
Formal Verification

Lecture 10

Formal Verification

Formal verification relies on
Descriptions of the properties or requirements of
interest
Descriptions of systems to be analyzed, and

rely on underlying mathematical logic system and the
proof theory of that system

Two general categories
Inductive techniques
Model checking techniques

Verification techniques
Proof-based vs model-based

Proof: Formula define premises / conclusions
Proof shows how to reach conclusions from premises

Model-based:
Premises and conclusions have same truth tables

Degree of automation
may be manual or have tool support

Full verification vs property verification
Does methodology model full system?
Or just prove certain key properties?

Intended domain of application
HW/SW, reactive, concurrent

Predevelopment vs post development
As design aid or after design

Inductive verification
Typically more general
Uses theorem provers

E.g., uses predicate calculus
A sequence of proof steps starting with premises
of the formula and eventually reaching a
conclusion

May be used
To find flaws in design
To verify the properties of computer programs

Model-checking
Systems modeled as state transition systems

Formula may be true in some states and false in others
Formulas may change values as systems evolve

Properties are formulas in temporal logic
Truth values are dynamic

Model and the desired properties are semantically
equivalent

Model and properties express the same truth table
Often used after development is complete but
before a product is release to the general market

Formal Verification:
Components

Formal Specification
defined in unambiguous (mathematical)
language
Restricted syntax, and well-defined
semantics based on established
mathematical concepts
Example: security policy models (Take-
Grant, BLP)

Implementation Language
Generally somewhat constrained

Formal Semantics relating the two
Methodology to ensure implementation ensures
specifications met

Specification Languages

Specify WHAT, not HOW
Valid states of system
Postconditions of operations

Non-Procedural
Typical Examples:

Propositional / Predicate Logic
Temporal Logic (supports before/after conditions)
Set-based models (e.g., formal Bell-LaPadula)

Specification Languages

Must support machine processing
Strong typing
Model input/output/errors

Example: SPECIAL
First order logic base
Strongly typed
VFUN: describes variables (state)
OFUN/OVFUN: describe state transitions

Example: SPECIAL
MODULE Bell_LaPadula_Model Give_read
Types
Subject_ID: DESIGNATOR;
Object_ID: DESIGNATOR;
Access_Model: {READ, APPEND, WRITE};
Access: STRUCT_OF(Subject_ID subject; Object_ID object;
Access_Mode mode);
Functions
VFUN active (Object_ID object) -> BOOLEAN active:
HIDDEN; INITIALLY TRUE;
VFUN access_matrix() -> Access accesses: HIDDEN;
INITIALLY FORALL Access a: a
INSERT accesses => active(a.object);
OFUN give_access(Subject_ID giver; Access access);
ASSERTIONS active(access.object) = TRUE;
EFFECTS `access_matrix() = access_matrix() UNION
(access);
END_MODULE

Example: Enhanced Hierarchical
Development Methodology

Based on HDM
A general purpose design and implementation
methodology
Goal was

To mechanize and formalize the entire development
process
Design specification and verification + implementation
specification and verification

Proof-based method
Uses Boyer-Moore Theorem Prover

Example: Enhanced Hierarchical
Development Methodology

Hierarchical approach
Abstract Machines defined at each level

specification written in SPECIAL
Mapping Specifications define functionality in terms of
machines at higher layers
Consistency Checker validates mappings “match”

Compiler that maps a program into a theorem-prover
understood form
Successfully used on MLS systems

Few formal policy specifications outside MLS domain

Alternate Approach:
Combine Specifications and
Language

Gypsy verification environment (GVE)
Specifications defined on procedures

Entry conditions
Exit conditions
Assertions

Proof techniques ensure exit conditions /
assertions met given entry conditions

Also run-time checking
Examples:

Gypsy (in book) – uses theorem prover
CLU
Eiffel (and derivatives) – run-time checks

Other Examples

Prototype Verification System (PVS)
Based on EHDM
Interactive theorem-prover

Symbolic Model Verifier
Temporal logic based
Notion of “path” – program represented as tree
Statements that condition must hold at a future
state, all future states, all states on one path, etc.

Other Examples

Formal verification of protocols
Key management
Protocol development

Verification of libraries
Entire system not verified
But components known okay

High risk subsystems

Protocol Verification

Generating protocols that meet security
specifications
Assumes cryptography secure

But cryptography not enough

