
1

Secure Coding in C
and C++

Pointer Subterfuge

Lecture 7
Acknowledgement: These slides are based on author Seacord’s original presentation

Pointer Subterfuge
Pointer subterfuge is a general term for exploits that
modify a pointer’s value.
A pointer is a variable that contains the address of a
function, array element, or other data structure.
Function pointers can be overwritten to transfer control
to attacker-supplied shellcode.
Data pointers can also be modified to run arbitrary
code.

attackers can control the address to modify other memory
locations.

2

Data Locations - 1

For a buffer overflow to overwrite a function
or data pointer the buffer must be

allocated in the same segment as the target
function or data pointer.
at a lower memory address than the target
function or data pointer.
susceptible to a buffer overflow exploit.

Data Locations - 2

UNIX executables contain both a data and a
BSS segment.

The data segment contains all initialized global
variables and constants.
The Block Started by Symbols (BSS) segment
contains all uninitialized global variables.

Initialized global variables are separated from
uninitialized variables.

3

1. static int GLOBAL_INIT = 1; /* data segment, global */

2. static int global_uninit; /* BSS segment, global */
3.
4. void main(int argc, char **argv) { /* stack, local */
5. int local_init = 1; /* stack, local */
6. int local_uninit; /* stack, local */
7. static int local_static_init = 1; /* data seg, local */
8. static int local_static_uninit; /* BSS segment, local*/

/* storage for buff_ptr is stack, local */
/* allocated memory is heap, local */

9. }

Data declarations and process
memory organization

funcPtr declared are both
uninitialized and stored
in the BSS segment.

Function Pointers - Example
Program 1

1. void good_function(const char *str) {...}
2. void main(int argc, char **argv) {
3. static char buff[BUFFSIZE];
4. static void (*funcPtr)(const char *str);
5. funcPtr = &good_function;
6. strncpy(buff, argv[1], strlen(argv[1]));
7. (void)(*funcPtr)(argv[2]);
8. }

The static
character
array buff

4

Function Pointers - Example
Program - 2
1. void good_function(const char *str) {...}
2. void main(int argc, char **argv) {
3. static char buff[BUFFSIZE];
4. static void (*funcPtr)(const char *str);
5. funcPtr = &good_function;
6. strncpy(buff, argv[1], strlen(argv[1]));
7. (void)(*funcPtr)(argv[2]);
8. } A buffer

overflow
occurs when
the length of
argv[1]
exceeds
BUFFSIZE.

Function Pointers - Example
Program - 3
1. void good_function(const char *str) {...}
2. void main(int argc, char **argv) {
3. static char buff[BUFFSIZE];
4. static void (*funcPtr)(const char *str);
5. funcPtr = &good_function;
6. strncpy(buff, argv[1], strlen(argv[1]));
7. (void)(*funcPtr)(argv[2]);
8. }

When the program invokes the function
identified by funcPtr, the shellcode is
invoked instead of good_function().

5

Data Pointers
Used in C and C++ to refer to

dynamically allocated structures
call-by-reference function arguments
arrays
other data structures

Can be modified by an attacker when exploiting a
buffer overflow vulnerability.
Arbitrary Memory Write occurs when an Attacker
can control an address to modify other memory
locations

Data Pointers - Example
Program

1. void foo(void * arg, size_t len) {
2. char buff[100];
3. long val = ...;
4. long *ptr = ...;
5. memcpy(buff, arg, len); //unbounded memory copy
6. *ptr = val;
7. ...
8. return;
9. }

After overflowing the buffer, an attacker can
overwrite ptr and val.
When *ptr = val is evaluated (line 6), an
arbitrary memory write is performed.

6

Modifying the Instruction
Pointer

For an attacker to succeed an exploit needs to
modify the value of the instruction pointer to
reference the shellcode.
1. void good_function(const char *str) {
2. printf("%s", str);
3. }
4. int _tmain(int argc, _TCHAR* argv[]) {
5. static void (*funcPtr)(const char *str);

// Function pointer declaration
6. funcPtr = &good_function;
7. (void)(*funcPtr)("hi ");
8. good_function("there!\n");
9. return 0;
10. }

Function Pointer Disassembly
Example - Program

(void)(*funcPtr)("hi ");
00424178 mov esi, esp
0042417A push offset string "hi" (46802Ch)
0042417F call dword ptr [funcPtr (478400h)]
00424185 add esp, 4
00424188 cmp esi, esp
good_function("there!\n");
0042418F push offset string "there!\n"
(468020h)
00424194 call good_function (422479h)
00424199 add esp, 4

First function call invocation takes place
at 0x0042417F. The machine code at this
address is ff 15 00 84 47 00

This address
can also be
found in the
dword ptr
[funcPtr

The actual
address of
good_function()
stored at this
address is
0x00422479.

7

Function Pointer Disassembly
Example - Program

(void)(*funcPtr)("hi ");
00424178 mov esi, esp
0042417A push offset string "hi" (46802Ch)
0042417F call dword ptr [funcPtr (478400h)]
00424185 add esp, 4
00424188 cmp esi, esp

good_function("there!\n");
0042418F push offset string "there!\n"
(468020h)
00424194 call good_function (422479h)
00424199 add esp, 4

The second, static call to
good_function() takes place at
0x00424194. The machine code at
this location is e8 e0 e2 ff ff.

Function Pointer Disassembly
Analysis - 1

This form of the call instruction indicates a
near call with a displacement relative to the
next instruction.
The displacement is a negative number,
which means that good_function() appears at
a lower address
The invocations of good_function() provide
examples of call instructions that can and
cannot be attacked

8

Function pointer disassembly
analysis - 2

The static invocation uses an immediate
value as relative displacement,

this displacement cannot be overwritten because
it is in the code segment.

The invocation through the function pointer
uses an indirect reference,

the address in the referenced location can be
overwritten.

These indirect function references can be
exploited to transfer control to arbitrary code.

Global Offset Table - 1
Windows and Linux use a similar mechanism for linking and
transferring control to library functions.

Linux solution is exploitable
Windows version is not

The default binary format on Linux, Solaris 2.x, and SVR4 is called
the executable and linking format (ELF).

ELF was originally developed and published by UNIX System
Laboratories (USL) as part of the application binary interface (ABI).

The ELF standard was adopted by the Tool Interface Standards
committee (TIS) as a portable object file format for a variety of IA-32
operating systems.

9

Global Offset Table - 2

The process space of any ELF binary includes a section called the
global offset table (GOT).

The GOT holds the absolute addresses,
Provides ability to share, the program text.

essential for the dynamic linking process to work.
Every library function used by a program has an entry in the GOT
that contains the address of the actual function.

Before the program uses a function for the first time, the entry
contains the address of the runtime linker (RTL).
If the function is called by the program, control is passed to the RTL
and the function’s real address is resolved and inserted into the
GOT.
Subsequent calls invoke the function directly through the GOT entry
without involving the RTL

Global Offset Table Example
% objdump --dynamic-reloc test-prog
format: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
08049bc0 R_386_GLOB_DAT __gmon_start__
08049ba8 R_386_JUMP_SLOT __libc_start_main
08049bac R_386_JUMP_SLOT strcat
08049bb0 R_386_JUMP_SLOT printf
08049bb4 R_386_JUMP_SLOT exit
08049bb8 R_386_JUMP_SLOT sprintf
08049bbc R_386_JUMP_SLOT strcpyThe offsets specified for each

R_386_JUMP_SLOT relocation record
contain the address of the specified
function (or the RTL linking function)

10

Global Offset Table - 3

The address of a GOT entry is fixed in the ELF executable.
The GOT entry is at the same address for any executable process
image.
The location of the GOT entry for a function can be found using the
objdump
An attacker can overwrite a GOT entry for a function with the
address of shellcode using an arbitrary memory write.
Control is transferred to the shellcode when the program
subsequently invokes the function corresponding to the
compromised GOT entry.

The .dtors Section
Another function pointer attack is to overwrite function pointers in
the .dtors section for executables generated by GCC

GNU C allows a programmer to declare attributes about
functions by specifying the __attribute__ keyword followed by an
attribute specification inside double parentheses

Attribute specifications include constructor and destructor.

The constructor attribute specifies that the function is called
before main()

The destructor attribute specifies that the function is called after
main() has completed or exit() has been called.

11

The .dtors Section - Example
Program

1. #include <stdio.h>
2. #include <stdlib.h>

3. static void create(void)
__attribute__ ((constructor));

4. static void destroy(void)
__attribute__ ((destructor));

5. int main(int argc, char *argv[]) {
6. printf("create: %p.\n", create);
7. printf("destroy: %p.\n", destroy);
8. exit(EXIT_SUCCESS);
9. }

10. void create(void) {
11. printf("create called.\n");
12. }

13. void destroy(void) {
14. printf("destroy called.\n");
15. }

% ./dtors
create called.
create: 0x80483a0.

destroy: 0x80483b8.
destroy called.

The .dtors Section - 1

Constructors and destructors are stored in the .ctors and .dtors
sections in the generated ELF executable image.
Both sections have the following layout:

0xffffffff {function-address} 0x00000000

The .ctors and .dtors sections are mapped into the process
address space and are writable by default.
Constructors have not been used in exploits because they are
called before the main program.
The focus is on destructors and the .dtors section.
The contents of the .dtors section in the executable image can be
examined with the objdump command

12

The .dtors Section - 2

An attacker can transfer control to arbitrary code by overwriting the
address of the function pointer in the .dtors section.

If the target binary is readable by an attacker, an attacker can find the
exact position to overwrite by analyzing the ELF image.

The .dtors section is present even if no destructor is specified.

The .dtors section consists of the head and tail tag with no function
addresses between.

It is still possible to transfer control by overwriting the tail tag
0x00000000 with the address of the shellcode.

If the shellcode returns, the process will call subsequent addresses until
a tail tag is encountered or a fault occurs.

The .dtors Section - 3

For an attacker, overwriting the .dtors section
has advantages over other targets:

.dtors is always present and mapped into
memory.
The .dtors target only exists in programs that have
been compiled and linked with GCC.
It is difficult to find a location to inject the
shellcode onto so that it remains in memory after
main() has exited.

13

Virtual Pointers - 1

A virtual function is a function member of a class, declared using
the virtual keyword.
Functions may be overridden by a function of the same name in
a derived class.
A pointer to a derived class object may be assigned to a base
class pointer, and the function called through the pointer.
Without virtual functions, the base class function is called
because it is associated with the static type of the pointer.
When using virtual functions, the derived class function is called
because it is associated with the dynamic type of the object

Virtual Pointers - Example
Program- 1

1. class a {
2. public:
3. void f(void) {
4. cout << "base f" << endl;
5. };

6. virtual void g(void) {
7. cout << "base g" << endl;
8. };
9. };

10. class b: public a {
11. public:
12. void f(void) {
13. cout << "derived f" << endl;
14. };

15. void g(void) {
16. cout << "derived g" << endl;
17. };
18. };

19. int _tmain(int argc, _TCHAR* argv[]) {
20. a *my_b = new b();
21. my_b->f();
22. my_b->g();
23. return

Class a is defined as
the base class and
contains a regular
function f() and a virtual
function g().

Class b is derived
from a and overrides
both functions.

A pointer my_b to the base
class is declared in main() but
assigned to an object of the
derived class b.

14

Virtual Pointers - Example
Program- 1

19. int _tmain(int argc, _TCHAR* argv[]) {
20. a *my_b = new b();
21. my_b->f();
22. my_b->g();
23. return

When the non-virtual
function my_b->f() is
called on the function
f() associated with a
(the base class) is
called.

When the virtual
function my_b->g() is
called on the function
g() associated with b
(the derived class) is
called

A pointer my_b to the base
class is declared in main() but
assigned to an object of the
derived class b.

Virtual Pointers - 2

Most C++ compilers implement virtual
functions using a virtual function table
(VTBL).
The VTBL is an array of function pointers that
is used at runtime for dispatching virtual
function calls.
Each individual object points to the VTBL via
a virtual pointer (VPTR) in the object’s
header.
The VTBL contains pointers to each
implementation of a virtual function

15

Virtual Pointers - 3

It is possible to overwrite function pointers in
the VTBL or to change the VPTR to point to
another arbitrary VTBL.
This can be accomplished by an arbitrary
memory write or by a buffer overflow directly
into an object.
The buffer overwrites the VPTR and VTBL of
the object and allows the attacker to cause
function pointers to execute arbitrary code.

VTBL Runtime Representation

b object b vtable

g()my_b

other
virtual
function

16

The atexit() and on_exit()
Functions - 1

The atexit() function is a general utility function
defined in C99.
The atexit() function registers a function to be called
without arguments at normal program termination.
C99 requires that the implementation support the
registration of at least 32 functions.
The on_exit() function from SunOS performs a
similar function.
This function is also present in libc4, libc5, and glibc

The atexit() and on_exit() –
Example Program

1. char *glob;

2. void test(void) {
3. printf("%s", glob);
4. }

5. void main(void) {
6. atexit(test);
7. glob = "Exiting.\n";
8. }

17

The atexit() and on_exit()
Functions - 2

The atexit() function works by adding a specified
function to an array of existing functions to be called
on exit.

When exit() is called, it invokes each function in the
array in last in, first out (LIFO) order.

Because both atexit() and exit() need to access this
array, it is allocated as a global symbol (__atexit on
*bsd and __exit_funcs on Linux)

Debug session of atexit program
using gdb - 1

(gdb) b main
Breakpoint 1 at 0x80483f6: file atexit.c, line 6.
(gdb) r
Starting program: /home/rcs/book/dtors/atexit

Breakpoint 1, main (argc=1, argv=0xbfffe744) at atexit.c:6
6 atexit(test);
(gdb) next
7 glob = "Exiting.\n";
(gdb) x/12x __exit_funcs
0x42130ee0 <init>: 0x00000000 0x00000003 0x00000004 0x4000c660
0x42130ef0 <init+16>: 0x00000000 0x00000000 0x00000004 0x0804844c
0x42130f00 <init+32>: 0x00000000 0x00000000 0x00000004 0x080483c8
(gdb) x/4x 0x4000c660
0x4000c660 <_dl_fini>: 0x57e58955 0x5ce85356 0x81000054 0x0091c1c3
(gdb) x/3x 0x0804844c
0x804844c <__libc_csu_fini>: 0x53e58955 0x9510b850 x102d0804
(gdb) x/8x 0x080483c8
0x80483c8 <test>: 0x83e58955 0xec8308ec 0x2035ff08 0x68080496

18

Debug session of atexit program
using gdb - 2

Three functions have been registered _dl_fini(),
__libc_csu_fini(), test().
It is possible to transfer control to arbitrary code with
an arbitrary memory write or a buffer overflow
directly into the __exit_funcs structure.
The _dl_fini() and __libc_csu_fini() functions are
present even when the vulnerable program does not
explicitly call the atexit() function.

The longjmp() Function

C99 defines the setjmp() macro, longjmp()
function, and jmp_buf type, which can be
used to bypass the normal function call and
return discipline.

The setjmp() macro saves its calling
environment for later use by the longjmp()
function.

The longjmp() function restores the
i t d b th t t

19

The longjmp() Function- Example
Program - 1

1. #include <setjmp.h>
2. jmp_buf buf;
3. void g(int n);
4. void h(int n);
5. int n = 6;

6. void f(void) {
7. setjmp(buf);
8. g(n);
9. }

10. void g(int n) {
11. h(n);
12. }

13. void h(int n){
14. longjmp(buf, 2);
15. }

The longjmp() Function Example
Program- 2

1. typedef int __jmp_buf[6];

2. #define JB_BX 0
3. #define JB_SI 1
4. #define JB_DI 2
5. #define JB_BP 3
6. #define JB_SP 4
7. #define JB_PC 5
8. #define JB_SIZE 24

9. typedef struct __jmp_buf_tag
{

10. __jmp_buf __jmpbuf;
11. int __mask_was_saved;
12. __sigset_t __saved_mask;
13. } jmp_buf[1]

The jmp_buf structure (lines
9-13) contains three fields.

The calling environment is
stored in __jmpbuf (declared
on line 1).

The __jmp_buf type is an
integer array containing six
elements.

The #define statements
indicate which values are
stored in each array element.

The base pointer (BP) is
stored in __jmp_buf[3],

The program counter (PC) is
stored in __jmp_buf[5]

20

The longjmp() Function Example
Program- 3

longjmp(env, i)
1. movl i, %eax /* return i */
2. movl env.__jmpbuf[JB_BP], %ebp
3. movl env.__jmpbuf[JB_SP], %esp
4. jmp (env.__jmpbuf[JB_PC])

The movl instruction on line 2
restores the BP

The movl instruction
on line 3 restores the
stack pointer (SP).

Line 4 transfers control to the
stored PC

The longjmp() Function

The longjmp() function can be exploited by
overwriting the value of the PC in the jmp_buf
buffer with the start of the shellcode.

This can be accomplished with an arbitrary
memory write or by a buffer overflow directly
into a jmp_buf structure

21

Exception Handling - 1

An exception is any event that is outside the
normal operations of a procedure.
Example: Dividing by zero will generate an
exception.
Exception handler blocks are used to handle
special cases and avoid unexpected program
termination.
Exception handlers are chained and called in a
defined order until one can handle the
exception.

Exception Handling - 2

Microsoft Windows exception handlers
Structured exception handling (SEH). These are
implemented as per-function or per-thread
exception handlers.
System default exception handling. This is a
global exception filter and handler for the entire
process that is called if no previous exception
handler can handle the exception.
Vectored exception handling (VEH). These are
called first as a method to override a structured
exception handler.

22

Structured Exception Handling - 1

Structured exception handling (SEH) is typically
implemented at the compiler level

through try…catch blocks
If the catch block is unable to handle the exception, it
is passed back to the prior scope block.

The __finally keyword is a Microsoft extension to
the C/C++ language

is used to denote a block of code that is called to
clean up anything instantiated by the try block.
It is called regardless of how the try block exits.

Try...catch block

1. try {
2. // Do stuff here
3. }
4. catch(…){
5. // Handle exception here
6. }
7. __finally {
8. // Handle cleanup here
9. }

23

Structured Exception Handling
- 2

Windows implements special support for per-
thread exception handlers.
Compiler-generated code writes the address of
a pointer to an EXCEPTION_REGISTRATION
structure to the address referenced by the fs
segment register.
This structure is defined in the assembly
language struc definition in EXSUPP.INC in the
Visual C++ runtime source

Mitigation Strategies

The best way to prevent pointer subterfuge is
to eliminate the vulnerabilities that allow
memory to be improperly overwritten.

Pointer subterfuge can occur as a result of
overwriting data pointers
Common errors managing dynamic memory
Format string vulnerabilities

Eliminating these sources of vulnerabilities is
the best way to eliminate pointer subterfuge.

24

W^X

One way to limit the exposure from some of
these targets is to reduce the privileges of the
vulnerable processes.

The policy called “W xor X” or “W^X” states that a
memory segment may be writable or executable,
but not both.
It is not clear how this policy can be effectively
enforced to prevent overwriting targets such as
atexit() that need to be both writable at runtime
and executable.

