IS 2620: Developing Secure Systems

000
0000
LY LY u ..‘.
Building Security In °ce
Lecture 2 | ®
Jan 30, 2007

Software Security

e Renewed interest

e “idea of engineering software so that it continues
to function correctly under malicious attack”

e Existing software is riddled with design flaws and
implementation bugs

e “any program, no matter how innocuous it seems,
can harbor security holes”

e (Check the CBI report)

Software Problem

Software Vulnerabilities

1060 M B .
500 o
o lm 1 M ﬂ

1995 1996 1997 1998 1999 o 2001

1 2002 2003 2004

e More than half of the vulnerabilities are due to buffer
overruns

e Others such as race conditions, design flaws are
equally prevalent

Software security

e Itis about

e Understanding software-induced security risks
and how to manage them

Leveraging software engineering practice,
thinking security early in the software lifecyle
Knowing and understanding common problems
Designing for security

Subjecting all software artifacts to thorough
objective risk analyses and testing

e It is a knowledge intensive field

O meoe O wiks ' Incidents

.O_
PRAZA A SrA A A A A
% 5 8 B 3 8 % 5 % 8 8 5 ® 8

45

30

[X X]
0000
0000
[XN
. . [X J
Trinity of trouble :
e Three trends
e Connectivity
Inter networked
Include SCADA (supervisory
control and data acquisition Windows Complesiy
systems) 45
Automated attacks, botnets e —
e Extensibility g w0 //
Mobile code — functionality % 5 i
; 5 e
evolves incrementally g8
Web/Os Extensibility "
e Complexity ° L R R
S o $0 B o O X Y
XP is at least 40 M lines of code . & & & & & & &
o = o ™ N @ Ca £
Add to that use of unsafe R
languages (C/C++) &
[X X]
0000
[X XX
[
. [X J
It boils down to 3
Opportunity (normalized) ‘l
O Hosts*uing. '
120
&0
) Vi
oo_o_o_o_o_o_‘o=0=DL
®F = 8 8B 3 &8 B b B &8 B 5z & 8
Drivers
Hommalzod (modiae, 2-yoarlag) 0 mocss O wuins MLoCs¥ 2+t £ Incidents

/L

J

7

o
=

91
92
93
9.

95

96

97

98

99

00

o1

%&&&QM

02

03

(X XJ
0000
o000
[LX)
. . (L J
Security problems in software |:
Security Problems (CERT)
30
e Defect
. . 25
e implementation and
design vulnerabilities 2
o Can remain dormant ® " 2
10]
e Bug il
. . 5
e An implementation level B GERT alerts
O Buffer overflows
software problem R Sy
B F PSS PP ..
e Flaw
e A problem at a deeper Bug Flaw
Ievel Buffer overflow: stack smashing Method over-riding problems
Buffer overflow: one-stage attacks (subclass issues)
Buffer overflow: string format attacks Compartmentalization problems in
® Bugs + FlaWS Race conditions: TOCTOU dpe_s'?" 4 block protection fai
H Unsafe environment variables rivieged block protection failure
4 Ieads to RISk Unsafe system calls (fork(), exec(), (DoPrivilege())
system()) Error-handling problems (fails open)
Incorrect input validation (black list vs. Type safety confusion error
white list Insecure audit log design
Broken or illogical access control
(role-based access control [RBAC]
over tiers)
Signing too much code

Solution ...
Three pillars of security

SOFTWARE SECURITY

Pillar I
Applied Risk management

e Architectural risk analysis

e Sometimes called threat modeling or security
design analysis

e |Is a best practice and is a touchpoint
e Risk management framework

e Considers risk analysis and mitigation as a full life
cycle activity

Pillar 1l
Software Security Touchpoints

e “Software security is not security software”
e Software security
is system-wide issues (security mechanisms and design security)
Emergent property
e Touchpoints in order of effectiveness (based on experience)
e Code review (bugs)
e Architectural risk analysis (flaws)
These two can be swapped
Penetration testing
Risk-based security tests
Abuse cases
Security requirements
Security operations

Pillar 1I: (contd.)

e Many organization
e Penetration first
Is a reactive approach
e CR and ARA can be switched however
skipping one solves only half of the problem
e Big organization may adopt these touchpoints
simultaneously

(X XJ
0000
o000
000
. oo
Pillar 1I: (contd.) :
. .
SECURITY EXTERMAL CobE
REVIEW PEMETRATION
REQUIREMENTS REVIEW ki R3]
RISK-BASED
MBUSE SECURITY RISK SECURITY
CASES ANALYSIT- TESTS ANMWS Opemnom
REQUIREMENTS | | ARCHITECTURE | | TesT PLans CODE TESTS AND | |FEEDBACK FROM,
AMD USE CasEs | | AND DEsiGN TEST RESULTS THE FIELD

Software security best practices applied to various software artifacts

[X X]
H . 0000
Hiar Il: (contd. seco
00
. y (X}
[J
Microsoft’s move ..
Security pushfaudit
Segure questions Threat. O Learmn and
during interviews analsss Exto , refine
Al
l{} / rewvieww O \
I F
Crasigns Tast Plans Code - Post
Cancept Complete Complete Gomplete Ship Ship
;I;gler:]r:‘énearber [Data mutation Review old defects
Security and least priv Check-ins checked
rewiew tests SEGI.IFGICO-UIHQ guidelinas
Use tools £ = on-geing
ooy [15ing Use Security Create Security Security
Security | Security |Security Architecture, Development Security epae | pch Final Servicing
Kickoff & | Design |& Attack Surface Tools & Security | Documentation| Security Security &
Register | Best |[Review Threst Best Dev & Test & Tools oy Pen Review Response
with SWI | Practices - Practices forProduct | Flan Testing Execution
— >t > = TS S >
Requirements Design Implementation Verification Release Support &
Servicing
[X X]
1 . 0000
lHar 1l: (conta. seoo
[
[X]
[J

Process models —

System-wide Emergent
Issue Property
account for , AP

Security Mechanism

[Ne aoNn to) Fy

Pillar Il
Knowledge

e Involves
e Gathering, encapsulating, and sharing security knowledge

e Software security knowledge catalogs

e Principles

e Guidelines \

« Rules Can be put into three categories
e Vulnerabilities Prescriptive knowledge

e Exploits / ?-:?sggﬁzgfkknnomfddggee

e Attack patterns

e Historical risks

[X X]
- . 0000
liar 1. Knowiedge cata 0gsS eeso
[X
. [X]
to s/w artifacts :
Guidelines okt Vulnerabilities
Histarical
Principles Ricks Rules Exploits
SECURITY [’ég,m:'- ! R‘E{?.“EE; v PENETRATION
REQUIREMENTS | ool Sy TESTING
- RISK-BASED .
ABUSE RI5K SECURITY RISk SECURITY
CASES B AMALYSIS, TESTS W et OPERATIONS
Wy w1
REQUINEMENTS | | AncHiecTuRe | | Test PLans Cope TEsTS AND FEEDBACK FROM,

AND LISE CASES AND DESIGN TEST RESULTS THE FIELD

Risk management framework:
Five Stages

e RMF occurs in parallel with SDLC activities

Artifact Analysis

Stage 1: e

Understand Business Context | ::°

e Risk management

e Occurs in a business context

o Affected by business motivation
e Key activity of an analyst

o Extract and describe business goals — clearly

» Increasing revenue; reducing dev cost; meeting SLAs;
generating high return on investment (ROI)

e Set priorities
e Understand circumstances

e Bottomline — answer the question
e who cares?

Stage 2: Identify the business
& technical risks

e Business risks have impact

e Direct financial loss; loss of reputation; violation of
customer or regulatory requirements; increase in
development cost

e Severity of risks

e Should be capture in financial or project
management terms

o Keyis —
e tie technical risks to business context

Stage 3: Synthesize and rank
the risks

e Prioritize the risks alongside the business
goals

e Assign risks appropriate weights for
resolution

e Risk metrics
¢ Risk likelihood
e Risk impact
e Number of risks mitigated over time

10

Stage 4: Risk Mitigation
Strategy

e Develop a coherent strategy
e For mitigating risks
e In cost effective manner; account for
= Cost Implementation time

= Completenessimpact
= Likelihood of success

e A mitigation strategy should
e Be developed within the business context

e Be based on what the organization can afford, integrate
and understand

e Must directly identify validation techniques

Stage 5: Carry out Fixes and
Validate

e Execute the chosen mitigation strategy
Rectify the artifacts
e Measure completeness
e Estimate
Progress, residual risks
e Validate that risks have been mitigated
e Testing can be used to demonstrate

e Develop confidence that unacceptable risk does
not remain

11

(X X J
0000
(X XX
[L
. [X J
RMF - A Multi-loop :
e Risk management is a continuous process
e Five stages may need to be applied many times
e Ordering may be interleaved in different ways
Risk can emerge at any time in SDLC
= One way — apply in each phase of SDLC
Risk can be found between stages
e Level of application
e Primary — project level
Each stage must capture complete project
e SDLC phase level
o Atrtifact level
e Itis important to know that RM is
e Cumulative
e Attimes arbitrary and difficult to predict
(X X J
0000
o000
[
. [X J
Seven Touchpoints :
0 ° o o
SECURITY EXTERNAL DE
REQUIREMENTS REVIEW g :ffgg:‘; p”‘.'rg.’r*fﬂ'dm‘

o 2 RISK-BASED (2] o
ABUSE RISK SECURITY Risk SECURITY
CASES ANALYSIS TESTS ANALYSIS OPERATIONS

REQUIREMENTS ARCHITECTURE TEST PLANS CODE TESTS AND FEEDBACK FROM

AND USE CASES AND DESIGN TEST RESULTS THE FIELD

12

Cost of fixing defect at each
stage

Cost of Fixing Defects at Each Stage
of Software Development

$16,000
. $12,000 B Requirements
=i
é} [| Design
‘g £9,000
a B coding
=}
S)

$6.,000 = Testing

[] Maintenance
£3,000
. A
$0 A

Code review

e Focus is on implementation bugs
o Essentially those that static analysis can find

e Security bugs are real problems — but architectural flaws
are just as big a problem

Code review can capture only half of the problems
e E.g.
Buffer overflow bug in a particular line of code

e Architectural problems are very difficult to find by looking at
the code

Specially true for today’s large software

13

Code review

e Taxonomy of coding errors
e Input validation and representation

Some source of problems

= Metacharacters, alternate encodings, numeric representations
= Forgetting input validation

= Trusting input too much

= Example: buffer overflow; integer overflow

e API abuse
API represents contract between caller and callee
E.g., failure to enforce principle of least privilege
e Security features
Getting right security features is difficult

E.g., insecure randomness, password management,
authentication, access control, cryptography, privilege
management, etc.

Code review

e Taxonomy of coding errors
e Time and state
Typical race condition issues
E.g., TOCTOU; deadlock
e Error handling
Security defects related to error handling are very common

Two ways
Forget to handle errors or handling them roughly

= Produce errors that either give out way too much information or so
radioactive no one wants to handle them

E.g., unchecked error value; empty catch block

14

Code review

e Taxonomy of coding errors

e Code quality
Poor code quality leads to unpredictable behavior
Poor usability
Allows attacker to stress the system in unexpected ways
E.g., Double free; memory leak

e Encapsulation
Object oriented approach
Include boundaries
E.g., comparing classes by name

e Environment

Everything outside of the code but is important for the security of the
software

E.g., password in configuration file (hardwired)

Code review

e Static analysis tools
o False negative (wrong sense of security)
A sound tool does not generate false negatives
o False positives
e Some examples
ITS4 (It's The Software Stupid Security Scanner);
RATS; Flawfinder

15

[X X]
0000
0000
[LX)
(X}
Rules overlap :
3 APIs
shared by
ms4andRATS 42 APIS
h ique to
26APIs o out ";‘ in sa
unique to qurceScope ITs4
RATS (144 total C/C++ APls)
(810 total GIC++ APs)
SourceScope
ot
[X X]
0000
o000
[
[X)
[J

Cigital Static analysis process

Static Code Analysis

Inputs Activities Outputs

16

[X X]
0000
[X 1R
[X X X
. . . (X XX]
Architectural risk analysis eel
e Design flaws
o about 50% of security problem
e Can't be found by looking at code
» A higher level of understanding required
e Risk analysis
o Track risk over time
e Quantify impact
e Link system-level concerns to probability and impact
measures
o Fits with the RMF
[X X]
0000
[X
[X X X
0000

ARA within RMF 4

Artifact Analysis

Artifact Analysis

17

Architectural Risk Analysis

Input Activities Outputs
Build One-Page
Architecture Overview
Securi
Documents mﬁ? I i 1
p Perform Documents
E‘P"’“ Altack Perform Atiack Perform Underlying
raphe Pattems Resistance — > Ambiguity Framework
Analysis Analysis Weakness
Secure Analysis
Design Py
Literalure v l 1 Sgl‘tware
S Identgy General Find & Analyze ™ o
aws . i
Documents - wav"cﬁliance Ponder Design - CO?Saws "
‘Eh%vel' er: Implications = Frameworks
i - uidelines Are = Network Topol
Requre: L[Architectura Not Followed = Platlomn
men Documents =1 ¢ % - l Architectural
Risk
Regulatory Ma Generate Separate i i Assessment
Requrere Applcable Atack Arshtectie ey Report
Standards Pattems Do Application
Documents Uni
Extomal Show Risks and Undersl?n‘wding N:gwsi%lm?m&??
Resources Drivers in = Uncover Ambiguity Made gy
nesour Architecture = |dentify Application
- yg'g“g Lists Downstream
“ uct Difficul
Documentation l Sul“ﬂcilg?cy
alysis)
Show Viability of < Unieval
Attack Known Attacks « feokitions.
Patterns Against Analogous T il
Technologies 'awa':' oy
| 1

(X X J
0000
o000
[
[X J
ARA process :
e Attack resistance analysis
o Steps
Identify general flaws using secure design literature and
checklists

= Knowledge base of historical risks useful
Map attack patterns using either the results of abuse case
or a list of attack patterns
Identify risk based on checklist
Understand and demonstrate the viability of these known

attacks
= Use exploit graph or attack graph

- Note: particularly good for finding known problems

ARA process

e Ambiguity analysis
o Discover new risks — creativity requried
e A group of analyst and experience helps — use multiple points of view
Unify understanding after independent analysis
e Uncover ambiguity and inconsistencies
e Weakness analysis
o Assess the impact of external software dependencies
e Modern software
is built on top of middleware such as .NET and J2EE
Use DLLs or common libraries
e Need to consider
COTS
Framework
Network topology
Platform
Physical environment
Build environment

Software penetration testing

e Most commonly used today

e Currently
e Outside->in approach
Better to do after code review and ARA
As part of final preparation acceptance regimen
One major limitation

Almost always a too-little-too-late attempt at the end of a
development cycle
= Fixing things at this stage

May be very expensive

Reactive and defensive

19

Software penetration testing

e A better approach
e Penetration testing from the beginning and throughout the
life cycle
o Penetration test should be driven by perceived risk

e Best suited for finding configuration problems and other
environmental factors

e Make use of tools
Takes care of majority of grunt work
Tool output lends itself to metrics
Eg.,
= fault injection tools;

= attacker’s toolkit: disassemblers and decompilers; coverage tools
monitors

Risk based security testing

e Testing must be
o Risk-based
e grounded in both the system'’s architectural reality
and the attacker’'s mindset

Better than classical black box testing

o Different from penetration testing
Level of approach
Timing of testing

= Penetration testing is primarily on completed software in
operating environment; outside->in

20

(X XJ
0000
o000
a2
Risk based security testing :
e Security testing
e Should start at feature or component/unit level
testing
e Must involve two diverse approaches
Functional security testing
= Testing security mechanisms to ensure that their
functionality is properly implemented
Adversarial security testing
= Performing risk-based security testing motivated by
understanding and simulating the attacker’s approach
Abuse Cases
Inputs Activities Outputs

Identity | »| 2
m Threats

Security Analyst (SA)

sa

Requirements Analysts (RAs)
Revise Review
Threats Threats

Documentation

Requirements v .
[f*********l*******i
Requi nte 3 '
Iyst 3 .
A L ti- '
3 Requit ts. Model '

Deliverable
Documents

SA & RAs

21

Abuse cases

e Creating anti-requirements

e Important to think about
Things that you don’t want your software to do
Requires: security analysis + requirement analysis
e Anti-requirements
Provide insight into how a malicious user, attacker,
thrill seeker, competitor can abuse your system
Considered throughout the lifecyle

= indicate what happens when a required security function is
not included

Abuse cases

e Creating an attack model
e Based on known attacks and attack types

e Do the following

Select attack patterns relevant to your system — build
abuse case around the attack patterns

Include anyone who can gain access to the system
because threats must encompass all potential sources

e Also need to model attacker

22

Security requirements and
operations

e Security requirements
o Difficult tasks

e Should over both overt functional security and
emergent characteristics
Use requirements engineering approach

e Security operations

e Integrate security operations

E.g., software security should be integrated with
network security

23

