
Java Security 
Web Services Security 

(Overview)

Lecture 9



Java 2 Cryptography

Java provides API + SPI for crypto functions
Java Cryptography Architecture

Security related core classes
Access control and cryptography

Java Cryptography Extension
Other core classes

Message digest, digital signatures, certificate management
Key exchange, MAC



JCA + JCE
Engine

Abstract cryptographic service:  E.g., message digest, 
digital signatures

To provide cryptographic operations
To generate or supply the crypto material
To generate and manage data objects (certificates or keys 
– keystores)

Use instances of engine class for crypto operations
Algorithm

Implementation of an engine: Eg. MD5 for MessageDigest
Provider

(set of) packages that supply concrete implementation of a 
subset of the cryptographic services (DS, MD, etc.)



JCA + JCE Principles
Provider based architecture
Vendors can register 
implementations of algorithms
Providers can be configured 
declaratively so the application 
code does not need to change
Allows different implementations 
to be found at runtime

Implementation independenceImplementation independence Algorithm IndependenceAlgorithm Independence

Engine Class
SPI class

Implementations expose the 
same API



JCA + JCE Principles

Algorithm ExtensibilityAlgorithm Extensibility

Implementation interoperabilityImplementation interoperability

Various implementation can 
work with one another
Use one another’s keys
Verify one another’s messages

New algorithms can be easily 
plugged in

Has to be compliant with the 
MessageDigest API



Providers
SPI is

Key to pluggability, extensibility and module 
independence
It is a set of Java-language interfaces and 
abstract classes for cryptographic services

A Provider is a pluggable modules
Provides concrete implementations of some SPI 
methods

java.security and javax.crypto and their subpackages
contain many SPI interfaces that JCA and JCE 
providers can implement



Providers



Engine and SPI

Engine classes are the interfaces between 
the user code and the implementations
Implementations are found at runtime



Engine and SPI

The engine class calls the SPI class methods
SPI class method names begins with “engine”
Implementation of abstract SPI done by providers





Enterprise Security for Web 
Services

XML
Simplicity and flexibility
Facilitates B2B messaging
Security is a big concern

Structured semantics and schema-driven nature

XML security technologies are available
Encryption 

Elements, sections
Digital signatures

All or parts – by one or more entities
Access control



Web Service
Web service

Is a an interface that describes a collection of 
network-accessible operations based on open 
internet standards
Potential to enable application integration at a 
higher level of the protocol stack

based on Web Services standards
XML
Simple Object Access Protocol
Web Services Description Lanaguage (WSDL)
Unversal Description, Discovery and Itnegration



SOAP

Simple, lightweight and extensible XML-
based mechanism for exchanging structured 
data between network applications

Consists of:
An envelop 

What is in the message and who should deal with it
A set of coding rules

Serialization mechanism that be used to exchange instance 
of application defined data types



SOAP
It supports modular architecture

Allows defining the following in separate documents
WS Addressing Specification (WS-Addressing)
WS Security Specification (WS-Security) 

A SOAP envelope is defined in
Envelope XML element

Consists of two parts:
Header: adds features to the messages

Meta information can be added to the message
E.g., transaction IDs, message routing information, message 
security

Body: mechanism for exchanging information



Security Technologies
XML Signature

Validation of the messages and non-repudiation
SAML

AuthM + Security Srvices ML
Authentication + Authorization profile information

Common language for sharing of security services between 
companies for B2B/B2C transacrtions

XML Encryption
Encrypting of XML fragments

WS-Security
Set of SOAP extensions that can be used when building 
WS to implement integrity and confidentiality



XML Signature

IETF and W3C standard for digitally signing 
all or some part of the XML document
XML Signature

Is itself a piece of XML – defined by a schema
Contain references – URIs – to what is being 
signed

URIs – within the document or external to it
A singled XML document may have multiple 
signatures



XML Signature Structure
XML Signature contains four major 
items:

A set of pointers (references) to 
things to be signed
The actual signature
(Optional) The key (or a way to look 
up the key) for verifying the signature
(Optional) An Object tag that can 
contain miscellaneous items not 
included in the first three items

<Signature ID?> 
<SignedInfo> 

(CanonicalizationMethod) 
(SignatureMethod)
(<Reference (URI=)? > 

(Transforms)? 
(DigestMethod) 
(DigestValue) 

</Reference>)+ 
</SignedInfo> 
(SignatureValue) 
(KeyInfo)? 
(Object ID?)* 

</Signature>

<Signature ID?> 
<SignedInfo> 

(CanonicalizationMethod) 
(SignatureMethod)
(<Reference (URI=)? > 

(Transforms)? 
(DigestMethod) 
(DigestValue) 

</Reference>)+ 
</SignedInfo> 
(SignatureValue) 
(KeyInfo)? 
(Object ID?)* 

</Signature>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 
<SignedInfo> 

<Reference URI="http://www.foo.com/secureDocument.html" /> 
</SignedInfo> 
<SignatureValue>...</SignatureValue> 
<KeyInfo>... </KeyInfo> 

</Signature> 

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 
<SignedInfo> 

<Reference URI="http://www.foo.com/secureDocument.html" /> 
</SignedInfo> 
<SignatureValue>...</SignatureValue> 
<KeyInfo>... </KeyInfo> 

</Signature> 



XML Signature:
Enveloping Signature
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 

<SignedInfo> <Reference URI="#111" /> </SignedInfo> 
<SignatureValue>...</SignatureValue> 
<KeyInfo>...</KeyInfo> 
<Object> 

<SignedItem id="111">Stuff to be signed</SignedItem> 
</Object> 

</Signature>



XML Signature:
Enveloped Signature
<PurchaseOrder id="po1"> 

<SKU>125356</SKU> 
<Quantity>17</Quantity> 
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 

<SignedInfo> <Reference URI="#po1" /> </SignedInfo> 
<SignatureValue>...</SignatureValue> 
<KeyInfo>...</KeyInfo> 

</Signature> 
</PurchaseOrder> 

Parent element



XML Signature:
Detached Signature

<PurchaseOrderDocument> 
<PurchaseOrder id="po1"> 

<SKU>12366</SKU> 
<Quantity>17</Quantity> 

</PurchaseOrder> 
<Signature xmlns=

"http://www.w3.org/2000/09/xmldsig#">
<SignedInfo> <Reference URI="#po1" /> 
</SignedInfo>
<SignatureValue>...</SignatureValue>
<KeyInfo>...</KeyInfo> 

</Signature> 
</PurchaseOrderDocument>



XML Signature:
Detached Signature

Can also reference 
external source

<Signature xmlns=
"http://www.w3.org/2000/09/xmldsig#"> 

<SignedInfo> 
<Reference URI=
"http://www.foo.com/picture.jpg" /> 

</SignedInfo> 
<SignatureValue>...</SignatureValue> 
<KeyInfo>...</KeyInfo> 

</Signature>



XML Encryption Structure
<EncryptedData Id? Type? MimeType? Encoding?> 

<EncryptionMethod/>? 
<ds:KeyInfo> 

<EncryptedKey>? 
<AgreementMethod>? 
<ds:KeyName>? 
<ds:RetrievalMethod>? 
<ds:*>? 

</ds:KeyInfo>? 
<CipherData> 

<CipherValue>? 
<CipherReference URI?>? 

</CipherData> 
<EncryptionProperties>? 

</EncryptedData> 

- Could encompass an entire 
document of other XML structure
(similar to Enveloping structure
- Could contain a pointer to a 
detached resource



XML Encryption: Example
<Employee> 

<Name>Dave Remy</Name> 
<SocialSecurityNumber> 

<EncryptedData Type=
"http://www.w3.org/2000/09/xmldsig#content"> 

<EncryptionMethod Algorithm=". . .">
<CipherData><CipherValue>. . .</CipherValue>
</CipherData> 

</EncryptedData> </SocialSecurityNumber> 
<Salary>

<EncryptedData Type=
"http://www.w3.org/2000/09/xmldsig#content"> 
<EncryptionMethod Algorithm=". . ."> 

<CipherData><CipherValue>. . .</CipherValue>
</CipherData> 

</EncryptedData> 
</Salary> 

</Employee>



XML Encryption: Example
<Employee> 

<Name>Dave Remy</Name> 
<SocialSecurityNumber> 

<EncryptedData id="socsecnum" Type="http://www.w3.org/2000/09/ xmldsig#content"> 
<EncryptionMethod Algorithm=". . ." /> 
<CipherData><CipherValue>. . .</CipherValue></CipherData> 

</EncryptedData> 
</SocialSecurityNumber> 
<Salary> 

<EncryptedData id="salary" Type="http://www.w3.org/2000/09/ xmldsig#content"> 
<EncryptionMethod Algorithm=". . ."> 
<CipherData><CipherValue>. . .</CipherValue></CipherData> 

</EncryptedData> 
</Salary> 
<EncryptedKey> 

<EncryptionMethod Algorithm=". . ." /> 
<CipherData> <CipherValue>. . .</CipherValue> </CipherData> 
<ReferenceList> 

<DataReference URI="#socsecnum" /> 
<DataReference URI="#salary" /> </ReferenceList> 

</EncryptedKey> 
</Employee>



SAML
Enables portable identities and the assertions that 
these identities want to make

Assertion: authentication; authorization
SAML is important for WS

is a standard XML format – all normal XML tools apply to 
SAML
Includes a standard message exchange protocol
Specifies the rules for how it is transported – making 
interoperability explicit at the specification level
Expression of security in the form of assertions about 
subjects (different from Certification authority based 
approach) – facilitated Single-Sign ON



SAML - scenario

Federated identity



SAML
Defines three types of assertions

Authentication
States that a particular auth. authority has authenticated the 
subject

Using a particular process
At a particular time (+ validity)

Authorization
States that a particular authority has granted/denied 
permissions on particular resource (+time)

Attributes
Provides qualifying information about either an 
authentication or authorization assertion



SAML – how it works

Three XML based 
mechanisms and 
their relationship

XML schema + definition

Rules on using assertions



SAML Example
<saml:Assertion>

MajorVersion="1" MinorVersion="0"
AssertionID="192.168.0.1.12345"
Issuer="Company.com"
IssueInstant="2004-01-21T10:02:00Z">
<saml:Conditions>

NotBefore="2004-01-21T10:02:00Z"
NotAfter="2004-01-21T10:09:00Z" />

<saml:AuthenticationStatement>
AuthenticationMethod="password"
AuthenticationInstant="2004-01-21T10:02:00Z">
<saml:Subject>

<saml:NameIdentifier
SecurityDomain="Company.com"
Name="jothy" />

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>



SAML protocol

SAML assertions are sent to the 
authentication and authorization authorities 



SAML Authorization/Attribute 
Assertions

<saml:Assertion ...>
<saml:AttributeStatement>
<saml:Subject>...</saml:Subject>
<saml:Attribute

AttributeName="PaidStatus"
AttributeNamespace="http://smithco.com">
<saml:AttributeValue>

PaidUp
</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute

AttributeName="CreditLimit"
AttributeNamespace="http://smithco.com">
<saml:AttributeValue xsi:type="my:type">
<my:amount currency="USD">500.00
</my:amount>

</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>
</saml:Assertion>

<saml:Assertion ...>
<saml:AuthorizationStatement
Decision="Permit"
Resource="http://jonesco.com/doit.cgi">
<saml:Subject>...</saml:Subject>
<saml:Action Namespace=

"urn:oasis:names:tc:SAML:1.0:action:rwedc">Execute
</saml:Action>

</saml:AuthorizationStatement>
</saml:Assertion>



SAML Architecture



SAML Binding
Requires SOAP over HTTP 
as one binding
SOAP Binding

SAML information is 
contained inside the SOAP

SAML Profile
Describes how SAML 
assertions are embedded 
into and extracted from a 
framework/protocol

Browser profile of SAML
SAML profile SOAP
WS-Security



WS-Security

Focuses on applying on applying existing 
security technologies to SOAP message 

X.509 certificates
SAML assertions
XML Signatures
XML Encryption

GOAL: Secure the SOAP
No matter where it goes
No matter how long it lives



HTTP Transport Security Versus 
Message Security

HTTP Transport Security
Authentication at the time secure pipe is created
Confidentiality/Integrity in the pipe only



HTTP-TS
Pros and Cons

Pros

Mature: Tried and true
Support: Supported by 
most servers and clients
Understood: Understood 
by most system 
administrators
Simpler: Generally simpler 
than message-level 
security alternatives

Cons

Point to Point: Messages are in 
the clear after reaching SSL 
endpoint
Waypoint visibility: Cannot 
have partial visibility into the 
message
Granularity: Cannot have 
different security for messages in 
and messages out
Transport dependent: Applies 
only to HTTP



Message Security
Pros and Cons

Pros

Persistent: Allows the 
message to be self-
protecting
Selective: Portions of the 
message can be secured to 
different parties
Flexible: Different security 
policy can be applied to 
request and response -
Transport independent

Cons

Immature: standard, tools
Complex: encompasses many 
other standards including XML 
Encryption, XML Signature, 
X.509 certificates, and many 
more



Web Services Security Stack


