
1

IS 2620: Developing Secure Systems

Jan 30, 2007

Building Security In
Lecture 2

Building Security In
Lecture 2

Software Security

Renewed interest
“idea of engineering software so that it continues
to function correctly under malicious attack”
Existing software is riddled with design flaws and
implementation bugs
“any program, no matter how innocuous it seems,
can harbor security holes”

(Check the CBI report)

2

Software Problem

More than half of the vulnerabilities are due to buffer
overruns
Others such as race conditions, design flaws are
equally prevalent

vulnerabilities
Reported by CERT/CC

Software security
It is about

Understanding software-induced security risks
and how to manage them
Leveraging software engineering practice,
thinking security early in the software lifecyle
Knowing and understanding common problems
Designing for security
Subjecting all software artifacts to thorough
objective risk analyses and testing

It is a knowledge intensive field

3

Trinity of trouble

Bigger problem today .. And growing

Three trends
Connectivity

Inter networked
Include SCADA (supervisory
control and data acquisition
systems)
Automated attacks, botnets

Extensibility
Mobile code – functionality
evolves incrementally
Web/Os Extensibility

Complexity
XP is at least 40 M lines of code
Add to that use of unsafe
languages (C/C++)

It boils down to …

more code,
more bugs,

more security problems

4

Security problems in software
Defect

implementation and
design vulnerabilities
Can remain dormant

Bug
An implementation level
software problem

Flaw
A problem at a deeper
level

Bugs + Flaws
leads to Risk

Method over-riding problems
(subclass issues)
Compartmentalization problems in
design
Privileged block protection failure
(DoPrivilege())
Error-handling problems (fails open)
Type safety confusion error
Insecure audit log design
Broken or illogical access control
(role-based access control [RBAC]
over tiers)
Signing too much code

Buffer overflow: stack smashing
Buffer overflow: one-stage attacks
Buffer overflow: string format attacks
Race conditions: TOCTOU
Unsafe environment variables
Unsafe system calls (fork(), exec(),
system())
Incorrect input validation (black list vs.
white list

FlawBug

Solution …
Three pillars of security

5

Pillar I:
Applied Risk management

Architectural risk analysis
Sometimes called threat modeling or security
design analysis
Is a best practice and is a touchpoint

Risk management framework
Considers risk analysis and mitigation as a full life
cycle activity

Pillar II:
Software Security Touchpoints

“Software security is not security software”
Software security

is system-wide issues (security mechanisms and design security)
Emergent property

Touchpoints in order of effectiveness (based on experience)
Code review (bugs)
Architectural risk analysis (flaws)

These two can be swapped
Penetration testing
Risk-based security tests
Abuse cases
Security requirements
Security operations

6

Pillar II: (contd.)

Many organization
Penetration first

Is a reactive approach

CR and ARA can be switched however
skipping one solves only half of the problem
Big organization may adopt these touchpoints
simultaneously

Pillar II: (contd.)

Software security best practices applied to various software artifacts

7

Pillar II: (contd.)
Microsoft’s move ..

Pillar II: (contd.)

System-wide
Issue

System-wide
Issue

Emergent
Property

Emergent
Property

Software SecuritySoftware Security

account for
Security Mechanisms
Design for Security

Process models

Apply Security Touchpoints
(Process-Agnostic)

Apply Security Touchpoints
(Process-Agnostic)

iCMM

XP
RUP

CMMI

8

Pillar III:
Knowledge

Involves
Gathering, encapsulating, and sharing security knowledge

Software security knowledge catalogs
Principles
Guidelines
Rules
Vulnerabilities
Exploits
Attack patterns
Historical risks

Can be put into three categories

Prescriptive knowledge
Diagnostic knowledge
Historical knowledge

Pillar III: Knowledge catalogs
to s/w artifacts

9

Risk management framework:
Five Stages

RMF occurs in parallel with SDLC activities

Understand
the Business

context

Understand
the Business

context

Identify
the Business

and Technical
Risk

Identify
the Business

and Technical
Risk

Artifact Analysis

Synthesize and
Rank the Risks
Synthesize and
Rank the Risks

Define the Risk
Mitigation
Strategy

Define the Risk
Mitigation
Strategy

Carry out fixes
And validate

Carry out fixes
And validate

Business
Context

1 2 3 4

5

Measurement and reporting

Stage 1:
Understand Business Context

Risk management
Occurs in a business context
Affected by business motivation

Key activity of an analyst
Extract and describe business goals – clearly

Increasing revenue; reducing dev cost; meeting SLAs;
generating high return on investment (ROI)

Set priorities
Understand circumstances

Bottomline – answer the question
who cares?

10

Stage 2: Identify the business
& technical risks

Business risks have impact
Direct financial loss; loss of reputation; violation of
customer or regulatory requirements; increase in
development cost

Severity of risks
Should be capture in financial or project
management terms

Key is –
tie technical risks to business context

Stage 3: Synthesize and rank
the risks

Prioritize the risks alongside the business
goals
Assign risks appropriate weights for
resolution
Risk metrics

Risk likelihood
Risk impact
Number of risks mitigated over time

11

Stage 4: Risk Mitigation
Strategy

Develop a coherent strategy
For mitigating risks
In cost effective manner; account for

Cost Implementation time
CompletenessImpact
Likelihood of success

A mitigation strategy should
Be developed within the business context
Be based on what the organization can afford, integrate
and understand
Must directly identify validation techniques

Stage 5: Carry out Fixes and
Validate

Execute the chosen mitigation strategy
Rectify the artifacts

Measure completeness
Estimate

Progress, residual risks

Validate that risks have been mitigated
Testing can be used to demonstrate
Develop confidence that unacceptable risk does
not remain

12

RMF - A Multi-loop
Risk management is a continuous process

Five stages may need to be applied many times
Ordering may be interleaved in different ways

Risk can emerge at any time in SDLC
One way – apply in each phase of SDLC

Risk can be found between stages
Level of application

Primary – project level
Each stage must capture complete project

SDLC phase level
Artifact level

It is important to know that RM is
Cumulative
At times arbitrary and difficult to predict

Seven Touchpoints

13

Cost of fixing defect at each
stage

Code review
Focus is on implementation bugs

Essentially those that static analysis can find
Security bugs are real problems – but architectural flaws
are just as big a problem

Code review can capture only half of the problems
E.g.

Buffer overflow bug in a particular line of code
Architectural problems are very difficult to find by looking at
the code

Specially true for today’s large software

14

Code review
Taxonomy of coding errors

Input validation and representation
Some source of problems

Metacharacters, alternate encodings, numeric representations
Forgetting input validation
Trusting input too much
Example: buffer overflow; integer overflow

API abuse
API represents contract between caller and callee
E.g., failure to enforce principle of least privilege

Security features
Getting right security features is difficult
E.g., insecure randomness, password management,
authentication, access control, cryptography, privilege
management, etc.

Code review
Taxonomy of coding errors

Time and state
Typical race condition issues
E.g., TOCTOU; deadlock

Error handling
Security defects related to error handling are very common
Two ways

Forget to handle errors or handling them roughly
Produce errors that either give out way too much information or so
radioactive no one wants to handle them

E.g., unchecked error value; empty catch block

15

Code review
Taxonomy of coding errors

Code quality
Poor code quality leads to unpredictable behavior
Poor usability
Allows attacker to stress the system in unexpected ways
E.g., Double free; memory leak

Encapsulation
Object oriented approach
Include boundaries
E.g., comparing classes by name

Environment
Everything outside of the code but is important for the security of the
software
E.g., password in configuration file (hardwired)

Code review

Static analysis tools
False negative (wrong sense of security)

A sound tool does not generate false negatives
False positives
Some examples

ITS4 (It’s The Software Stupid Security Scanner);
RATS; Flawfinder

16

Rules overlap

Cigital Static analysis process

17

Architectural risk analysis

Design flaws
about 50% of security problem
Can’t be found by looking at code

A higher level of understanding required
Risk analysis

Track risk over time
Quantify impact
Link system-level concerns to probability and impact
measures
Fits with the RMF

ARA within RMF

Understand
the Business

context

Understand
the Business

context

Synthesize and
Rank the Risks
Synthesize and
Rank the Risks

Define the Risk
Mitigation
Strategy

Define the Risk
Mitigation
Strategy

Validate the
artifacts

Validate the
artifacts

Business
Context

1 4 5

7

Fix the artifactsFix the artifacts

6

Validation loop

Identify
the Business

and Technical
Risk

Identify
the Business

and Technical
Risk

Artifact Analysis

2

Identify
the Business

and Technical
Risk

Identify
the Business

and Technical
Risk

Artifact Analysis

3

Technical
expertise

Measurement and reporting

Initiate process
improvement

Initiate process
improvement

18

ARA process

Figure 5-4

ARA process

Attack resistance analysis
Steps

Identify general flaws using secure design literature and
checklists

Knowledge base of historical risks useful
Map attack patterns using either the results of abuse case
or a list of attack patterns
Identify risk based on checklist
Understand and demonstrate the viability of these known
attacks

Use exploit graph or attack graph

- Note: particularly good for finding known problems

19

ARA process
Ambiguity analysis

Discover new risks – creativity requried
A group of analyst and experience helps – use multiple points of view

Unify understanding after independent analysis
Uncover ambiguity and inconsistencies

Weakness analysis
Assess the impact of external software dependencies
Modern software

is built on top of middleware such as .NET and J2EE
Use DLLs or common libraries

Need to consider
COTS
Framework
Network topology
Platform
Physical environment
Build environment

Software penetration testing

Most commonly used today
Currently

Outside->in approach
Better to do after code review and ARA
As part of final preparation acceptance regimen
One major limitation

Almost always a too-little-too-late attempt at the end of a
development cycle

Fixing things at this stage
May be very expensive
Reactive and defensive

20

Software penetration testing
A better approach

Penetration testing from the beginning and throughout the
life cycle
Penetration test should be driven by perceived risk
Best suited for finding configuration problems and other
environmental factors
Make use of tools

Takes care of majority of grunt work
Tool output lends itself to metrics
Eg.,

fault injection tools;
attacker’s toolkit: disassemblers and decompilers; coverage tools
monitors

Risk based security testing

Testing must be
Risk-based
grounded in both the system’s architectural reality
and the attacker’s mindset

Better than classical black box testing
Different from penetration testing

Level of approach
Timing of testing

Penetration testing is primarily on completed software in
operating environment; outside->in

21

Risk based security testing

Security testing
Should start at feature or component/unit level
testing
Must involve two diverse approaches

Functional security testing
Testing security mechanisms to ensure that their
functionality is properly implemented

Adversarial security testing
Performing risk-based security testing motivated by
understanding and simulating the attacker’s approach

Abuse cases

Figure 8-1

22

Abuse cases
Creating anti-requirements

Important to think about
Things that you don’t want your software to do
Requires: security analysis + requirement analysis

Anti-requirements
Provide insight into how a malicious user, attacker,
thrill seeker, competitor can abuse your system
Considered throughout the lifecyle

indicate what happens when a required security function is
not included

Abuse cases

Creating an attack model
Based on known attacks and attack types
Do the following

Select attack patterns relevant to your system – build
abuse case around the attack patterns
Include anyone who can gain access to the system
because threats must encompass all potential sources

Also need to model attacker

23

Security requirements and
operations

Security requirements
Difficult tasks
Should over both overt functional security and
emergent characteristics

Use requirements engineering approach
Security operations

Integrate security operations
E.g., software security should be integrated with
network security

