IS 2620: Developing Secure Systems

@
N
(©)
N
(&

Building Security In

Lecture 2
Sept 8, 2017

Recap: Trinity of trouble

e Three trends

e Connectivity
Inter networked

Include SCADA (supervisory
control and data acquisition
systems) a5

Windows Complexity

Automated attacks, botnets 40

. agn 35
e Extensibility

30
Mobile code — functionality

25
) 20
evolves incrementally 15

Millions of Lines

Web/Os Extensibility 4

e Complexity 0
XP is at least 40 M lines of code ¢

> o o O
Add to that use of unsafe SR R S A
languages (C/C++) S

It boils down to

Opportunity (normalized)

120

a0

&0

30

0

60

45

30

15

0

) Hosts"Wulns

o0

/

K

o0 00000

&

—
o]

&

[}
=2}

&

[Ts]
=]

&

=
4}

3

3

MNormalized (median, 2-year lag)
I moc O wns

3

—
=]

8

ﬂ- Incidents

/

{

7

ﬂ—u—u—u—n—a—-ﬂ—c—fw

90

a1

g2

a3

94

g5

96

a7

98

99

oo

01

0z

03

(Y X)
'YX X
'YX X
XX
o0
°®

2 2

L Y

L)

more code,

more bugs,
more security problems

Drivers

3 mLocsa O Vuins 7\ Incidents

2
J
%

N O

MLOCs3"2+1

90
91
92
93
94
95
95
97
98
99
ao
01
02
03

Security problems in software

e Defect

e Implementation and
design vulnerabillities

e Canremain dormant
e Bug

e An implementation level
software problem

e Flaw

e A problem at a deeper
level

e Bugs + Flaws
e |eads to Risk

30

25

10

5

Security Problems (CERT)

B CERT alerns

P & P g PP
TR PP F PP DS

Bug

Flaw

Buffer overflow: stack smashing
Buffer overflow: one-stage attacks
Buffer overflow: string format attacks
Race conditions: TOCTOU

Unsafe environment variables

Unsafe system calls (fork(), exec(),
system())

Incorrect input validation (black list vs.

white list

Method over-riding problems
(subclass issues)
Compartmentalization problems in
design

Privileged block protection failure
(DoPrivilege())

Error-handling problems (fails open)
Type safety confusion error
Insecure audit log design

Broken or illogical access control
(role-based access control [RBAC]
over tiers)

Signing too much code

O Buffer overflows

Solution ... cees
Three pillars of security :

SOFTWARE SECURITY

Pillar I;
Applied Risk management :

e Architectural risk analysis

o Sometimes called threat modeling or security
design analysis

e Is a best practice and is a touchpoint
e Risk management framework

e Considers risk analysis and mitigation as a full life
cycle activity

Pillar II:
Software Security Touchpoints

e “Software security is not security software”

Software security
Is system-wide issues (security mechanisms and design security)
Emergent property

e Touchpoints in order of effectiveness (based on experience)

1.
2.

N o O M w

Code review (bugs)
Architectural risk analysis (flaws)
These two can be swapped

Penetration testing
Risk-based security tests
Abuse cases

Security requirements
Security operations

Effectivemess

Pillar II: (contd.)

e Many organization
e Penetration first
Is a reactive approach

e CR and ARA can be switched however
skipping one solves only half of the problem

e Big organization may adopt these touchpoints
simultaneously

00
0000
o000
o000
. (| X)
Pillar Il: (contd.) :
SECURITY EXTERMAL CODE
PEMETRATION
REQUIREMENTS REVIEW REVIEW
(TOOLS) TESTING
RISK-BASED
ABUSE RISk SECLURITY RISK SECURITY
CASES ANALYSIS TESTS AN .-ﬁ-.l.‘r'i-ls -DPE RATIONS
REQUIREMENTS | | ARCHITECTURE TEST PLAMS CODE TESTS AND FEEDBACK FROM
AND USE CASES | | AND DESICN TEST RESULTS THE FIELD

Software security best practices applied to various software artifacts

000
- . 0000
lHiar Il: (contd. eoo o
o000
o0
- J
o
[
Microsoft’s move
Security pushfaudit
Secure queastions Thraat Learm arad
during intaerviews analysis @ refire
@- Extarmnal
L‘@ / rewview @ \
Dasigns Test Flans Codea FPost
Concept Coamplate Complets Complate Ship Ship
Taam maemb-ar f @
training @5 . Data mutation Review old defects
Security and laast priv .
review tests Check-ins n:;_he-:ke_-:l _
Secure coding guidelines
Lise tools -@'= cn-goimg
Security Training Use Security Create Security Security
Security | Security [Security Architecture /] Development | Security | PP | pueh | Final Senvicing
Kickoff & | Design |& Attack Surface Tools & Security (Documentation| Security Security &
Register Best |Review Threat Best Dev & Test & Tools Hﬂﬂﬂpmﬁﬂ P Review Response
with SWI | Practices Modeling Practices for Product Testing Execution
| >| >l >| >I >I >
Verification Release Support &

Requirements Design Implementation
Servicing

Pillar 1l: (contd.) seec.

Process / SDLC

models \

System-wide Emergent
Issue Property

SDLC
(e.qg., Agile)

SDLC account for
(e.g., Agile) Security Mechanisms

Pillar Il
Knowledge

e Involves

Gathering, encapsulating, and sharing security knowledge
e Software security knowledge catalogs

Principles
Guidelines
Rules
Vulnerabilities
Exploits

Attack patterns
Historical risks

.
/

Can be put into three categories

Prescriptive knowledge
Diagnostic knowledge
Historical knowledge

(Y X)
- . 0000
illar Ill: Knowledge catalogs |2
'YX
. o0
to s/w artifacts s
o Attack -
Guidelines Patterns Yulnerabilities
Principles Historical Explolts
P Risks Rules P
- CODE
SECURITY m&“é‘::"— REVIEW PENETRATION
REQUIREMENTS ol] —y TESTING
RISK-BASED
ABLILE sk SECURITY RISk SECURITY
CASES B OANALYSIS, TESTS - .-ﬁ.n.ﬂ-.wﬁla' {]#ER.G.TH}H'E
RECQUIREMENTS ARCHITECTURE TEST PLAMS CODE TESTS AND FEEDBACE FROM
AMD LISE CASES AMD DESIGM TEST RESLILTS THE FIELD

Risk management framework:
Five Stages

e RMF occurs in parallel with SDLC activities

Artifact Analysis

Stage 1. T
Understand Business Context

e Risk management
Occurs in a business context
Affected by business motivation

e Key activity of an analyst

Extract and describe business goals — clearly

Increasing revenue; reducing dev cost; meeting SLAS;
generating high return on investment (ROI)

Set priorities
Understand circumstances

e Bottomline — answer the gquestion
who cares?

Stage 2: ldentify the business | ¢s
& technical risks

e Business risks have impact

Direct financial loss; loss of reputation; violation of
customer or regulatory requirements; increase in
development cost

e Severity of risks

Should be captured in financial or project
management terms

o Key Is —
tie technical risks to business context

Stage 3: Synthesize and rank | ¢s
the risks

e Prioritize the risks alongside the business
goals

e Assign risks appropriate weights for
resolution

e RISk metrics

Risk likelihood

Risk impact, severity

Number of risks mitigated over time

Stage 4: Risk Mitigation H:
Strategy

e Need/Develop a coherent strategy
Mitigating risks
Cost effective -- account for
= Cost Implementation time

= Completeness Impact
= Likelihood of success

e A mitigation strategy should
Be developed within the business context

Be based on what the organization can afford, integrate
and understand

Must directly identify validation techniques

Stage 5: Carry out Fixes and | ¢
Validate

e Execute the chosen mitigation strategy
Rectify the artifacts

Measure completeness
Estimate:
Progress, residual risks
e Validate that risks have been mitigated
Testing can be used to demonstrate

Develop confidence that unacceptable risk does
not remain

RMF - Multi-loop

e Risk management is a continuous process
Five stages may need to be applied many times

Ordering may be interleaved in different ways

Risk can emerge at any time in SDLC
One way — apply in each phase of SDLC

Risk can be found between stages
e Level of application
Primary — project level: Each stage must capture complete project
SDLC phase level
Artifact level

e RMis
Cumulative
At times arbitrary and difficult to predict

000
0000
(X XN
[XX)
. | X)
Seven Touchpoints :
SECURITY EXTERMNAL REEIIEEJ FEHET?MMH
HEEIQUIREMENTE e REVIEW ﬂ (TOOLS) TESTING
RISK-BASED
ABUSE RISK SECURITY Fll‘."rh'. '5-El'.'il.JFtIT"'r"
REQUIREMENTS ARCHITECTURE TEST PLANS CODE TESTS AND FEEDBACK FROM
AND USE CASES AND DESIGN TEST RESULTS THE FIELD

Cost of fixing defect at each
stage

Cost of Fixing Defects at Each Stage
of Software Development
$15,000

$12,000

9,000

Cost per Defect

26,000

3,000

B Fequirements
L] Design
B Coding
] Testing

|:| Maintenanca

50

Code review

e Focus is on implementation bugs
o Essentially those that static analysis can find

e Security bugs are real problems — but architectural flaws
are just as big a problem

Code review can capture only half of the problems
e E.g., Buffer overflow bug in a particular line of code

e Architectural problems are very difficult to find by looking at
the code

Specially true for today’s large software

Code review

e Taxonomy of coding errors

Input validation and representation

Some sources of problems
Metacharacters, alternate encodings, numeric representations
Forgetting input validation
Trusting input too much
Example: buffer overflow; integer overflow
API abuse (API represents contract between caller and callee)
E.g., failure to enforce principle of least privilege
Security features
Getting right security features is difficult

E.g., insecure randomness, password management,
authentication, access control, cryptography, privilege
management, etc.

Code review

e Taxonomy of coding errors

Time and state
Typical race condition issues
E.g., TOCTOU; deadlock
Error handling
Security defects related to error handling are very common

Two ways
Forget to handle errors or handling them roughly

Produce errors that either give out way too much information or so
radioactive no one wants to handle them

E.g., unchecked error value; empty catch block

Code review

e Taxonomy of coding errors

Code quality
Poor code quality leads to unpredictable behavior
Poor usability
Allows attacker to stress the system in unexpected ways
E.g., Double free; memory leak
Encapsulation
Object oriented approach
Include boundaries
E.g., comparing classes by name
Environment

Everything outside of the code but is important for the security of the
software

E.g., password in configuration file (hardwired)

Code review

e Static analysis tools
False negative (wrong sense of security)
A sound tool does not generate false negatives
False positives
Some examples

ITS4 (It's The Software Stupid Security Scanner);
RATS: Flawfinder

Rules overlap

3 APls
shared by
AP
ITS4 and RATS u‘f_‘ it

but not in "
26 APl SourceSco ITS4
unique to pe ITS4

(144 total C/C++ APIs)

RATS i

RATS
(310 total C/C++ APIs)

SourceScope
(653 total G/G++ APIs)

Cigital
Static
analysis
process

Static Code Analysis

Inputs

Activities

Outputs

Identify Input
Points, Problem
Symptoms, &

Vulnerabilities
for Additional
Inspection

Vulnerable
Code &
Auto Doc

Vulnerability
Documentation

Configured

Y

Tool(s)

Source
Files

to Be
Analyzed

Tool Output

Updated List of
Categorized,
Prioritized Risks

Knowledge

Technical Lead
d
Static Analysis Tool
= FxCop
= Fortify b
= BOON
BLAST
= SetUp
Tool(s)
Decumentation l
c List of 4 Select Source
ategorized, .
Prioritized Files to Be
Risks Analyzed
Knowledge
Management .
System
A
| Analysis
Criteria ES
J\ Run Tool(s)
Code »
Documentation h
(optional) .
= Standards
= Platform -
£ Language -
£ Framework Analyze Tool
Output
»
>
Architecture l
& Design
Documents Identify,
Categorize,
\/\ & Prioritize
Risk(s)

Prior Analysis
D

\//\

Source File
to Module

Mapping

J\

Run Tool(s)
Again?

Y

System

Synthesize

NO

h 4

Results

Architectural risk analysis

e Design flaws
about 50% of security problem
Can’t be found by looking at code
A higher level of understanding required
e Risk analysis
Track risk over time
Quantify impact

Link system-level concerns to probability and impact
measures

Fits with the RMF

ARA

e Three critical steps
Attack resistance analysis
Ambiguity analysis
Weakness Analysis

ARA process

e Attack resistance analysis

e Steps

|dentify general flaws using secure design literature and
checklists
« Knowledge base of historical risks useful

Map attack patterns using either the results of abuse case
or a list of attack patterns
Identify risk based on checklist

Understand and demonstrate the viability of these known
attacks
= Use exploit graph or attack graph

- Note: particularly good for finding known problems

ARA process

e Ambiguity analysis
Discover new risks — creativity requried
A group of analyst and experience helps — use multiple points of view
Unify understanding after independent analysis
Uncover ambiguity and inconsistencies

e \Weakness analysis

Assess the impact of external software dependencies
Modern software
IS built on top of middleware such as .NET and J2EE
Use DLLs or common libraries
Need to consider
COTS
Framework
Network topology
Platform
Physical environment
Build environment

Architectural Risk Analysis

Input Activities Outputs
Build One-Page
Architecture Overview
Anal I
Documents ys
. v v v
. Perform Documents
gxplmt Attack Perform Attack Perform Underiying
raphs Pattems > Resistance Ambiguity Framework
~ " Analysis Analysis Weakness
Secure Analysis
Design
Literature i l 1 Software
T Identify General Find & Analyze " raws
aws i Flaws in
Documents =Noncompliance Ponder Design =COTS
‘gh%.-él_ ere Implications = Frameworks
; . uidelines Are Metwork Topol
Rrigﬁ"; Architectural Not Followed = Platiom 0
Documents 1; i l Architectural
— Risk
Regulatory M Generate S .) Assessment
Requi | ap enerate Separate dentify Services
|n,!jr|_e|5r|n|?rrm& Applit;able Attack AFDEthEEHJI'E Ug‘rﬂd by © Report
Standards Pattems Doulzigrl"nr?ewls Application
Documents Uni
— Show Risks and Undereiohding Map Weaknesses
Resources AD{;‘“I"'E;'” = Uncover Ambiguity Made by
- rehitecture = |dentify Application
= Mailing Lists Downstream
= Product Difficulty
Documentation Sufficiency
nalysis)
Show Viability of = ggﬁ;ﬂ fons
Attack Known Attacks
. Uncover Poor
Pattems Against Analogous = e
Technologies Traceabilty
I 1

Software penetration testing :

e Most commonly used today

e Currently
e Outside — in approach
o Better to do after code review and ARA
e As part of final preparation acceptance regimen
®

One major limitation

Almost always a too-little-too-late attempt at the end of a
development cycle
Fixing things at this stage
May be very expensive
Reactive and defensive

Software penetration testing 2

e A better approach

Penetration testing from the beginning and throughout the
life cycle

Penetration test should be driven by perceived risk

Best suited for finding configuration problems and other
environmental factors

Make use of tools
Takes care of majority of grunt work
Tool output lends itself to metrics
Eg.,
= fault injection tools;

attacker’s toolkit: disassemblers and decompilers; coverage tools
monitors

Risk based security testing

e Testing must be
Risk-based
Grounded in both the system’s architectural reality
and the attacker’'s mindset
Better than classical black box testing
Different from penetration testing
Level of approach
Timing of testing

« Penetration testing is primarily on completed software in
operating environment; outside — in

Risk based security testing

e Security testing

Should start at feature or component/unit level
testing

Must involve two diverse approaches

Functional security testing

« Testing security mechanisms to ensure that their
functionality is properly implemented

Adversarial security testing

Performing risk-based security testing motivated by
understanding and simulating the attacker’'s approach

Abuse cases

e Creating anti-requirements

Important to think about
Things that you don’t want your software to do
Requires: security analysis + requirement analysis

Anti-reguirements

Provide insight into how a malicious user, attacker,
thrill seeker, competitor can abuse your system
Considered throughout the lifecyle

= Indicate what happens when a required security function is
not included

Abuse cases

e Creating an attack model
Based on known attacks and attack types

Do the following

Select attack patterns relevant to your system — build
abuse case around the attack patterns

Include anyone who can gain access to the system
because threats must encompass all potential sources

Also need to model attacker

Abuse Cases

Inputs

Activities

Outputs

\

Security Analyst (SA)
Requirements Analysts (RAs)

Documentation

Requirements <

Requirements
Analyst-
Business

Use Cases

R

Requirements
Analyst-
Technical

Knowledge

Management
System

Identify
Threats

» Document
Threats

%

Deliverable
Documents

SA
Revise - Review
Threats " | Threats
m
SA & RAs
MO
Approved?
YES YES
[F““"“‘i“““".
A]
| '
: Create Anti- Create Attack]
M Requirements Model (]
]
1
I SA :
L A (R 5
r b 4
Rewview Anti- m Review Attack
Requirements Model
SA & RAs
Revise Revi
Anti Attal::el(v'lﬁzdel
Requirements
SA

f

NO

7R

SA & RAs

Approved?

NO*‘

Approved?

SA & RAsS

Analyze and
Rank Misuse |«

and Abuse

Create Misuse
and Abuse

Cases

Review
— Misuse and
Abuse Cases

YES

Attack Model

— Threats
| — Attack Patterns

Security
Analyst

Security
Analyst

Cases
Revise
Approved? >NO- Misuse and
Abuse Cases
R i
SA & RAs .
Rewview
Ranked YES >
|) Misuse and {pproved:?
Abuse Cases
Revise
Ranked - MO

)

SA

Misuse and
Abuse Cases

Security requirements and 4
operations

e Security requirements
Difficult tasks

Should cover both overt functional security and
emergent characteristics

Use requirements engineering approach

e Security operations

Integrate security operations

E.qg., software security should be integrated with
network security

Handout: Coding Errors

e Input validation and representation
e API Abuse

e Secure Features

e Time and State

e Error Handling

e Code Quality

e Encapsulation

e Environment

Building Security In Maturity
Model (BSIMM-V)

e Purpose:

e uantify the activities carried out by real software
security initiatives
e Requires
o a framework to describe all of the initiatives
uniformly.

e Software Security Framework (SSF) and activity
descriptions provide

a common vocabulary for explaining the salient
elements of a software security initiative

Building Security In Maturity | 3s
Model (BSIMM-V)

e How It was built

Software Security Framework
Based on knowledge of software security practices

Set of common activities

Based on interviews with executives in charge of
software security interviews

Created scoreboards for each of the nine
Initiatives — reviewed by the participates

BSIMM Objectives

e The BSIMM Is appropriate where business
goals for software security include:
Informed risk management decisions

Clarity on what is “the right thing to do” for
everyone involved in software security

Cost reduction through standard, repeatable
processes

Improved code gquality

Acknowledgement: Figures are from the BSIMM-V documents

Software Security Framework |::*

e Twelve practices in four domains

The Software Security Framework (SSF)
SSDL Touchpoints

Governance

Strategy and Metrics

Compliance and Policy

Training

Intelligence

Artack Models

Securirty Feanures
and Design

Standards and

Bequirements

Archirecture Analysis

Code Review

Security Testing

Deployment

Penetration Testing

Software Environment

Configurarion Management
and Vulnerability

Management

BSIMM-V

e MMaturity model: a series of activities associated with
each of the twelve practices; and goals of each practice

Business Goals

Domain Practice Business Goals

(Governance Strategy and Metrics Transparency of expectations, Accountability for results
Compliance and Policy Prescriprive guidance for all stakeholders, Auditabilicy
Training Knowledgeable worldorce, Error correction

Intelligence Artack Models Customized knowledpe
Security Features and Design Reusable designs, Prescriptive guidance for all stakeholders
Srandards and Requirements Prescriptive guidance for all stakeholders

SSDL Touchpoints Architecture Analysis Quality control
Code Review Quality control
Securiry Testing Quality conrrol

De PJ-: Fyment Penetration Testing Quality control
Software Environment Change management

Configuration Managementand Change management

Vulnerability Management

BSIMM Skeleton - assessment

e Detalled description of each activity is provided
In the BSIMM document

GOVERNANCE: STRATEGY AND METRICS

Planning, assigning roles and responsibilitics, identifying software sccurity goals,
ctermining budgets, identifving metrics and gates.
d g b dg d tying d &

Objective Activity Level

make the plan explicit | publish process (roles, responsibilities, plan), evolve as necessary 1

5.

build support throughour organization | create evangelism role and perform internal markering

secure executive buy-in | educate execurives

L

W establish S5DL gates (but do not enforce) | identify gate locations, gather necessary artifacts

[SM1.6] make clear who's taking the risk | require security sign-off

foster transparency (or competition) | publish dara about software securiry internally 2

change behavior | enforce gates with measurements and track exceptions

create broad base of support | create or grow a satellite
define success | identify metrics and use them to drive budgets
know where all apps in your inventory stand | use an internal tracking application with portfolio view 3

w— create external support | run an external marketing program

sk

Other Skeletons

Objective Activity Level
m.—- promote culture of security throughour | provide awareness training 1
the orpanization
m.—- build capabilities beyond awareness | deliver role-specific advanced curriculum (tools, technology stacks,
bug parade)
m._‘ see yourself in the problem | create and use material specific to company history
[T1.7] reduce impact on training targets and build | deliver on-demand individual training
delivery staff
m._- educate/strengthen social network | enhance satellite through training and events 2
m.—- ensure new hires enhance culture | include security resources in onboarding
m.—- create social network: tied into dev | identify satellite through training
m.—- align security culture with career path | reward progression through curriculum (certification or HR) 3
[T3.2] spread security culture to providers | provide training for vendors or outsourced workers
lm.—- marlcet security culture as differentiator | host external software security events
m—- leeep staff up-to-date and address turnover | require an annual refresher
m'—- act as informal resource to leverage | establish S3G office hours
teachable moments

Other Skeletons

INTELLIGENCE: ATTACK MODELS

Threat modcling, abusc cases, data classification, technology-specific attack patterns.

Objective Activity Level
m_- understand arrack basics | build and maintain a top N possible artacks list 1
w—- prioritize applications by data | create a data classification scheme and inventory

consumed/manipulated
Im—- understand the “who” of artacks | identity potential artackers
W_- understand the organization’s history | collect and publish artack stories
m—- stay current on attack/vulnerability | gather artack intelligence

environment

m—- communicate attacker perspective | build an internal forum to discuss arracks (T standards/req)
m—- provide for security testing and AA | build artack patterns and abuse cases tied to potential attackers 2
[AM2.2] understand technology-driven attacks | create technology-specific attack patterns
m—- get ahead of the attack curve | have a science team that develops new attack methods 3
lm—- arm testers and auditors | create and use automation to do what the attackers will do

Other Skeletons

INTELLIGENCE: SECURITY FEATURES AND DESIGN

Security patterns for major sccurity controls, middleware

frameworks for controls, proactive sccurity guidance.

Objective Activity Level
m—— create proactive security guidance | build and publish securiry fearures 1
around security features
[SED1.2 inject security thinking into | engage S5G with architecture
archirecture group
m—— create proactive security design | build secure-by-design middleware frameworks and common 2
based on technology stacks | libraries (T: code review)
Wlddlmﬂmmedfmnmardﬁmmm create 55G capability to solve difficult design problems
m— o formalize consensus on design | form a review board or central committee to approve and maintain secure 3
design patterns
m_— promote design efficiency | require use of approved sscurity features and frameworks (T: AA)

[SFD3.3

practice reuse

find and publish mature design patterns from the organization

Other Skeletons

INTELLIGENCE: STANDARDS AND REQUIREMENTS

Explicit security requirements, recommended COTS, standards for major security
controls, standards for tcchnnlﬂgic.s in use, standards review board.

Objective Activity Level
M'_ - meet demand for security features | create security standards (T sec features/design) | 1
w_- ensure that everybody knows where to get latest and greatest | create a security portal
[m.'— . compliance strategy | translare compliance constraints to requirernents
tell people what to look for in code review | use secure coding standards
[SR2.2] pumm formalize standards process | create a standards review board 2
W- reduce SSG workload | create standards for technology stacks
w— o manage open source risk | identify open source
w—-’ gain buy-in from legal department and standardize approach | create SLA boilerplate (T: compliance and policy)
m_ - manage open source risk | control open source risk 3
Im._ = educate third-party vendors | communicate standards to vendors

Other Skeletons

SSDL TOUCHPOINTS: ARCHITECTURE ANALYSIS

Capturing software architecture diagrams, applying lists of risks and threats, adopting a

process for review, building an assessment and remediation plan.

build proactive security architecture

drive analysis results into standard archirecture
patterns (I} sec features/design)

Objective Activity Level
. get started with AA | perform security feature review 1
— demonstrate value of AA with real data | perform design review for high-risk applications
- build internal capability on security architecture | have 55G lead design review efforts
T have a lightweight approach to risk classification | use a risk questionnaire to rank applications

and prioritization
o model objects | define and use AA process 2
" promote a common language for describing architecture | standardize architecrural descriptions (including dara
o)
o build capability organization-wide | make S5 available as AA resource or mentor
- build capabilities organization-wide | have software architects lead design review efforts 3

Other Skeletons

SSDL TOUCHPOINTS: CODE REVIEW

LI-SC DF E-D-CI.C review tﬂl’.‘i]s_.. dﬂ'ﬂlﬂpﬂ]ﬂﬂt Ofﬂ.‘l-!tﬂﬂ]iicd l'l.IJC-S_.. FI'GEI.CE FDI' 'I.'D-GI. usc IJ}'

different roles, manual analysis, ranking/measuring results.

handle new bug classes in an already
scanned codebase

build capability for eradicating specific bugs from the entire
codebase

address insider threat from development

automate malicious code detection

Objective Activity Level
— know which bugs martter to you | create top N bugs list (real dara preferred) (T: training) 1
review high-risk applications opportunistically | have 585G perform ad hoc review
| drive efficiency/consistency with automation | use automated tools along with manual review
. find bugs earlier | make code review mandatory for all projects
e know which bugs matter (for training) | use centralized reporting to close the knowledge loop and
drive training (T strategy/metrics)

drive behavior objectively | enforce coding standards 2
n make most efficient use of tools | assign tool mentors
- drive efficiency/reduce false positives | use automated tools with tailored rules
- combine assessment techniques | build a factory 3

Other Skeletons

SSDL TOUCHPOINTS: SECURITY TESTING

Use of black box security tools in QA, risk driven white box testing, application of the
attack model, code coverage analysis.

[STL1) gy

5T13] puu

teach tools abour your code

perform fuzz testing customized to application AFls

probe risk claims directly

drive tests with risk analysis results

drive testing depth

leverage coverage analysis

move beyond functional testing to attacker’s
perspective

begin to build and apply adversarial security tests (abuse

cases)

Objective Activity Level
execute adversarial tests beyond functional | ensure QA supports edge/boundary value condition testing | 1
start security testing in familiar | drive tests with security requirements and security features
funcrional territory
use encapsulated artacker perspective | integrate black box security tools into the QA process 2
facilitate security mindset | share security results with QA
include security testing in regression | include security tests in QA automarion 3

Other Skeletons

DEPLOYMENT: PENETRATION TESTING

Vulnerabilities in final configuration, feeds to defect management and mitigation.

Objective Activity Level
m—- demonstrate that your organizarion’s code | use external penetration testers to find problems 1
needs help two

w—— fix what you find to show real progress | feed results to the defect management and mitigation system (T:
config/vuln mgmt)

m—‘ create internal capability | use penetration testing tools internally

m—- promote deeper analysis | provide penentration testers with all available information (T: AA & 2
code review)

W_- sanity check constantly | schedule periodic penetration tests for application coverage
use external penetration testers to perform deep-dive analysis 3

m'_- leeep up with edge of attacker’s perspective

m—- automnate for efficiency without losing depth

have the S5G customize penetration testing tools and scripts

Other Skeletons

DEPLOYMENT: SOFTWARE ENVIRONMENT

OS and platform patching, Web application firewalls, installation and configuration
documentation, application monitoring, change management, code signing.

Objective Activity Level
- watch software | use application input monitoring 1
= provide a solid host/network foundation for software | ensure host and nerwork security basics are in place
guide operations on application needs | publish installation guides 2
m.—- protect apps (or parts of apps) that are | use code signing
published over trust boundaries
protect IP and make exploit | use code protection 3
development harder
= watch software | use application behavior monitoring and diagnostics

Other Skeletons

DEPLOYMENT: CONFIGURATION MANAGEMENT AND
VULNERABILITY MANAGEMENT

Patching and updating applications, version control, defect tracking and remediation, incident handling,

Objective

Activity

w_ know what to do when something bad happens

create or interface with incident response

[CMVML2]

use ops data to change dev behavior

identify software defects found in operations monitoring

and feed them baclk to development

be able to fix apps when they are under direct

attack

have emergency codebase response

use ops data to change dev behavior

track software bugs found in operations through the fix

process

know where the code is

develop an operarions inventory of applications

learn from operational experience

fix all occurrences of sofrware bugs found in operarions
(T: code review)

use ops data to change dev behavior

enhance the S5DL to prevent software bugs found in

operations

ensure processes are in place to minimize software
incident impact

simulate software crisis

engage external researchers in vulnerability
discovery

operate a bug bounty program

Core BSIMM activities

e About 64% carried out

Objective

Activity

[SM1.4] gy

establish SSDL gates (but do not enforce)

identify gate locations, gather necessary artifacts

[CP1.2] gy

promote privacy

identify PII obligations

[T1.1] gy

promote culture of security throughout the organization

pmvidc awareness training

prioritize appl'lcatin-ns b}r dara mnsumodfmanlpulatcd

create a data classificarion scheme and inventory

[SFD1.1]mu

create proactive security guidancc around securicy

FC.'EI'LJ.I‘CS

build and publish security features

mect EI.EIIIE.H.EI. fDI‘ SCC'LII'itY FC.'EI'LJ.I‘CS

create sccurit}r standards

get started with AA

perform security feature review

drive efficiency/consistency with automation

use automated tools along with manual review

start security testing in familiar functional territory

drive tests with sccurity requircments and sccurity

IFCH.U.II'CS

(PTL1] g

emonstrate that your organization’s code ne c
d h yo ga = cod eds h lp

oo

usc mctr_rnal PCIICtI‘ET.[Dn TCSICrs to ﬁnd PI‘D':I].EIHS

provide a solid host/network foundation for software

ensurc host and network security basics arc in place

usc ops data to change dev behavior

identify software bugs found in opecrations monitoring
and feed them back to development

Summary

e Building Security In approach
e Building Security In Maturity Model approach

