
1

IS 2620: Developing Secure Systems

Jan 16, 2007

Secure Software Development
Models/Methods

Lecture 1

Secure Software Development
Models/Methods

Lecture 1

Contact

James Joshi
706A, IS Building
Phone: 412-624-9982
E-mail: jjoshi@mail.sis.pitt.edu
Web:http://www.sis.pitt.edu/~jjoshi/courses/IS2620/Spring07/

Office Hours:
Thursdays: 1.00 – 3.00 p.m. or By appointments

GSA: [Saubhagya Joshi]

2

Course Objective
The objective of the course

To learn the principles and practice of secure
information system design

Life cycle models/ security engineering principles
To learn about how to implement secure and high
assurance information systems

Secure programming (e.g., C, C++, Java)
To learn about the tools and techniques to
conduct testing and analysis of systems

Course Coverage
Secure software development process

Security Engineering/Lifecycle models
Software Development Models
Capability Maturity Models and Extensions
Trustworthy computing Security Engineering
Lifecycle

Secure Design/Implementation Principles
Systems / software
Formal methods

UMLSec, Model Checking (code, protocols)

3

Course Coverage
Secure programming

Coding practices and guidelines
Code analysis;
Language specific issues (C, C++, Java, .Net, ??)

Buffer overflows Race conditions
Input validation SQL injection
Cross-site scripting Mobile Code
Safe Languages

High assurance architectures
System/Software assurance (Web Services/ Service-oriented architectures)
Privacy/Digital Rights Management Issues
Testing
Evaluations
Tools

Course materials – safari online materials, research papers, etc. (see
web site)

Pre-requisite
IS 2150/TEL 2810 Introduction to Computer
Security
Following courses are preferred but not
required:

IS 2170/TEL 2820 Cryptography; TEL 2821
Network Security
IS 2511 or 2540
Talk to the instructor if you are not sure of the
background

4

Grading

Tentative
Homework/presentation: 40%
Exams 20%
Project 40%

Extra credits may be obtained through other
means. E.g. LERSAIS Seminar

Course Policy
Your work MUST be your own

Zero tolerance for cheating/plagiarism
You get an F for the course if you cheat in anything however
small – NO DISCUSSION
Discussing the problem is encouraged

Homework
Penalty for late assignments (15% each day)
Ensure clarity in your answers – no credit will be given for
vague answers
Homework is primarily the GSA’s responsibility

Check webpage for everything!
You are responsible for checking the webpage for updates

5

Some Terms: Process

Process
A sequence of steps performed for a given
purpose [IEEE]

Secure Process
Set of activities performed to develop, maintain,
and deliver a secure software solution
Activities could be concurrent or iterative

Process Models
Process model

provides a reference set of best practices that can be used
for both

process improvement and
process assessment.

defines the characteristics of processes.
Usually have an architecture or a structure.

Most process models also have a capability or
maturity dimension, that can be used for

assessment and
evaluation purposes.

6

Process Models

Process Models
have been produced to create

common measures of organizational processes
throughout the software development lifecycle (SDLC).

identify many technical and management practices
primarily address good software engineering
practices to manage and build software
Do not, however, guarantee software developed is
bug free

Assessments

Assessments, evaluations, appraisals
Imply comparison of a process being practiced to
a reference process model or standard.
used to understand process capability in order to
improve processes.
help determine if the processes being practiced
are

adequately specified, designed, integrated, and
implemented sufficiently to support the needs

7

Software Development Life Cycle
(SDLC)

A survey of existing processes, process models, and
standards seems to identify the following four SDLC
focus areas for secure software development.

Security Engineering Activities
Security Assurance
Security Organizational and Project Management Activities
Security Risk Identification and Management Activities

SDLC
Security Engineering Activities include

those activities needed to engineer a secure solution.
Examples include

security requirements elicitation and definition, secure
design based on design principles for security, use of static
analysis tools, reviews and inspections, secure testing, etc..

Security Assurance Activities include
verification, validation, expert review, artifact review, and
evaluations.

8

SDLC
Security Organizational and Project Management Activities
include

Organizational management
organizational policies, senior management sponsorship and
oversight, establishing organizational roles, and other organizational
activities that support security.

Project management
project planning and tracking, resource allocation and usage to
ensure that the security engineering, security assurance, and risk
identification activities are planned, managed, and tracked.

Security Risk Identification and Management Activities
identifying and managing security risks is one of the most
important activities in a secure SDLC

System DLC

9

Capability Maturity Models (CMM)

CMM
Provides reference model of mature practices
Helps identify the potential areas of improvement
Provides goal-level definition for and key
attributes for specific processes
No operational guidance
Defines process characteristics

CMM

Three CMMs
Capability Maturity Model Integration® (CMMI®),
The integrated Capability Maturity Model (iCMM),
and the
Systems Security Engineering Capability Maturity
Model (SSE-CMM)

Specifically to develop security

10

Why CMM?

Source: http://www.secat.com/download/locked_pdf/SSEovrw_lkd.pdf

CMMI
CMM Integration (CMMI) provides

the latest best practices for product and service
development, maintenance, and acquisition, including
mechanisms to help organizations improve their processes
and provides criteria for evaluating process capability and
process maturity.

As of Dec 2005, the SEI reports
1106 organizations and 4771 projects have reported
results from CMMI-based appraisals

its predecessor, the software CMM (SW-CMM)
Since 80s – Dec, 2005

3049 Organizations + 16,540 projects

11

CMMI

Integrated
CMM

iCMM is widely used in the Federal Aviation
Administration (FAA-iCMM)

Provides a single model for enterprise-wide improvement
integrates the following standards and models:

ISO 9001:2000, EIA/IS 731,
Malcolm Baldrige National Quality Award and President's
Quality Award criteria,
CMMI-SE/SW/IPPD and
CMMI-A, ISO/IEC TR 15504, ISO/IEC 12207, and ISO/IEC
CD 15288.

12

Integrated
CMM

Trusted
CMM

Trusted CMM
In early 1990 as Trusted Software Methodology
(TSM)
TSM defines trust levels

Low emphasizes resistance to unintentional
vulnerabilities
High adding processes to counter malicious
developers

TSM was later harmonized with CMM
Not much in use

13

Systems Security
Engineering CMM

The SSE-CMM
is a process model that can be used to improve
and assess

the security engineering capability of an organization.
provides a comprehensive framework for

evaluating security engineering practices against the
generally accepted security engineering principles.

provides a way to measure and improve
performance in the application of security
engineering principles.

SSE-CMM
Purpose for SSE-CMM

although the field of security engineering has
several generally accepted principles, it lacks a
comprehensive framework for evaluating security
engineering practices against the principles.

The SSE-CMM also
describes the essential characteristics of an
organization’s security engineering processes.

The SSE-CMM is now ISO/IEC 21827
standard (version 3 is available)

14

Security Engineering Process

15

Security Risk Process

Security is part of Engineering

16

Assurance

SSE-CMM Dimensions

All the base practices

Practices (generic) that indicate
Process Management &
Institutionalization Capability

17

SSE-CMM

129 base practices Organized into 22 process areas
61 of these, organized in 11 process areas, cover all major
areas of security engineering

Remaining relates to project and organization domains

Base practice
Applies across the life cycle of the enterprise
Does not overlap with other base practices
Represents a “best practice” of the security community
Does not simply reflect a state of the art technique
Is applicable using multiple methods in multiple business
context
Does not specify a particular method or tool

Process Area
Assembles related activities in one area for ease of use
Relates to valuable security engineering services
Applies across the life cycle of the enterprise
Can be implemented in multiple organization and product
contexts
Can be improved as a distinct process
Can be improved by a group with similar interests in the process
Includes all base practices that are required to meet the goals of
the process area

18

Process Areas
Process Areas related to project and
Organizational practices

Process Areas related to Security
Engineering process areas

Generic Process Areas

Activities that apply to all processes
They are used during

Measurement and institutionalization
Capability levels

Organize common features
Ordered according to maturity

19

Capability Levels

5
Continuously

improving

4
Quantitatively

Controlled

3
Well

Defined

2
Planned &
Tracked

1
Performed
Informally

0
Not

Performed

Base Practices
Performed

Committing to
perform
Planning performance
Disciplined
performance
Tracking performance
Verifying performance

Defining a standard
process
Tailoring standard
process
Using data
Perform a defined
process

Establishing
measurable quality
goals
Determining process
capability to achieve
goals
Objectively managing
performance

Establishing
quantitative process
goals
Improving process
effectiveness

Summary Chart.

20

Using SSE-CMM

Can be used in one of the three ways
Process improvement

Facilitates understanding of the level of security
engineering process capability

Capability evaluation
Allows a consumer organization to understand the
security engineering process capability of a provider

Assurance
Increases the confidence that product/system/service
is trustworthy

Process Improvement

21

Capability Evaluation
No need to use any particular appraisal method
SSE-CMM Appraisal (SSAM) method has been
developed if needed
SSAM purpose

Obtain the baseline or benchmark of actual practice related
to security engineering within the organization or project
Create or support momentum for improvement within
multiple levels of the organizational structure

SSAM Overview
Planning phase

Establish appraisal framework
Preparation phase

Prepare team for onsite phase through information
gathering (questionnaire)
Preliminary data analysis indicate what to look for /
ask for

Onsite phase
Data gathering and validation with the practitioner
interviews

Post-appraisal
Present final data analysis to the sponsor

22

Capability Evaluation

Assurance
A mature organization is significantly more
likely to create a product or system with
appropriate assurance
Process evidence can be used to support
claims for the trustworthiness of those
products
It is conceivable that

An immature organization could produce high
assurance product.

23

CMI/iCMM/SSE-CMM

Because of the integration of process
disciplines and coverage of enterprise issues,

the CMMI and the iCMM are used by more
organizations than the SSE-CMM;

CMMI and iCMM have gaps in their coverage
of safety and security.
FAA and the DoD have sponsored a joint
effort to identify best safety and security
practices for use in combination with the
iCMM and the CMMI.

Safety/Security additions
The proposed Safety and Security additions
include the following four goals:

Goal 1 – An infrastructure for safety and security is
established and maintained.
Goal 2 – Safety and security risks are identified and
managed.
Goal 3 – Safety and security requirements are satisfied.
Goal 4 – Activities and products are managed to achieve
safety and security requirements and objectives.

24

Goal 1 related
practices

1. Ensure safety and security awareness, guidance, and
competency.

2. Establish and maintain a qualified work environment that
meets safety and security needs.

3. Ensure integrity of information by providing for its storage
and protection, and controlling access and distribution of
information.

4. Monitor, report and analyze safety and security incidents
and identify potential corrective actions.

5. Plan and provide for continuity of activities with
contingencies for threats and hazards to operations and
the infrastructure

Goal 2 related
practices
1. Identify risks and sources of risks attributable to

vulnerabilities, security threats, and safety
hazards.

2. For each risk associated with safety or security,
determine the causal factors, estimate the
consequence and likelihood of an occurrence, and
determine relative priority.

3. For each risk associated with safety or security,
determine, implement and monitor the risk
mitigation plan to achieve an acceptable level of
risk.

25

Goal 3 related
practices
1. Identify and document applicable regulatory requirements,

laws, standards, policies, and acceptable levels of safety and
security.

2. Establish and maintain safety and security requirements,
including integrity levels, and design the product or service to
meet them.

3. Objectively verify and validate work products and delivered
products and services to assure safety and security
requirements have been achieved and fulfill intended use.

4. Establish and maintain safety and security assurance
arguments and supporting evidence throughout the lifecycle.

Goal 4 related
practices

1. Establish and maintain independent reporting of
safety and security status and issues.

2. Establish and maintain a plan to achieve safety
and security requirements and objectives.

3. Select and manage products and suppliers using
safety and security criteria.

4. Measure, monitor and review safety and security
activities against plans, control products, take
corrective action, and improve processes.

26

Team Software Process for Secure
SW/Dev

TSP
provides a framework, a set of processes, and
disciplined methods for applying software
engineering principles at the team and individual
level

TSP for Secure Software Development (TSP-
Secure)

focus more directly on the security of software
applications.

Team Software Process for Secure
SW/Dev

TSP-Secure addresses secure software
development (three ways).
1. Secure software is not built by accident,

– TSP-Secure addresses planning for security.
– Since schedule pressures and people issues get in

the way of implementing best practices, TSP-Secure
helps to build self-directed development teams, and
then put these teams in charge of their own work.

27

TSP-Secure
1. Since security and quality are closely related,

– TSP-Secure helps manage quality throughout the
product development life cycle.

2. Since people building secure software must
have an awareness of software security issues,

– TSP-Secure includes security awareness training
for developers.

TSP-Secure

Teams
Develop their own plans
Make their own commitments
Track and manage their own work
Take corrective action when needed

28

TSP-Secure
Initial planning – “project launch” (3-4 days)

Tasks include
identifying security risks,
eliciting and defining security requirement, secure
design, and code reviews,
use of static analysis tools, unit tests, and Fuzz
testing.

Next, the team executes its plan, and ensures all
security related activities are taking place.

Security status is presented and discussed during every
management status briefing.

TSP-Secure

Basis
Defective software is seldom secure
Defective software is not inevitable

Consider cost of reducing defects
Manage defects throughout the lifecycle

Defects are leading cause of vulnerabilities
Use multiple defect removal points in the SD

Defect filters

29

TSP-Secure

Key questions in managing defects
What type of defects lead to security vulnerabilities?
Where in the software development life cycle should
defects be measured?
What work products should be examined for defects?
What tools and methods should be used to measure the
defects?
How many defects can be removed at each step?
How many estimated defects remain after each removal
step?

TSP-Secure includes training for developers,
managers, and other team members.

30

Correctness by Construction

CbC Methodology from Praxis Critical
Systems

Process for developing high integrity software
Has been successfully used to develop safety-
critical systems
Removes defects at the earliest stages
the process almost always uses formal methods
to specify behavioral, security and safety
properties of the software.

Correctness by Construction

The seven key principles of Correctness-by-
Construction are:

Expect requirements to change.
Know why you're testing (debug + verification)
Eliminate errors before testing
Write software that is easy to verify
Develop incrementally
Some aspects of software development are just
plain hard.
Software is not useful by itself.

31

Correctness by Construction

Correctness-by-Construction is
one of the few secure SDLC processes that
incorporate formal methods into many
development activities.
Requirements are specified using Z, and verified.
Code is checked by verification software, and is
written in Spark, a subset of Ada which can be
statically assured.

32

Correctness by Construction

Agile Methods
Agile manifesto

“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we
value the items on the left more.”

33

Agile manifesto principles

Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.
Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.
Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.
Business people and developers work together daily throughout the project.
Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.
The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.
Working software is the primary measure of progress.
Agile processes promote sustainable development. The sponsors, developers
and users should be able to maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility.
Simplicity—the art of maximizing the amount of work not done—is essential.
The best architectures, requirements and designs emerge from self-organizing
teams.
At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Agile Processes

Among many variations
Adaptive software development (ASP)
Extreme programming (XP)
Crystal
Rational Unified Process (RUP)

34

Adaptive software development
(ASP)

Premise:
Unpredictable outcomes
Not possible to plan successfully in a fast moving and
unpredictable business environment

Instead of evolutionary life cycle model use
adaptive life cycle

Extreme Programming

A high profile agile process
Four basic values

Communication
Feedback

Check results
Simplicity

Avoid unnecessary artifacts/activities to a project
Courage

More faith on people than in processes

35

Crystal
A family of processes each applied to
different kinds of projects
Selecting crystal process that matches

Comfort
System failure means loss of comfort

Discretionary money
Essential money
Life

Most rigorous process needed

36

Crystal
Each of the process shares common policy
standards

Incremental delivery
Progress tracking by milestones based on software
deliveries and major decisions rather than written
documents
Direct user involvement
Automated regression testing of functionality
Two user viewings per release
Workshops for product and methodology – tuning at the
beginning and in the middle of each increment

Crystal

37

Rational Unified Process

A generic process framework that uses a
specific methodology to accomplish the tasks
associated with it

Uses UML language to develop use cases for the
software system design

In its simplest form
Mimics the waterfall model

Rational Unified Process

38

TSP Revisited
- How TSP Relates to Agile ..

Individuals and interactions over processes
and tools

TSP holds that the individual is key to product
quality and effective member interactions are
necessary to the team's success.

Project launches strive to create gelled teams.
Weekly meetings and communication are
essential to sustain them.
Teams define their own processes in the launch.

How TSP Relates
Working software over comprehensive
documentation

TSP teams can choose evolutionary or iterative
lifecycle models to deliver early functionality—the
focus is on high quality from the start. TSP does not
require heavy documentation.

Documentation should merely be sufficient to facilitate
effective reviews and information sharing.

39

How TSP Relates
Customer collaboration over contract
negotiation

Learning what the customer wants is a key
focus of the “launch”. Sustaining customer
contact is one reason for having a customer
interface manager on the team.

Focus on negotiation of a contract is more a
factor of the organization than of whether TSP is
used.

How TSP Relates

Responding to change over following a plan

TSP teams expect and plan for change by:
Adjusting the team's process through process improvement
proposals and weekly meetings.
Periodically re-launching and re-planning whenever the
plan is no longer a useful guide.
Adding new tasks as they are discovered; removing tasks
that are no longer needed.
Dynamically rebalancing the team workload as required to
finish faster.
Actively identifying and managing risks.

40

Besnosov Comparison

50% of traditional security assurance activities are
not compatible with Agile methods (12 out of 26),
less than 10% are natural fits (2 out of 26),
about 30% are independent of development
method, and
slightly more than 10% (4 out of 26) could be semi-
automated and thus integrated more easily into the
Agile methods.

41

Microsoft Trustworthy Computing
SDLC

Generally accepted SDL process at MS
(actually spiral not “waterfall” as it indicates)

SDL Overview

MS’s SD3 + C paradigm
Secure by Design
Secure by Default
Secure by Deployment
Communications

software developers should be prepared for the
discovery of product vulnerabilities and should
communicate openly and responsibly

The SDL is updated as shown next

42

SDL at MS

Add the SD3 + C praradigm

Design Phase

Define Security architecture and design
guidelines

Identify tcb; use layering etc.
Document the elements of the software
attack surface

Find out default security
Conduct threat modeling
Define supplemental ship criteria

43

Implementation phase

Apply coding and testing standards
Apply security testing tools including fuzzing
tools
Apply static analysis code scanning tools
Conduct code reviews

Verification Phase

“Security push” for Windows server 2003
Includes code review beyond those in
implementation phase and
Focused testing

Two reasons for “security push”
Products had reached the verification phase
Opportunity to review both code that was
developed or updated during the implementation
phase and “legacy code” that was not modified

44

Results

Results

