases is why there is no support for
parameterized views. Because of existence of many users’
requests who ask for support for these views, we may assume that
the manufacturers of databases will support them in a short period
of time. And this article can only emphasize the need of
parameterized views in the context of database protection and
access control. As we have seen, parameterized views can serve as
the natural replacement of traditional views in the web era. So we
want to turn to the developers of access control standards and
emphasize the importance of parameterized views in the context
of access control.

But our method is generic enough and can rely on any existing
database’s entity that receives parameters and returns data
according to the received parameters. For example, we can
implement our method with existing functions stored in the
database (stored DB functions). These functions are supported in
most databases and unlike stored procedures they can be used in
standard DML sentences. The returned value of such function can
be the table type. For instance, the function that returns grades of
a student will be defined as following:

38

Figure 17: definition of table function

This definition is very similar to the definition of
Sudent_Marks_View from the figure 8 and its functionality is
exactly the same in the context of database access control. The
retrieval from this function will be exactly the same as from the
parameterized view:

Figure 18: select from table function

Baron and Chipman in [1] show the use of these functions for the
SQL Server. They show that the table functions can be more
flexible than the views as they work with parameters. The article
emphasizes a very important thing: these functions can be
updatable; namely, not only that it is possible to retrieve from
them, while the retrieval is limited by the parameter, it is also
possible to perform other operations of DML, including updating
and deleting. And these operations will be limited to the
respective rows according to the transferred parameter. One of the
disadvantages of regular views is the difficulty of actions such as
addition, deleting and updating. But as displayed in [1], the
advantage of table functions is their ability to support these
actions, while limiting the activity of delete and update to the
return value.

For example, the next figure shows the update submitted by the
customer with the key 10101... that wants to change the quantity
of her order:

Figure 19: update of table function

As SQL does not update directly the Oreders_Table, but the
Orders_Func instead, and the function restricts the access only
to the data of the current customer, this customer cannot submit
any kind of attacks that updates the data of different customers.

8. DISCUSSSION AND FUTURE WORK
One of the goals of organizations is to share their data and at the
same time to enforce their policies. Heterogeneous web systems
succeeded in sharing data to the Internet consumers. But they
failed in enforcing the most important organization policy -
preventing unauthorized accesses and, especially, preventing
accesses of one customer to the data of another customer. The rate

of attacks on web databases growths exponentially and this
indicates that the existing access control mechanism of databases
is inadequate for web applications.

The lack of fine-grained access control at the database level
results in a situation when the database cannot explicitly authorize
users accessing it. The principle of minimal privileges is violated
and auditing and monitoring of user’s transactions is impossible
as the only user accessing the database is the super-user of a web
application. Furthermore, the traditional views cannot fulfill
anymore their role of the access control mechanism: if databases
cannot distinguish between different users, they are not capable of
defining a view that is relevant to a specific user.

Our method tries to solve the lack of authentication and fine-
grained authorization at the database layer of n-tier architecture of
web applications. We propose to supervise the access to the
database not by the application or other external to the database
tools as it happens with the existing web systems, but by the built-
in database access control mechanism, that is enhanced with
parameterized views.

From the standpoint of access control, the parameterized view is
the natural substitution of traditional views in the web era. The
use of parameterized views for controlling the accesses to the
database enables to significantly reduce the range of attacks on
databases. The proposed approach is an attempt to minimize the
attack surface of web databases by means of native database
access control mechanism that is tailored to web databases and not
by the applicative means as all other methods do. Thus we move
the web database protection and access control mechanism from
the application layer to the database layer!

As each SQL sentence which arrives to the database from the
application that requests the user’s identification, contains
indication of the user who ran it, the log of the database can
contain SQL sentences beside the users who ran them. So it is also
easy to follow the transactions of the same user, easy to
distinguish between the users’ different sessions and easy to
discover the intruder’s footprints, if needed. If the application did
not request for user’s identifier, it is still possible to distinguish
between the sessions of different users. So the developers of
intrusion detection systems to a web database can now analyze
these logs and use their algorithms which were not relevant
before. Thus we solved the SQL session traceability problem of
the web applications!

As our method only requires definitions of a proper database
schema and authorization and it can be implemented for any
existing databases and enables to prevent and detect many kinds
of attacks – it may become the preferable solution in comparison
to any other corresponding web database access control solution
from the view-point of cost and efficiency.

As we have seen, the problem of databases accessible from
heterogeneous web applications is very important one. Nowadays
such databases manage critical commercial and governmental
information, but their access control mechanisms are inadequate.
This problem is well known to the web application developers and
security consultants, but it was almost not examined by academic
researches. We hope that this article will expose the actual
problem of web databases’ access control mechanism to the
research community and will motivate further researches.

CREATE FUNCTION Student_Marks_Func
 (pAS_key) RETURNS Table
Begin
 RETURN
 SELECT *
 FROM Student_Marks_Table
 WHERE Student_No IN

(
 SELECT Student_No
 FROM Users_Table
 WHERE AS_key = :pAS_key

)
End

SELECT * FROM Student_Marks_Func(10101…)

UPDATE Orders_Func(10101…)
SET Quantity = 2
WHERE Product_Id = 1

39

Our future research will focus on the following aspects:

• extension of the proposed mechanism to the RBAC systems

• use of the above techniques as the basis for intrusion
detection algorithms applied to web databases

9. REFERENCES
[1] Andy Baron, Mary Chipman. Creating and Optimizing Views

in SQL Server. Article from: http://www.informit.com
 /articles/printerfriendly.asp?p=130855&rl=1 (2000)

[2] Elisa Bertino, Pierangela Samarati, Sushil Jajodia. An

Extended Authorization Model for Relational Databases, In
Proceeding of IEEE Transactions on Knowledge and Data
Engineering, Volume 9, Issue 1, Pages: 85-101 (1997)

[3] Stephen W. Boyd, Angelos D. Keromytis. SQLrand:

Preventing SQL Injection Attacks, In Proceedings of the 2nd
Applied Cryptography and Network Security Conf, Pages:
292--302 (2004)

[4] Johann Eder. View Definitions with Parameters. Published

in: Advances in Databases and Information Systems
(ADBIS’95), Pages: 170-184 (1995)

[5] Patricia P. Griffiths, Bradford W. Wade. An

Authorization Mechanism for a Relational Database System.
ACM, Transactions on Database Systems (1976)

[6] P. Gulutzan, T. Pelzer. SQL-99 Complete, Really
 An Example-Based Reference Manual of the New
 Standard. R&D Books Miller Freeman, Inc. (1999)

[7] Michael Howard, David LeBlanc. Writing Secure Code.

Microsoft Press, ISBN 0-7356-1722-8 (2002)

[8] Yi Hu, Brajendra Panda. A Data Mining Approach for

Database Intrusion Detection. In Proceedings of the ACM
symposium on Applied computing, Nicosia, Cyprus. Pages:
711 – 716 (2004)

[9] Hasan M. Jamil. GQL: A Reasonable Complex SQL for

Genomic Databases. In Proceedings of International
Symposium on Bio-Informatics and Biomedical Engineering,
IEEE, Pages: 50-59 (2000)

[10] Wai Lup Low, Joseph Lee, Peter Teoh. DIDAFIT: Detecting

Intrusions in Databases Through Fingerprinting Transactions.
In Proceedings of the 4th International Conference on
Enterprise Information Systems, Ciudad Real, Spain, Pages:
121-128 (2002)

[11] Colin Angus Mackay. SQL Injection Attacks and
Some Tips on How to Prevent Them. Article from:

 http://www.codeproject.com/cs/database
/SqlInjectionAttacks.asp (2005)

[12] Ofer Maor, Amichai Shulman. SQL Injection Signatures
Evasion. Article from:
http://imperva.com/application_defense_center/white_papers
/sql_injection_signatures_evasion.html (2004)

[13] K. K. Mookhey, Nilesh Burghate. Detection of SQL Injection

and Cross-site Scripting Attacks, Article from:
http://www.securityfocus.com/infocus/1768 (2004)

[14] Raghu Ramakrishnan, Johannes Gehrke. Database
 Management Systems, Chapter 17.1, Introduction
 to Database security. Second Edition (2001)

[15] Abhinav Srivastava, Sai Rahul Reddy. Intertransaction Data
 Dependency for Intrusion Detection in Database Systems,
 part of Information and System Security course, School of
 Information TEchnology, IIT Kharagpur (2005)

[16] William Stallings. Cryptography and Network
 Security, Third Edition, Prentice Hall International (2003)

[17] Fredrik Valeur, Darren Mutz, Giovanni Vigna. A
 Learning-based Approach to the Detection of SQL
 Attacks. DIMVAn Vienna, Austria, Pages: 123-140 (2005)

[18] SecuriTeam, SQL Injection Walkthrough, Article
 from: http://www.securiteam.com/
 securityreviews/5DP0N1P76E.html (2002)

[19] Advanced Topics on SQL Injection Protection,
 OWASP. Article from: http://www.owasp.org
 /images/7/7d/Advanced_Topics_on_SQL_Injection_
 Protection.ppt(2006)

[20] Information Security News: ISS hatches ‘virtual
 patching’ plan. Article from:
 http://seclists.org/isn/2003/May/0113.html (2003)

[21] Controlling Database Access, Oracle9i Database Concepts

Release 2 (9.2). Article from: http://download-
west.oracle.com/docs/cd/B10501_01/server.920/
a96524/c23acces.htm

[22] Online Book-Store application. The open source from the
 site: http://www.gotocode.com/apps.asp?app_id=3&

40

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

