
1

Secure Coding in C
and C++

Integer Security

Lecture 6
Acknowledgement: These slides are based on author Seacord’s original presentation

Integer Agenda

Integer Security
Vulnerabilities
Mitigation Strategies
Notable Vulnerabilities
Summary

2

Integer Security
Integers represent a growing and underestimated
source of vulnerabilities in C and C++ programs.
Integer range checking has not been systematically
applied in the development of most C and C++
software.
security flaws involving integers exist
a portion of these are likely to be vulnerabilities

A software vulnerability may result when a program
evaluates an integer to an unexpected value.

Integer Representation

Signed-magnitude
One’s complement
Two’s complement
These integer representations vary in how
they represent negative numbers

3

Signed-magnitude Representation

Uses the high-order bit to indicate the sign
0 for positive
1 for negative
remaining low-order bits indicate the magnitude of
the value

Signed magnitude representation of +41 and
-41

0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

32 + 8 + 1

41+

32 + 8 + 1

4 1-

One’s Complement

One’s complement replaced signed
magnitude because the circuitry was too
complicated.
Negative numbers are represented in one’s
complement form by complementing each bit

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

each 1 is
replaced
with a 0

each 0 is
replaced
with a 1

even the
sign bit is
reversed

4

Two’s Complement
The two’s complement form of a negative integer is created by
adding one to the one’s complement representation.

Two’s complement representation has a single (positive) value
for zero.
The sign is represented by the most significant bit.
The notation for positive integers is identical to their signed-
magnitude representations.

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 1+ 1 =

Signed and Unsigned Types
Integers in C and C++ are either signed or unsigned.
Signed integers

represent positive and negative values.
In two’s complement arithmetic, a signed integer ranges
from -2n-1 through 2n-1-1.

Unsigned integers
range from zero to a maximum that depends on the size of
the type
This maximum value can be calculated as
2n-1, where n is the number of bits used to represent the
unsigned type.

5

Representation

4-bit
two’s complement

representation

Signed Integer Unsigned Integer

Standard Integer Types

Standard integers include the following types,
in non-decreasing length order
signed char
short int
int
long int
long long int

6

Platform-Specific Integer
Types

Vendors often define platform-specific integer types.
The Microsoft Windows API defines a large number of
integer types
__int8, __int16, __int32, __int64
ATOM
BOOLEAN, BOOL
BYTE
CHAR
DWORD, DWORDLONG, DWORD32, DWORD64
WORD
INT, INT32, INT64
LONG, LONGLONG, LONG32, LONG64
Etc.

Integer Ranges

Minimum and maximum values for an integer
type depend on

the type’s representation
signedness
number of allocated bits

The C99 standard sets minimum
requirements for these ranges.

7

Example Integer Ranges

signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

Integer Conversions
Type conversions

occur explicitly in C and C++ as the result of a cast or
implicitly as required by an operation.

Conversions can lead to lost or misinterpreted data.
Implicit conversions are a consequence of the C language
ability to perform operations on mixed types.

C99 rules define how C compilers handle
conversions

integer promotions
integer conversion rank
usual arithmetic conversions

8

Integer Promotions
Integer types smaller than int are promoted
when an operation is performed on them.
If all values of the original type can be
represented as an int

the value of the smaller type is converted to int
otherwise, it is converted to unsigned int.

Integer promotions are applied as part of the
usual arithmetic conversions

Integer Promotion Example

Integer promotions require the promotion of
each variable (c1 and c2) to int size

char c1, c2;
c1 = c1 + c2;

The two ints are added and the sum truncated to fit
into the char type.
Integer promotions avoid arithmetic errors from the
overflow of intermediate values.

9

Implicit Conversions

1. char cresult, c1, c2, c3;
2. c1 = 100;
3. c2 = 90;
4. c3 = -120;
5. cresult = c1 + c2 + c3;

The value of c1 is added
to the value of c2.

The sum of c1 and c2 exceeds the
maximum size of signed char

However, c1, c1, and c3 are each
converted to integers and the overall
expression is successfully evaluated.

The sum is truncated and
stored in cresult without a
loss of data

Integer Conversion Rank &
Rules

Every integer type has an integer conversion
rank that determines how conversions are
performed.

No two signed integer types have the same rank,
even if they have the same representation.
The rank of a signed integer type is > the rank of
any signed integer type with less precision.

rank of [long long int > long int> int > short
int > signed char].

The rank of any unsigned integer type is equal to
the rank of the corresponding signed integer type.

10

Unsigned Integer Conversions
1

Conversions of smaller unsigned integer types to
larger unsigned integer types is

always safe
typically accomplished by zero-extending the value

When a larger unsigned integer is converted to a
smaller unsigned integer type the

larger value is truncated
low-order bits are preserved

Unsigned Integer Conversions
2

When unsigned integer types are converted
to the corresponding signed integer type

the bit pattern is preserved so no data is lost
the high-order bit becomes the sign bit
If the sign bit is set, both the sign and magnitude of the
value changes.

11

Preserve low-order wordshortlong
Preserve bit pattern; high-order bit becomes sign bitlonglong
Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong
Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned
short

long

Zero-extendlongshort
Preserve bit pattern; high-order bit becomes sign bitshortshort
Preserve low-order bytecharshort
Zero-extendunsigned longchar

Zero-extendunsigned
short

char
Zero-extendlongchar
Zero-extendshortchar
Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom
unsigned

Misinterpreted dataLost dataKey:

Signed Integer Conversions 1

When a signed integer is converted to an
unsigned integer of equal or greater size and
the value of the signed integer is not negative

the value is unchanged
the signed integer is sign-extended

A signed integer is converted to a shorter
signed integer by truncating the high-order
bits.

12

Signed Integer Conversions 2

When signed integers are converted to
unsigned integers

bit pattern is preserved—no lost data
high-order bit loses its function as a sign bit
If the value of the signed integer is not negative, the
value is unchanged.
If the value is negative, the resulting unsigned value is
evaluated as a large, signed integer.

Preserve bit pattern; high-order bit loses function as sign
bit

unsigned shortshort

Preserve low-order wordshortlong
Preserve low-order byteunsigned charlong
Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong
Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve pattern; high-order bit loses function as sign bitunsigned longlong

Preserve low-order byteunsigned charshort
Sign-extendlongshort
Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar
Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar
Sign-extendshortchar

MethodToFrom

Misinterpreted dataLost dataKey:

13

Signed Integer Conversion
Example

1. unsigned int l = ULONG_MAX;
2. char c = -1;
3. if (c == l) {
4. printf("-1 = 4,294,967,295?\n");
5. }

The value of c is
compared to the
value of l.

Because of integer promotions, c is
converted to an unsigned integer with a
value of 0xFFFFFFFF or 4,294,967,295

Signed/Unsigned Characters
The type char can be signed or unsigned.
When a signed char with its high bit set is
saved in an integer, the result is a negative
number.
Use unsigned char for buffers, pointers,
and casts when dealing with character data
that may have values greater than 127
(0x7f).

14

Usual Arithmetic Conversions
If both operands have the same type no conversion is needed.
If both operands are of the same integer type (signed or unsigned),
the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.
If the operand that has unsigned integer type has rank >= to the
rank of the type of the other operand, the operand with signed
integer type is converted to the type of the operand with unsigned
integer type.
If the type of the operand with signed integer type can represent all
of the values of the type of the operand with unsigned integer type,
the operand with unsigned integer type is converted to the type of
the operand with signed integer type.
Otherwise, both operands are converted to the unsigned integer
type corresponding to the type of the operand with signed integer
type.

Integer Error Conditions

Integer operations can resolve to unexpected
values as a result of an

overflow
sign error
truncation

15

Overflow

An integer overflow occurs when an integer is
increased beyond its maximum value or
decreased beyond its minimum value.
Overflows can be signed or unsigned

A signed overflow
occurs when a value is
carried over to the sign
bit

An unsigned overflow
occurs when the underlying
representation can no longer
represent a value

Overflow Examples 1
1. int i;
2. unsigned int j;

3. i = INT_MAX; // 2,147,483,647
4. i++;
5. printf("i = %d\n", i);

6. j = UINT_MAX; // 4,294,967,295;
7. j++;
8. printf("j = %u\n", j);

i=-2,147,483,648

j = 0

16

Overflow Examples 2
9. i = INT_MIN; // -2,147,483,648;
10. i--;
11. printf("i = %d\n", i);

12. j = 0;
13. j--;
14. printf("j = %u\n", j);

i=2,147,483,647

j = 4,294,967,295

Truncation Errors

Truncation errors occur when
an integer is converted to a smaller integer type
and
the value of the original integer is outside the
range of the smaller type

Low-order bits of the original value are
preserved and the high-order bits are lost.

17

Truncation Error Example
1. char cresult, c1, c2, c3;
2. c1 = 100;
3. c2 = 90;
4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or
unsigned int before being
operated on

Adding c1 and c2 exceeds the max
size of signed char (+127)

Truncation occurs when the
value is assigned to a type
that is too small to represent
the resulting value

Sign Errors:
Converting to Signed Integer

Converting an unsigned integer to a signed
integer of

Equal size - preserve bit pattern; high-order bit
becomes sign bit
Greater size - the value is zero-extended then
converted
Lesser size - preserve low-order bits

If the high-order bit of the unsigned integer is
Not set - the value is unchanged
Set - results in a negative value

18

Converting to Unsigned
Integer

Converting a signed integer to an unsigned
integer of

Equal size - bit pattern of the original integer is
preserved
Greater size - the value is sign-extended then converted
Lesser size - preserve low-order bits

If the value of the signed integer is
Not negative - the value is unchanged
Negative - a (typically large) positive value

Sign Error Example
1. int i = -3;
2. unsigned short u;

3. u = i;
4. printf("u = %hu\n", u);

There are sufficient bits to represent the value so
no truncation occurs. The two’s complement
representation is interpreted as a large signed
value, however, so u = 65533

Implicit conversion
to smaller unsigned
integer

19

Integer Operations

Integer operations can result in errors and
unexpected value.
Unexpected integer values can cause

unexpected program behavior
security vulnerabilities

Most integer operations can result in
exceptional conditions.

Integer Addition

Addition can be used to add two arithmetic
operands or a pointer and an integer.
If both operands are of arithmetic type, the
usual arithmetic conversions are performed
on them.
Integer addition can result in an overflow if
the sum cannot be represented in the number
allocated bits

20

Add Instruction
IA-32 instruction set includes an add instruction that
takes the form

add destination, source

Adds the 1st (destination) op to the 2nd (source) op
Stores the result in the destination operand
Destination operand can be a register or memory location
Source operand can be an immediate, register, or memory
location

Signed and unsigned overflow conditions are detected
and reported.

Add Instruction Example
The instruction:

add ax, bx
adds the 16-bit bx register to the 16-bit ax register
leaves the sum in the ax register

The add instruction sets flags in the flags register
overflow flag indicates signed arithmetic overflow
carry flag indicates unsigned arithmetic overflow

21

Layout of the Flags Register
15 0

Overflow

Direction

Interrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

Interpreting Flags

There are no distinctions between the
addition of signed and unsigned integers at
the machine level.
Overflow and carry flags must be interpreted
in context

22

Adding signed and unsigned
int

Both signed int and unsigned int
values are added as follows:

ui1 + ui2
7. mov eax, dword ptr [ui1]
8. add eax, dword ptr [ui2]

Adding signed long long int

sll1 + sll2
9. mov eax, dword ptr [sll1]

10. add eax, dword ptr [sll2]
11. mov ecx, dword ptr [ebp-98h]
12. adc ecx, dword ptr [ebp-0A8h]

The add instruction adds
the low-order 32 bits

The adc instruction adds the high-order
32 bits and the value of the carry bit

23

Unsigned Overflow Detection
The carry flag denotes an unsigned arithmetic
overflow
Unsigned overflows can be detected using the

jc instruction (jump if carry)
jnc instruction (jump if not carry)

Conditional jump instructions are placed after the
add instruction in the 32-bit case
adc instruction in the 64-bit case

Signed Overflow Detection
The overflow flag denotes a signed arithmetic
overflow
Signed overflows can be detected using the
jo instruction (jump if overflow)
jno instruction (jump if not overflow)

Conditional jump instructions are placed after
the
add instruction in the 32-bit case
adc instruction in the 64-bit case

24

Integer Subtraction
The IA-32 instruction set includes

sub (subtract)
sbb (subtract with borrow).

The sub and sbb instructions set the overflow and
carry flags to indicate an overflow in the signed or
unsigned result.

sub Instruction
Subtracts the 2nd (source) operand from the 1st

(destination) operand
Stores the result in the destination operand
The destination operand can be a

register
memory location

The source operand can be a(n)
immediate
register
memory location

25

sbb Instruction

The sbb instruction is executed as part of a multi-
byte or multi-word subtraction.
The sbb instruction adds the 2nd (source) operand
and the carry flag and subtracts the result from the
1st (destination) operand
The result of the subtraction is stored in the
destination operand.
The carry flag represents a borrow from a previous
subtraction.

signed long long int Sub

sll1 - sll2
1. mov eax, dword ptr [sll1]
2. sub eax, dword ptr [sll2]
3. mov ecx, dword ptr [ebp-0E0h]
4. sbb ecx, dword ptr [ebp-0F0h]

NOTE: Assembly Code Generated by Visual C++ for Windows 2000

The sub instruction subtracts
the low-order 32 bits

The sbb instruction subtracts the high-order 32 bits

26

Integer Multiplication

Multiplication is prone to overflow errors
because relatively small operands can
overflow
One solution is to allocate storage for the
product that is twice the size of the larger of
the two operands.

Signed/Unsigned Examples

The max value for an unsigned integer is 2n-1
2n-1 x 2n-1 = 22n – 2n+1 + 1 < 22n

The minimum value for a signed integer is -
2n-1

-2n-1 x -2n-1 = 22n-2 2 < 22n

27

Multiplication Instructions

The IA-32 instruction set includes a
mul (unsigned multiply) instruction
imul (signed multiply) instruction

The mul instruction
performs an unsigned multiplication of the 1st

(destination) operand and the 2nd (source)
operand
stores the result in the destination operand.

Unsigned Multiplication
1. if (OperandSize == 8) {
2. AX = AL * SRC;
3. else {
4. if (OperandSize == 16) {
5. DX:AX = AX * SRC;
6. }
7. else { // OperandSize == 32
8. EDX:EAX = EAX * SRC;
9. }

10. }

Product of 8-bit operands
are stored in 16-bit
destination registers

Product of 16-bit operands
are stored in 32-bit
destination registers

Product of 32-bit operands are stored in 64-bit
destination registers

28

Signed/Unsigned int
Multiplication

si_product = si1 * si2;
ui_product = ui1 * ui2;
9. mov eax, dword ptr [ui1]
10. imul eax, dword ptr [ui2]
11. mov dword ptr [ui_product], eax

Upcasting
Cast both operands to the next larger size
and then multiply.
For unsigned integers

check high-order bits in the next larger integer
if any are set, throw an error.

For signed integers all zeros or all ones in the
high-order bits and the sign bit on the low-
order bit indicate no overflow.

29

Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;
// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow
unsigned long long alloc = cBlocks * 16;
return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

} Multiplication results in a 32-bit value. The result is
assigned to a unsigned long long but the
calculation may have already overflowed.

Standard Compliance

To be compliant with C99, multiplying two
32-bit numbers in this context must yield a
32-bit result.
The language was not modified because the
result would be burdensome on architectures
that do not have widening multiply
instructions.
The correct result could be achieved by
casting one of the operands.

30

Corrected Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;
// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow
unsigned long long alloc =

(unsigned long long)cBlocks*16;
return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}

Integer Division
An integer overflow condition occurs when
the minimum integer value for 32-bit or 64-bit
integers are divided by -1.

In the 32-bit case, –2,147,483,648/-1 should be
equal to 2,147,483,648

Because 2,147,483,648 cannot be represented as
a signed 32-bit integer the resulting value is
incorrect

- 2,147,483,648 /-1 = - 2,147,483,648

31

Error Detection
The IA-32 instruction set includes the div
and idiv instructions
The div instruction

divides the (unsigned) integer value in the ax,
dx:ax, or edx:eax registers (dividend) by the
source operand (divisor)
stores the result in the ax (ah:al), dx:ax, or
edx:eax registers

The idiv instruction performs the same
operations on (signed) values.

Signed Integer Division
si_quotient = si_dividend /
si_divisor;
1. mov eax, dword ptr [si_dividend]
2. cdq
3. idiv eax, dword ptr [si_divisor]
4. mov dword ptr [si_quotient], eax

NOTE: Assembly code generated by Visual C++

The cdq instruction copies the sign (bit 31) of the value in the eax
register into every bit position in the edx register.

32

Unsigned Integer Division
ui_quotient = ui1_dividend /
ui_divisor;
5. mov eax, dword ptr [ui_dividend]
6. xor edx, edx
7. div eax, dword ptr [ui_divisor]
8. mov dword ptr [ui_quotient], eax

NOTE: Assembly code generated by Visual C++

Error Detection
The Intel division instructions div and idiv do not
set the overflow flag.
A division error is generated if

the source operand (divisor) is zero
if the quotient is too large for the designated register

A divide error results in a fault on interrupt vector 0.
When a fault is reported, the processor restores the
machine state to the state before the beginning of
execution of the faulting instruction.

33

Vulnerabilities
A vulnerability is a set of conditions that allows
violation of an explicit or implicit security policy.
Security flaws can result from hardware-level integer
error conditions or from faulty logic involving
integers.
These security flaws can, when combined with other
conditions, contribute to a vulnerability.

Vulnerabilities Section Agenda
Integer overflow
Sign error
Truncation
Non-exceptional

Integer overflow
Sign error
Truncation
Non-exceptional

34

JPEG Example
Based on a real-world vulnerability in the handling of
the comment field in JPEG files
Comment field includes a two-byte length field
indicating the length of the comment, including the
two-byte length field.
To determine the length of the comment string (for
memory allocation), the function reads the value in
the length field and subtracts two.
The function then allocates the length of the
comment plus one byte for the terminating null byte.

Integer Overflow Example
1. void getComment(unsigned int len, char *src) {
2. unsigned int size;

3. size = len - 2;
4. char *comment = (char *)malloc(size + 1);
5. memcpy(comment, src, size);
6. return;
7. }

8. int _tmain(int argc, _TCHAR* argv[]) {
9. getComment(1, "Comment ");

10. return 0;
11. }

Size is interpreted as a large
positive value of 0xffffffff

0 byte malloc() succeeds

Possible to cause an overflow by creating
an image with a comment length field of 1

35

Memory Allocation Example
Integer overflow can occur in calloc() and other
memory allocation functions when computing the
size of a memory region.
A buffer smaller than the requested size is returned,
possibly resulting in a subsequent buffer overflow.
The following code fragments may lead to
vulnerabilities:

C: p = calloc(sizeof(element_t), count);
C++: p = new ElementType[count];

Memory Allocation
The calloc() library call accepts two
arguments

the storage size of the element type
the number of elements

The element type size is not specified
explicitly in the case of new operator in C++.
To compute the size of the memory required,
the storage size is multiplied by the number
of elements.

36

Overflow Condition

If the result cannot be represented in a
signed integer, the allocation routine can
appear to succeed but allocate an area that is
too small.
The application can write beyond the end of
the allocated buffer resulting in a heap-based
buffer overflow.

Sign Error Example 1
1. #define BUFF_SIZE 10
2. int main(int argc, char* argv[]){
3. int len;
4. char buf[BUFF_SIZE];
5. len = atoi(argv[1]);
6. if (len < BUFF_SIZE){
7. memcpy(buf, argv[2], len);
8. }
9. }

Program accepts two
arguments (the length
of data to copy and
the actual data)

len declared as a signed integer

argv[1] can be
a negative value

A negative
value
bypasses
the check

Value is interpreted as an
unsigned value of type size_t

37

Sign Errors Example 2
The negative length is interpreted as a large,
positive integer with the resulting buffer
overflow
This vulnerability can be prevented by
restricting the integer len to a valid value

more effective range check that guarantees len
is greater than 0 but less than BUFF_SIZE
declare as an unsigned integer

eliminates the conversion from a signed to
unsigned type in the call to memcpy()
prevents the sign error from occurring

Truncation:
Vulnerable Implementation

1. bool func(char *name, long cbBuf) {
2. unsigned short bufSize = cbBuf;
3. char *buf = (char *)malloc(bufSize);
4. if (buf) {
5. memcpy(buf, name, cbBuf);
6. if (buf) free(buf);
7. return true;
8. }
9. return false;

10. }

cbBuf is used to initialize
bufSize which is used
to allocate memory for
buf

cbBuf is declared as a long and used
as the size in the memcpy() operation

38

Vulnerability 1
cbBuf is temporarily stored in the unsigned short
bufSize.
The maximum size of an unsigned short for both
GCC and the Visual C++ compiler on IA-32 is
65,535.
The maximum value for a signed long on the
same platform is 2,147,483,647.
A truncation error will occur on line 2 for any values
of cbBuf between 65,535 and 2,147,483,647.

Vulnerability 2

This would only be an error and not a
vulnerability if bufSize were used for both
the calls to malloc() and memcpy()
Because bufSize is used to allocate the
size of the buffer and cbBuf is used as the
size on the call to memcpy() it is possible to
overflow buf by anywhere from 1 to
2,147,418,112 (2,147,483,647 - 65,535)
bytes.

39

Non-Exceptional Integer Errors

Integer related errors can occur without an
exceptional condition (such as an overflow)
occurring

Negative Indices
1. int *table = NULL;\

2. int insert_in_table(int pos, int value){
3. if (!table) {
4. table = (int *)malloc(sizeof(int) * 100);
5. }
6. if (pos > 99) {
7. return -1;
8. }
9. table[pos] = value;

10. return 0;
11. }

Storage for the
array is
allocated on
the heap

pos is not > 99

value is inserted into the
array at the specified position

40

Vulnerability

There is a vulnerability resulting from
incorrect range checking of pos

Because pos is declared as a signed integer,
both positive and negative values can be passed
to the function.
An out-of-range positive value would be caught
but a negative value would not.

Mitigation

Type range checking
Strong typing
Compiler checks
Safe integer operations
Testing and reviews

41

Type Range Checking
Type range checking can eliminate integer
vulnerabilities.
Languages such as Pascal and Ada allow range
restrictions to be applied to any scalar type to form
subtypes.
Ada allows range restrictions to be declared on
derived types using the range keyword:
type day is new INTEGER range 1..31;

Range restrictions are enforced by the language
runtime.
C and C++ are not nearly as good at enforcing type
safety.

Type Range Checking Example
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){
3. unsigned int len;
4. char buf[BUFF_SIZE];
5. len = atoi(argv[1]);
6. if ((0<len) && (len<BUFF_SIZE)){
7. memcpy(buf, argv[2], len);
8. }
9. else

10. printf("Too much data\n");
11. }

.

Implicit type check from
the declaration as an
unsigned integer

Explicit check for both upper and lower bounds

42

Range Checking
External inputs should be evaluated to determine
whether there are identifiable upper and lower
bounds.

these limits should be enforced by the interface
easier to find and correct input problems than it is to trace
internal errors back to faulty inputs

Limit input of excessively large or small integers
Typographic conventions can be used in code to

distinguish constants from variables
distinguish externally influenced variables from locally used
variables with well-defined ranges

Strong Typing

One way to provide better type checking is to
provide better types.
Using an unsigned type can guarantee that a
variable does not contain a negative value.
This solution does not prevent overflow.
Strong typing should be used so that the
compiler can be more effective in identifying
range problems.

43

Strong Typing Example
Declare an integer to store the temperature of water
using the Fahrenheit scale

unsigned char waterTemperature;

waterTemperature is an unsigned 8-bit value in
the range 1-255
unsigned char

sufficient to represent liquid water temperatures which
range from 32 degrees Fahrenheit (freezing) to 212
degrees Fahrenheit (the boiling point).
does not prevent overflow
allows invalid values (e.g., 1-31 and 213-255).

Abstract Data Type
One solution is to create an abstract data type in
which waterTemperature is private and cannot
be directly accessed by the user.
A user of this data abstraction can only access,
update, or operate on this value through public
method calls.
These methods must provide type safety by
ensuring that the value of the waterTemperature
does not leave the valid range.
If implemented properly, there is no possibility of an
integer type range error occurring.

44

Visual C++ Compiler Checks
Visual C++ .NET 2003 generates a warning
(C4244) when an integer value is assigned to a
smaller integer type.

At level 1 a warning is issued if __int64 is assigned to
unsigned int.
At level 3 and 4, a “possible loss of data” warning is issued
if an integer is converted to a smaller type.

For example, the following assignment is
flagged at warning level 4

int main() {
int b = 0, c = 0;
short a = b + c; // C4244

}

Visual C++ Runtime Checks
Visual C++ .NET 2003 includes runtime checks that
catch truncation errors as integers are assigned to
shorter variables that result in lost data.
The /RTCc compiler flag catches those errors and
creates a report.
Visual C++ includes a runtime_checks pragma
that disables or restores the /RTC settings, but does
not include flags for catching other runtime errors
such as overflows.
Runtime error checks are not valid in a release
(optimized) build for performance reasons.

45

GCC Runtime Checks
GCC compilers provide an -ftrapv option

provides limited support for detecting integer
exceptions at runtime.
generates traps for signed overflow for addition,
subtraction, and multiplication
generates calls to existing library functions

GCC runtime checks are based on post-
conditions—the operation is performed and
the results are checked for validity

Postcondition
For unsigned integers if the sum is smaller than
either operand, an overflow has occurred
For signed integers, let sum = lhs + rhs

If lhs is non-negative and sum < rhs, an overflow has
occurred.
If lhs is negative and sum > rhs, an overflow has
occurred.
In all other cases, the addition operation succeeds

46

Adding Signed Integers

1. Wtype __addvsi3 (Wtype a, Wtype b)
{
2. const Wtype w = a + b;
3. if (b >= 0 ? w < a : w > a)
4. abort ();
5. return w;
6. }

abort() is called if
• b is non-negative and w < a
• b is negative and w > a

Function from the gcc runtime system used to detect errors
resulting from the addition of signed 16-bit integers

The addition is performed
and the sum is compared to
the operands to determine if
an error occurred

Safe Integer Operations 1
Integer operations can result in error conditions and
possible lost data.
The first line of defense against integer
vulnerabilities should be range checking

Explicitly
Implicitly - through strong typing

It is difficult to guarantee that multiple input variables
cannot be manipulated to cause an error to occur in
some operation somewhere in a program.

47

Safe Integer Operations 2

An alternative or ancillary approach is to
protect each operation.
This approach can be labor intensive and
expensive to perform.
Use a safe integer library for all operations on
integers where one or more of the inputs
could be influenced by an untrusted source.

Safe Integer Solutions

C language compatible library
Written by Michael Howard at Microsoft
Detects integer overflow conditions using IA-32
specific mechanisms

48

Unsigned Add Function
1. in bool UAdd(size_t a, size_t b, size_t *r)

{
2. __asm {
3. mov eax, dword ptr [a]
4. add eax, dword ptr [b]
5. mov ecx, dword ptr [r]
6. mov dword ptr [ecx], eax
7. jc short j1
8. mov al, 1 // 1 is success
9. jmp short j2
10. j1:
11. xor al, al // 0 is failure
12. j2:
13. };
14. }

Unsigned Add Function
Example

1. int main(int argc, char *const *argv) {
2. unsigned int total;
3. if (UAdd(strlen(argv[1]), 1, &total) &&

UAdd(total, strlen(argv[2]), &total)) {
4. char *buff = (char *)malloc(total);
5. strcpy(buff, argv[1]);
6. strcat(buff, argv[2]);
7. else {
8. abort();
9. }
10. }

The length of the combined strings is
calculated using UAdd() with appropriate
checks for error conditions.

49

SafeInt Class
SafeInt is a C++ template class written by
David LeBlanc.
Implements a precondition approach that
tests the values of operands before
performing an operation to determine if an
error will occur.
The class is declared as a template, so it can
be used with any integer type.
Every operator has been overridden except
for the subscript operator[]

SafeInt Example
1. int main(int argc, char *const *argv) {
2. try{
3. SafeInt<unsigned long> s1(strlen(argv[1]));
4. SafeInt<unsigned long> s2(strlen(argv[2]));
5. char *buff = (char *) malloc(s1 + s2 + 1);
6. strcpy(buff, argv[1]);
7. strcat(buff, argv[2]);
8. }
9. catch(SafeIntException err) {

10. abort();
11. }
12. }

The variables s1 and s2 are
declared as SafeInt types

When the + operator is invoked it uses the
safe version of the operator implemented as
part of the SafeInt class.

50

Addition

Addition of unsigned integers can result in an
integer overflow if the sum of the left-hand
side (LHS) and right-hand side (RHS) of an
addition operation is greater than
UINT_MAX for addition of unsigned int type
ULLONG_MAX for addition of unsigned long
long type

Safe Integer Solutions
Compared

SafeInt library has several advantages
more portable than safe arithmetic operations that
depend on assembly language instructions.
more usable

operators can be used inline in expressions
SafeInt uses C++ exception handling

better performance (with optimized code)
Fails to provide correct integer promotion
behavior

51

When to Use Safe Integers
Use safe integers when integer values can be
manipulated by untrusted sources, for example

the size of a structure
the number of structures to allocate

void* CreateStructs(int StructSize, int HowMany)
{

SafeInt<unsigned long> s(StructSize);

s *= HowMany;
return malloc(s.Value());

}

The multiplication can overflow the integer and create a
buffer overflow vulnerability

Structure size multiplied by # required to
determine size of memory to allocate.

When Not to Use Safe Integers
Don’t use safe integers when no overflow possible

tight loop
variables are not externally influenced

void foo() {
char a[INT_MAX];
int i;

for (i = 0; i < INT_MAX; i++)
a[i] = '\0';

}

52

Testing 1

Input validation does not guarantee that
subsequent operations on integers will not
result in an overflow or other error condition.
Testing does not provide any guarantees
either

It is impossible to cover all ranges of possible
inputs on anything but the most trivial programs.
If applied correctly, testing can increase
confidence that the code is secure.

Testing 2
Integer vulnerability tests should include boundary
conditions for all integer variables.

If type range checks are inserted in the code, test that they
function correctly for upper and lower bounds.
If boundary tests have not been included, test for minimum
and maximum integer values for the various integer sizes
used.

Use white box testing to determine the types of
integer variables.
If source code is not available, run tests with the
various maximum and minimum values for each
type.

53

Source Code Audit
Source code should be audited or inspected for
possible integer range errors
When auditing, check for the following:

Integer type ranges are properly checked.
Input values are restricted to a valid range based on their
intended use.

Integers that do not require negative values are
declared as unsigned and properly range-checked
for upper and lower bounds.
Operations on integers originating from untrusted
sources are performed using a safe integer library.

Notable Vulnerabilities
Integer Overflow In XDR Library

SunRPC xdr_array buffer overflow
http://www.iss.net/security_center/static/9170.php

Windows DirectX MIDI Library
eEye Digital Security advisory AD20030723
http://www.eeye.com/html/Research/Advisories/AD200307
23.html

Bash
CERT Advisory CA-1996-22
http://www.cert.org/advisories/CA-1996-22.html

