
Formal Verification/Methods
Common Criteria

Lecture 11
Oct 25, 2018

Formal Verification
 Formal verification relies on
 Descriptions of the properties or requirements
 Descriptions of systems to be analyzed, and
 Verification techniques showing requirements are

met by system description

 Rely on underlying mathematical logic system and the
proof theory of that system

Formal Approach
 Formal Models use language of mathematics
 Specification languages
 For policies, models and system descriptions
 Well-defined syntax and semantics – based on maths

 Current trends - two general categories
 Inductive verification techniques
 Model checking techniques
 Differences based on
 Intended use, degree of automation, underlying logic

systems, etc.

Verification techniques – Criteria
for classifying verification technologies

 Proof-based vs model-based
 Proof-based

 Formula define premises : embody the system description
 Conclusions: what needs to be proved

 Proof shows how to reach conclusions from premises
 Intermediate formulas need to be found to reach conclusions

 Model-based:
 Premises and conclusions have/exhibit the same truth table

values

 Degree of automation
 manual or automated (degree) & in between

Verification techniques – Criteria
for classifying verification technologies

 Full verification vs property verification
 Does methodology model full system?
 Or just prove certain key properties?

 Examples?

 Intended domain of application
 HW/SW, sequential or concurrent, reactive or

terminating, ..

 Predevelopment vs post development
 As design aid or after design has been completed

Inductive verification
 Typically more general
 May be used
 To find flaws in design
 To verify the properties of computer programs

 Uses theorem provers
 E.g., uses predicate/propositional calculus
 A sequence of proof steps starting with premises of

the formula and eventually reaching a conclusion

Propositional
logic

Boolean
• And
• Or
• Not
• Implies

Propositional
• Axioms
• Inference rules

Model-checking
 Systems modeled as state

transition systems
 Formula may be true in some states

and false in others
 Formulas may change values as

systems evolve

 Properties are formulas in logic
 Truth values are dynamic (Temporal

logic)

 Show: Model and the desired
properties are semantically equivalent
 Model and properties express the same truth

table

 Often used after development is
complete but before a product is
released to the general market
 Primarily for reactive, concurrent systems

Developed primarily
for concurrent/reactive
systems that react to
environment

Formal Verification:
Components
 Formal Specification

 Defined in unambiguous (mathematical) language –
precise semantics!

 Restricted syntax, and well-defined semantics based
on established mathematical concepts
 Example: BLP Model

 Implementation Language
 Generally somewhat constrained

 Formal Semantics relating the two

 Methodology to ensure implementation
ensures specifications met

A formal specification is a
specification written in a formal
language with a restricted syntax
and well-defined semantics based
on well-established mathematical
concepts.

Specification Languages
 Specify WHAT, not HOW
 Valid states of system
 Pre/Post-conditions of operations

 Non-Procedural
 Typical Examples:
 Propositional / Predicate Logic
 Temporal Logic (supports before/after conditions)
 Set-based models

 E.g., RBAC, formal Bell-LaPadula

11

Example:
Primitive commands (HRU)

Create subject s
Creates new row, column in ACM
s does not exist prior to this

Create object o
Creates new column in ACM
o does not exist prior to this

Enter r into a[s, o]
Adds r right for subject s over object o
Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM

12

Example:
Primitive commands (HRU)

Create subject s
Creates new row, column in ACM;
s does not exist prior to this

Precondition: s ∉ S
Postconditions:

S´ = S ∪{ s }, O´ = O ∪{ s }

(∀y ∈ O´)[a´[s, y] = ∅] (row entries for s)
(∀x ∈ S´)[a´[x, s] = ∅] (column entries for s)
(∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

Safety Theorems

Specification Languages
 Must support machine processing

 Strong typing
 Model input/output/errors

 Example: SPECIAL (from SRI)
 First order logic based; Non procedural
 Strongly typed
 Expressive; has capability to describe
 Inputs, constraints, errors, outputs
 A rich set of built-in operators Well suited for

functional specification

SPECIAL has a rich set of built-
in operators, including set
operations such as UNION and
DIFF; logical operators such as
AND, OR, and => (implies);
universal and existential
quantifiers (FORALL, EXISTS);
IF/THEN/ELSE constructs;
arithmetic operators; and many
others.

SPECIAL
 Specification modules for a system

 Specifier defines the scope of the module
 Provides convenience and ease of manipulation

 Sections for describing
 Types,

 E.g., DESIGNATOR type: Allows use of type whose specifics are to be
defined at a lower level of abstraction

 Parameters: Constants and entities

 Assertions
 About elements in the module

 Functions – heart of SPECIAL
 Statement variables and state transitions
 Private or visible outside the module

VFUN: describes functions that
return a value (state)
OFUN/OVFUN: describe state
transitions

Example: SPECIAL

Presenter
Presentation Notes
The OFUN defines the transition occurring when a new element is added to the matrix; It requires that the state variable active for the object be true (in Assertions).This example defines four types. The Subject_ID and Object_ID are to be described at a lower level of abstraction, and so are of type DESIGNATOR. Variables of type Access_Mode may take only the values OBSERVE_ONLY, ALTER_ONLY, and OBSERVE_AND_ALTER. The type Access is a structure with three fields—namely, a Subject_ID, an Object_ID, and an Access_Mode. The first VFUN defines the state variable active for an object to be TRUE. The second VFUN defines the state variable access_matrix to be the set of triplets of (subject, object, right). The OFUN defines the transition occurring when a new element is added to the matrix. It requires that the state variable active for the object be TRUE (in the ASSERTIONS). Then the value of the variable access_matrix after the transition is the value of that variable before the transition, with the additional access right added to the access_matrix variable. An interpretation of this specification is that the triples in active_matrix define the current set of access rights in the system and the active state variable for an object is TRUE if the object is in access_matrix—that is, if the object exists.

Example: Enhanced Hierarchical
Development Methodology

 Based on HDM
 A general purpose design and implementation methodology
 Goal was

 To mechanize and formalize the entire development process
 For reliable, verifiable and maintainable software

 Design specification and verification + implementation specification and
verification
 Key idea; Successive refinement of specification

 Design Specification:
 hierarchy of abstract machines with increasing levels of details

 Proof-based method
 Uses Boyer-Moore Theorem Prover

Levels of Abstraction
The requirements are analyzed and accepted

The model is proven to be internally consistent and is
used as a basis for verification of the lower abstract
machines

The first abstract machine is generally the external
interface specification, often called a Top Level
Specification (TLS) or Formal TLS (FTLS)

Each abstract machine is mapped to successively lower-
level machines, which represent successively lower
levels of specification of the system

The lowest-level specification id the so-called primitive
machine, which is some combination of hardware and
software on which the verified system runs

Requirements

Model

External interfaces
AM1

External interfaces
AM2

External interfaces
AMn

Hierarchy
Specification

Language
for hierarchy

speciation

Abstract machines in
SPECIAL

HDM Module and
Mapping specification

in SPECIAL

Example: Enhanced Hierarchical
Development Methodology

 Hierarchical approach
 Abstract Machines defined at each level

 Hierarchy specification in in Hierarchy Specification Language (HSL)
 AM specification written in SPECIAL

 Mapping Specifications in SPECIAL
 define functionality in terms of machines at next lower layer

 Hierarchy Consistency Checker
 validates consistency of HS, Module Spec and Mapping Spec

 Compiler: programs for each AM in terms of calls to lower level
 that maps a program into a Common Internal Form (CIF) for HDM tools
 Two levels of spec translated to CIF correctness is verified (BMT prover)

 Successfully used on MLS systems
 Few formal policy specifications outside MLS domain

HDM Verification
Used for MLS

Using the mapping two level
specifications Translated to
intermediate form

Boyer-Moore Theorem Prover

 Fully automated
 No interface for commands or directions
 User provides all the theorems, axioms, lemmas,

assertions
 LISP like notation

 Very difficult for proving complex theorems

 Key idea
 Used extended propositional calculus
 Efficiency – to find a proof.

Boyer-Moore Theorem Prover
 Steps:
 Simplify the formula

 Apply axioms, lemmata, theorems

 Reformulate the formula with equivalent terms
 E.g., replace x-1, x by y and y+1

 Substitute equalities
 Generalize the formula by introducing variables
 Eliminate irrelevant terms
 Induct to prove

Gypsy verification
environment (GVE)
 Based on Pascal

 Formal proof and runtime validation support
 Focused on Implementation proofs rather than design proofs
 verification of specification and its implementation

 Also to support incremental development
 Specifications defined on procedures

 Entry conditions, Exit conditions, Assertions
 Proof techniques ensure exit conditions /

assertions met given entry conditions
 Also run-time checking

Other Examples
 Prototype Verification System (PVS)
 Based on EHDM
 Interactive theorem-prover

 Symbolic Model Verifier
 Temporal logic based / Control Tree Logic
 Notion of “path” – program represented as tree
 Statements that condition must hold at a future state, all

future states, all states on one path, etc.

Other Examples

 Formal verification of protocols
 Naval Research Laboratory Protocol Analyzer
 For Crypto protocols
 Key management (distribution)
 Authentication protocols

 Verification of libraries
 Entire system not verified
 But components known okay

 High risk subsystems

Protocol Verification

 Generating protocols that meet security
specifications
 BAN Logic
 Believes, sees, once said

 Assumes cryptography secure
 But cryptography is not enough

Common Criteria:
An Evolutionary Process

Decades of research and development…

US-DOD
TCSEC

1983-85

US-NIST
MSFR
1990

Federal
Criteria

1992

Europe
ITSEC
1991

Canada
TCPEC

1993

Common
Criteria
1993-98

ISO 15408
Common
Criteria
1999

European
National/Region

al Initiatives
1989-93

Canadian
Initiatives
1989-93

Presenter
Presentation Notes
Source: https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/the-common-criteriaThe Common Criteria enable an objective evaluation to validate that a particular product or system satisfies a defined set of security requirements. Although the focus of the Common Criteria is evaluation, it presents a standard that should be of interest to those who develop security requirements.The Common Criteria (CC) were developed through a combined effort of six countries: the United States, Canada, France, Germany, the Netherlands, and the United Kingdom. This effort built on earlier standards, including Europe's Information Technology Security Evaluation Criteria (ITSEC), the United States' Trusted Computer System Evaluation Criteria (TCSEC), and the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) [Caplan 99]. The CC is an international standard (ISO/IEC 15408) for computer security. A Common Criteria evaluation allows an objective evaluation to validate that a particular product satisfies a defined set of security requirements. The focus of the Common Criteria is evaluation of a product or system, and less on development of requirements. Nevertheless, its evaluation role makes it of interest to those who develop security requirements. The Common Criteria allow for seven Evaluation Assurance Levels (EALs), which will be discussed further.

Common Criteria:
Origin

TCSEC
 Known as Orange Book, DoD 5200.28-STD
 Four trust rating divisions (classes)
 D: Minimal protection
 C (C1,C2): Discretionary protection
 B (B1, B2, B3): Mandatory protection
 A (A1): Highly-secure

Presenter
Presentation Notes
Windows NT is classified to C2 levelThere are 4 divisions A, B, C, and D in decreasing order of assurance and features. Thus, a system evaluated at a class in division B has more security features and/or a higher confidence that the features work as intended than a system evaluated at a class in division C.Security functionality requirementsSecurity assurance requirementDocumentation requirement

TCSEC: The Original

 Trusted Computer System Evaluation Criteria
 U.S. Government security evaluation criteria
 Used for evaluating commercial products

 Policy model based on Bell-LaPadula
 Enforcement: Reference Validation Mechanism
 Every reference checked by compact, analyzable

body of code
 Emphasis on Confidentiality
 Metric: Seven trust levels:
 D, C1, C2, B1, B2, B3, A1
 D is “tried but failed”

TCSEC Class Assurances

 C1: Discretionary Protection
 Identification
 Authentication
 Discretionary access control

 C2: Controlled Access Protection
 Object reuse and auditing

 B1: Labeled security protection
 Mandatory access control on limited set of objects
 Informal model of the security policy

TCSEC Class Assurances
(continued)

 B2: Structured Protections
 Trusted path for login
 Principle of Least Privilege
 Formal model of Security Policy
 Covert channel analysis
 Configuration management

 B3: Security Domains
 Full reference validation mechanism
 Constraints on code development process
 Documentation, testing requirements

 A1: Verified Protection
 Formal methods for analysis, verification
 Trusted distribution

How is Evaluation Done?

 Government-sponsored independent
evaluators
 Application: Determine if government cares
 Preliminary Technical Review

 Discussion of process, schedules
 Development Process
 Technical Content, Requirements

 Evaluation Phase

TCSEC:
Evaluation Phase

 Three phases
 Design analysis

 Review of design based on documentation
 Test analysis
 Final Review

 Trained independent evaluation
 Results presented to Technical Review Board
 Must approve before next phase starts

 Ratings Maintenance Program
 Determines when updates trigger new evaluation

TCSEC: Problems

 Based heavily on confidentiality
 Did not address integrity, availability

 Tied security and functionality
 Base TCSEC geared to operating systems
 TNI: Trusted Network Interpretation
 TDI: Trusted Database management System

Interpretation

Later Standards

 CTCPEC – Canadian Trusted Computer Product Evaluation
Criteria

 ITSEC – European Standard (Info Tech SEC)
 Did not define criteria
 Levels correspond to strength of evaluation
 Includes code evaluation, development methodology requirements
 Known vulnerability analysis

 CISR: Commercial outgrowth of TCSEC (Commercial
International Security Requirements)

 FC: Modernization of TCSEC
 FIPS 140: Cryptographic module validation
 Common Criteria: International Standard
 SSE-CMM: Evaluates developer, not product

Presenter
Presentation Notes
CMM levels: Informally, planned and tracked, well-defined, quantitatively controlled, continuous improvement

ITSEC: Levels

 E1: Security target defined, tested
 Must have informal architecture description

 E2: Informal description of design
 Configuration control, distribution control

 E3: Correspondence between code and security target
 E4: Formal model of security policy

 Structured approach to design
 Design level vulnerability analysis

 E5: Correspondence between design and code
 Source code vulnerability analysis

 E6: Formal methods for architecture
 Formal mapping of design to security policy
 Mapping of executable to source code

ITSEC Problems:
 No validation that security requirements

made sense
 Product meets goals
 But does this meet user expectations?

 Inconsistency in evaluations
 Not as formally defined as TCSEC

 Replaced TCSEC, ITSEC
 7 Evaluation Levels (functionally tested to

formally designed and tested)
 Functional requirements, assurance

requirements and evaluation methodology
 Functional and assurance requirements are

organized hierarchically into: class, family,
component, and, element. The components
may have dependencies.

Key terms
 Protection profile
 implementation-independent;
 community/group; government sponsor, etc.

 Security Target
 Set of security requirements that can be stated

explicitly; product specific; implementation
independent

 Target of Evaluation
 Specific product

Presenter
Presentation Notes
The Common Criteria contain a grouping of 60 security functional requirements in 11 classes [Abrams 00]. This grouping allows specific classes of requirements to be evaluated in a standard way in order to arrive at an Evaluation Assurance Level.A package is an intermediate combination of requirements components that allows expression of a set of functional or assurance requirements that meet a subset of security objectives. A Protection Profile (PP) is an implementation-independent set of security requirements for a class of Targets of Evaluation (TOEs) that meet specific consumer needs. An example of a TOE is an IT product or system, together with its documentation and administration, that is the subject of a CC evaluation. Other examples of TOEs can be found in [CC 06].A PP allows security requirements to be expressed using a template in an implementation-independent way, and is thus reusable. This provides benefits when implementing a family of related products or a product line.A Security Target (ST) contains a set of security requirements that can be stated explicitly. An ST includes detailed product-specific information. It can be viewed as a refinement of the PP, and forms the agreed-upon basis for evaluation.

PP/ST Framework
Security
Problem
Definition

Presenter
Presentation Notes
OSP – Organizational Security policiesSecurity Objectives – Security objectives for the operational environment; Security objectives for the TOEThe Common Criteria contain a grouping of 60 security functional requirements in 11 classes [Abrams 00]. This grouping allows specific classes of requirements to be evaluated in a standard way in order to arrive at an Evaluation Assurance Level.A package is an intermediate combination of requirements components that allows expression of a set of functional or assurance requirements that meet a subset of security objectives. A Protection Profile (PP) is an implementation-independent set of security requirements for a class of Targets of Evaluation (TOEs) that meet specific consumer needs. An example of a TOE is an IT product or system, together with its documentation and administration, that is the subject of a CC evaluation. Other examples of TOEs can be found in [CC 06].A PP allows security requirements to be expressed using a template in an implementation-independent way, and is thus reusable. This provides benefits when implementing a family of related products or a product line.A Security Target (ST) contains a set of security requirements that can be stated explicitly. An ST includes detailed product-specific information. It can be viewed as a refinement of the PP, and forms the agreed-upon basis for evaluation. This hierarchy is shown in Figure 1. Note that in Figure 1, development of security objectives would precede identification of security requirements. Another way to view this is to consider the refinement of specifications, as shown in Figure 2, which has a waterfall-like quality. Figure 2 links the specification framework to the TOE or product/system.

CC defines two types of IT security requirements--

Functional Requirements
- for defining security behavor

of the IT product or system:
• implemented requirements

become security functions

Assurance Requirements
- for establishing confidence in

security functions:
• correctness of implementation
• effectiveness in satisfying

security objectives

Examples:
•Identification & Authentication
•Audit
•User Data Protection
•Cryptographic Support

Examples:
•Development
•Configuration Management
•Life Cycle Support
•Testing
•Vulnerability Analysis

IT Security Requirements

Evaluation

Documentation

 Part 1: Introduction and General Model
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5_marked_changes.pdf

 Part 2: Security Functional Requirements
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5_marked_changes.pdf

 Part 3: Security Assurance Requirements
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5_marked_changes.pdf

 CEM (Evaluation Methodology)
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5_marked_changes.pdf

 Latest version: 3.1 Revision 5 (April 2017)
 https://www.commoncriteriaportal.org/cc/

Class Decomposition
Class

Family

Components

Elements Note:
Applicable to both functional
and assurance documents

CC Evaluation 1: Protection Profile

Implementation independent,
domain-specific set of
security requirements

 Narrative Overview
 Conformance Claims
 Security Problem Definitions
 Security Objectives:
 IT Security Requirements

 Functional requirements
drawn from CC set

 Assurance level
 Rationale for objectives and

requirements

CC Evaluation 2: Security Target

Specific requirements
used to evaluate
system

 Narrative introduction
 Conformance claims
 Security Problem

Definition
 Security Objectives

 How met
 Security Requirements

 Environment and
system

 Drawn from CC set

Common Criteria:
Functional Requirements

 323 page document
 11 Classes
 Security Audit, Communication, Cryptography,

User data protection, ID/authentication, Security
Management, Privacy, Protection of Security
Functions, Resource Utilization, Access, Trusted
paths

 Several families per class
 Lattice of components in a family

Common Criteria: Functional Requirements

Class Example:
Communication

 Non-repudiation of origin
1. Selective Proof. Capability to request verification

of origin
2. Enforced Proof. All communication includes

verifiable origin

Class Example: Privacy

1. Pseudonymity
– The TSF shall ensure that [assignment:

set of users and/or subjects] are unable
to determine the real user name bound
to [assignment: list of subjects and/or
operations and/or objects]

– The TSF shall be able to provide
[assignment: number of aliases] aliases
of the real user name to [assignment:
list of subjects]

– The TSF shall [selection: determine an
alias for a user, accept the alias from
the user] and verify that it conforms to
the [assignment: alias metric]

2. Reversible Pseudonimity
• …

3. Alias Pseudonimity
1. …

Presenter
Presentation Notes
TSF TOE Security Functionaliy

Common Criteria:
Assurance Requirements

 247 page document
 10 Classes
 Protection Profile Evaluation, Security Target

Evaluation, Configuration management,
Delivery and operation, Development,
Guidance, Life cycle, Tests, Vulnerability
assessment, Maintenance

 Several families per class
 Lattice of components in family

Common Criteria:
Evaluation Assurance Levels

1. Functionally tested
2. Structurally tested
3. Methodically tested and checked
4. Methodically designed, tested, and

reviewed
5. Semi-formally designed and tested
6. Semi-formally verified design and tested
7. Formally verified design and tested

Common Criteria:
Evaluation Process

 National Authority authorizes evaluators
 U.S.: NIST accredits commercial organizations
 Fee charged for evaluation

 Team of four to six evaluators
 Develop work plan and clear with NIST
 Evaluate Protection Profile first
 If successful, can evaluate Security Target

Defining Requirements
ISO/IEC Standard

15408

A flex ible, robust catalogue of
standardized IT security

requirements
(features and assurances)

Protection Profiles

Consumer-driven security
requirements in specific
information technology

areas

 Operating Systems
 Database Systems
 Firewalls
 Smart Cards
 Applications
 Biometrics
 Routers
 VPNs

Access Control
Identification

Authentication
Audit

Cryptography

Industry Responds

Protection Profile

Consumer statement of IT security
requirements to industry in a

specific information technology
area

Security Targets

Vendor statements of
security claims for their IT

products

 CISCO Firewall
 Lucent Firewall
 Checkpoint Firewall
 Network Assoc. FWSecurity

Features
and

Assurances

Firewall
Security

Requirements

Demonstrating Conformance

IT Products

Vendors bring IT products to
independent, impartial

testing facilities for security
evaluation

Security
Features

and
Assurances

Private sector, accredited
security testing laboratories

conduct evaluations

Common
Criteria

Testing Labs

Test results submitted
to the National

Information Assurance
Partnership (NIAP) for

post-evaluation
validation

Test
Reports

Validating Test Results

Laboratory submits
test report to

Validation Body

Test
Report

Validation Body validates
laboratory’s test results

Common
Criteria

Validation
Body

NIAP issues Validation
Report and Common
Criteria Certificate

Validation
Report

National Information Assurance
Partnership

Common Criteria
Certificate

TM

Common Criteria: Statistics

Source:
https://www.comm
oncriteriaportal.org
/products/stats/

Common Criteria: Statistics

Source: https://www.commoncriteriaportal.org/products/stats/

Common Criteria: Statistics

Source: https://www.commoncriteriaportal.org/pps/

Certified products: https://www.commoncriteriaportal.org/products/

https://www.commoncriteriaportal.org/pps/
https://www.commoncriteriaportal.org/products/

Summary
 Assurance
 Formal methods
 Common Criteria

	Slide Number 1
	Formal Verification
	Formal Approach
	Verification techniques – Criteria for classifying verification technologies
	Verification techniques – Criteria for classifying verification technologies
	Inductive verification
	Propositional �logic
	Model-checking
	Formal Verification:�Components
	Specification Languages
	Example:�Primitive commands (HRU)
	Example:�Primitive commands (HRU)
	Specification Languages
	SPECIAL
	Example: SPECIAL
	Example: Enhanced Hierarchical Development Methodology
	Levels of Abstraction
	Example: Enhanced Hierarchical Development Methodology
	HDM Verification
	Boyer-Moore Theorem Prover
	Boyer-Moore Theorem Prover
	Gypsy verification environment (GVE)
	Other Examples
	Other Examples
	Protocol Verification
	Common Criteria:�An Evolutionary Process
	Common Criteria:�Origin
	TCSEC
	TCSEC: The Original
	TCSEC Class Assurances
	TCSEC Class Assurances�(continued)
	How is Evaluation Done?
	TCSEC:�Evaluation Phase
	TCSEC: Problems
	Later Standards
	ITSEC: Levels
	ITSEC Problems:
	Slide Number 38
	Key terms
	PP/ST Framework
	Slide Number 41
	Slide Number 42
	Evaluation
	Documentation
	Class Decomposition
	CC Evaluation 1: Protection Profile
	CC Evaluation 2: Security Target
	Common Criteria:�Functional Requirements
	Common Criteria: Functional Requirements�
	Class Example:�Communication
	Class Example: Privacy
	Common Criteria:�Assurance Requirements
	Common Criteria:�Evaluation Assurance Levels
	Common Criteria:�Evaluation Process
	Defining Requirements
	Industry Responds
	Demonstrating Conformance
	Validating Test Results
	Common Criteria: Statistics�
	Common Criteria: Statistics�
	Common Criteria: Statistics�
	Summary

