
Formal Verification/Methods
Common Criteria

Lecture 11
Oct 25, 2018

Formal Verification
 Formal verification relies on
 Descriptions of the properties or requirements
 Descriptions of systems to be analyzed, and
 Verification techniques showing requirements are

met by system description

 Rely on underlying mathematical logic system and the
proof theory of that system

Formal Approach
 Formal Models use language of mathematics
 Specification languages
 For policies, models and system descriptions
 Well-defined syntax and semantics – based on maths

 Current trends - two general categories
 Inductive verification techniques
 Model checking techniques
 Differences based on
 Intended use, degree of automation, underlying logic

systems, etc.

Verification techniques – Criteria
for classifying verification technologies

 Proof-based vs model-based
 Proof-based

 Formula define premises : embody the system description
 Conclusions: what needs to be proved

 Proof shows how to reach conclusions from premises
 Intermediate formulas need to be found to reach conclusions

 Model-based:
 Premises and conclusions have/exhibit the same truth table

values

 Degree of automation
 manual or automated (degree) & in between

Verification techniques – Criteria
for classifying verification technologies

 Full verification vs property verification
 Does methodology model full system?
 Or just prove certain key properties?

 Examples?

 Intended domain of application
 HW/SW, sequential or concurrent, reactive or

terminating, ..

 Predevelopment vs post development
 As design aid or after design has been completed

Inductive verification
 Typically more general
 May be used
 To find flaws in design
 To verify the properties of computer programs

 Uses theorem provers
 E.g., uses predicate/propositional calculus
 A sequence of proof steps starting with premises of

the formula and eventually reaching a conclusion

Propositional
logic

Boolean
• And
• Or
• Not
• Implies

Propositional
• Axioms
• Inference rules

Model-checking
 Systems modeled as state

transition systems
 Formula may be true in some states

and false in others
 Formulas may change values as

systems evolve

 Properties are formulas in logic
 Truth values are dynamic (Temporal

logic)

 Show: Model and the desired
properties are semantically equivalent
 Model and properties express the same truth

table

 Often used after development is
complete but before a product is
released to the general market
 Primarily for reactive, concurrent systems

Developed primarily
for concurrent/reactive
systems that react to
environment

Formal Verification:
Components
 Formal Specification

 Defined in unambiguous (mathematical) language –
precise semantics!

 Restricted syntax, and well-defined semantics based
on established mathematical concepts
 Example: BLP Model

 Implementation Language
 Generally somewhat constrained

 Formal Semantics relating the two

 Methodology to ensure implementation
ensures specifications met

A formal specification is a
specification written in a formal
language with a restricted syntax
and well-defined semantics based
on well-established mathematical
concepts.

Specification Languages
 Specify WHAT, not HOW
 Valid states of system
 Pre/Post-conditions of operations

 Non-Procedural
 Typical Examples:
 Propositional / Predicate Logic
 Temporal Logic (supports before/after conditions)
 Set-based models

 E.g., RBAC, formal Bell-LaPadula

11

Example:
Primitive commands (HRU)

Create subject s
Creates new row, column in ACM
s does not exist prior to this

Create object o
Creates new column in ACM
o does not exist prior to this

Enter r into a[s, o]
Adds r right for subject s over object o
Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM

12

Example:
Primitive commands (HRU)

Create subject s
Creates new row, column in ACM;
s does not exist prior to this

Precondition: s ∉ S
Postconditions:

S´ = S ∪{ s }, O´ = O ∪{ s }

(∀y ∈ O´)[a´[s, y] = ∅] (row entries for s)
(∀x ∈ S´)[a´[x, s] = ∅] (column entries for s)
(∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

Safety Theorems

Specification Languages
 Must support machine processing

 Strong typing
 Model input/output/errors

 Example: SPECIAL (from SRI)
 First order logic based; Non procedural
 Strongly typed
 Expressive; has capability to describe
 Inputs, constraints, errors, outputs
 A rich set of built-in operators Well suited for

functional specification

SPECIAL has a rich set of built-
in operators, including set
operations such as UNION and
DIFF; logical operators such as
AND, OR, and => (implies);
universal and existential
quantifiers (FORALL, EXISTS);
IF/THEN/ELSE constructs;
arithmetic operators; and many
others.

SPECIAL
 Specification modules for a system

 Specifier defines the scope of the module
 Provides convenience and ease of manipulation

 Sections for describing
 Types,

 E.g., DESIGNATOR type: Allows use of type whose specifics are to be
defined at a lower level of abstraction

 Parameters: Constants and entities

 Assertions
 About elements in the module

 Functions – heart of SPECIAL
 Statement variables and state transitions
 Private or visible outside the module

VFUN: describes functions that
return a value (state)
OFUN/OVFUN: describe state
transitions

Example: SPECIAL

Presenter
Presentation Notes
The OFUN defines the transition occurring when a new element is added to the matrix; It requires that the state variable active for the object be true (in Assertions).

This example defines four types. The Subject_ID and Object_ID are to be described at a lower level of abstraction, and so are of type DESIGNATOR.

Variables of type Access_Mode may take only the values OBSERVE_ONLY, ALTER_ONLY, and OBSERVE_AND_ALTER.

The type Access is a structure with three fields—namely, a Subject_ID, an Object_ID, and an Access_Mode.

The first VFUN defines the state variable active for an object to be TRUE.

The second VFUN defines the state variable access_matrix to be the set of triplets of (subject, object, right).

The OFUN defines the transition occurring when a new element is added to the matrix. It requires that the state variable active for the object be TRUE (in the ASSERTIONS). Then the value of the variable access_matrix after the transition is the value of that variable before the transition, with the additional access right added to the access_matrix variable. An interpretation of this specification is that the triples in active_matrix define the current set of access rights in the system and the active state variable for an object is TRUE if the object is in access_matrix—that is, if the object exists.

Example: Enhanced Hierarchical
Development Methodology

 Based on HDM
 A general purpose design and implementation methodology
 Goal was

 To mechanize and formalize the entire development process
 For reliable, verifiable and maintainable software

 Design specification and verification + implementation specification and
verification
 Key idea; Successive refinement of specification

 Design Specification:
 hierarchy of abstract machines with increasing levels of details

 Proof-based method
 Uses Boyer-Moore Theorem Prover

Levels of Abstraction
The requirements are analyzed and accepted

The model is proven to be internally consistent and is
used as a basis for verification of the lower abstract
machines

The first abstract machine is generally the external
interface specification, often called a Top Level
Specification (TLS) or Formal TLS (FTLS)

Each abstract machine is mapped to successively lower-
level machines, which represent successively lower
levels of specification of the system

The lowest-level specification id the so-called primitive
machine, which is some combination of hardware and
software on which the verified system runs

Requirements

Model

External interfaces
AM1

External interfaces
AM2

External interfaces
AMn

Hierarchy
Specification

Language
for hierarchy

speciation

Abstract machines in
SPECIAL

HDM Module and
Mapping specification

in SPECIAL

Example: Enhanced Hierarchical
Development Methodology

 Hierarchical approach
 Abstract Machines defined at each level

 Hierarchy specification in in Hierarchy Specification Language (HSL)
 AM specification written in SPECIAL

 Mapping Specifications in SPECIAL
 define functionality in terms of machines at next lower layer

 Hierarchy Consistency Checker
 validates consistency of HS, Module Spec and Mapping Spec

 Compiler: programs for each AM in terms of calls to lower level
 that maps a program into a Common Internal Form (CIF) for HDM tools
 Two levels of spec translated to CIF  correctness is verified (BMT prover)

 Successfully used on MLS systems
 Few formal policy specifications outside MLS domain

HDM Verification
Used for MLS

Using the mapping two level
specifications Translated to
intermediate form

Boyer-Moore Theorem Prover

 Fully automated
 No interface for commands or directions
 User provides all the theorems, axioms, lemmas,

assertions
 LISP like notation

 Very difficult for proving complex theorems

 Key idea
 Used extended propositional calculus
 Efficiency – to find a proof.

Boyer-Moore Theorem Prover
 Steps:
 Simplify the formula

 Apply axioms, lemmata, theorems

 Reformulate the formula with equivalent terms
 E.g., replace x-1, x by y and y+1

 Substitute equalities
 Generalize the formula by introducing variables
 Eliminate irrelevant terms
 Induct to prove

Gypsy verification
environment (GVE)
 Based on Pascal

 Formal proof and runtime validation support
 Focused on Implementation proofs rather than design proofs
 verification of specification and its implementation

 Also to support incremental development
 Specifications defined on procedures

 Entry conditions, Exit conditions, Assertions
 Proof techniques ensure exit conditions /

assertions met given entry conditions
 Also run-time checking

Other Examples
 Prototype Verification System (PVS)
 Based on EHDM
 Interactive theorem-prover

 Symbolic Model Verifier
 Temporal logic based / Control Tree Logic
 Notion of “path” – program represented as tree
 Statements that condition must hold at a future state, all

future states, all states on one path, etc.

Other Examples

 Formal verification of protocols
 Naval Research Laboratory Protocol Analyzer
 For Crypto protocols
 Key management (distribution)
 Authentication protocols

 Verification of libraries
 Entire system not verified
 But components known okay

 High risk subsystems

Protocol Verification

 Generating protocols that meet security
specifications
 BAN Logic
 Believes, sees, once said

 Assumes cryptography secure
 But cryptography is not enough

Common Criteria:
An Evolutionary Process

Decades of research and development…

US-DOD
TCSEC

1983-85

US-NIST
MSFR
1990

Federal
Criteria

1992

Europe
ITSEC
1991

Canada
TCPEC

1993

Common
Criteria
1993-98

ISO 15408
Common
Criteria
1999

European
National/Region

al Initiatives
1989-93

Canadian
Initiatives
1989-93

Presenter
Presentation Notes
Source: https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/the-common-criteria

The Common Criteria enable an objective evaluation to validate that a particular product or system satisfies a defined set of security requirements. Although the focus of the Common Criteria is evaluation, it presents a standard that should be of interest to those who develop security requirements.

The Common Criteria (CC) were developed through a combined effort of six countries: the United States, Canada, France, Germany, the Netherlands, and the United Kingdom. This effort built on earlier standards, including Europe's Information Technology Security Evaluation Criteria (ITSEC), the United States' Trusted Computer System Evaluation Criteria (TCSEC), and the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) [Caplan 99]. The CC is an international standard (ISO/IEC 15408) for computer security. A Common Criteria evaluation allows an objective evaluation to validate that a particular product satisfies a defined set of security requirements. The focus of the Common Criteria is evaluation of a product or system, and less on development of requirements. Nevertheless, its evaluation role makes it of interest to those who develop security requirements. The Common Criteria allow for seven Evaluation Assurance Levels (EALs), which will be discussed further.

Common Criteria:
Origin

TCSEC
 Known as Orange Book, DoD 5200.28-STD
 Four trust rating divisions (classes)
 D: Minimal protection
 C (C1,C2): Discretionary protection
 B (B1, B2, B3): Mandatory protection
 A (A1): Highly-secure

Presenter
Presentation Notes
Windows NT is classified to C2 level
There are 4 divisions A, B, C, and D in decreasing order of assurance and features. Thus, a system evaluated at a class in division B has more security features and/or a higher confidence that the features work as intended than a system evaluated at a class in division C.
Security functionality requirements
Security assurance requirement
Documentation requirement

TCSEC: The Original

 Trusted Computer System Evaluation Criteria
 U.S. Government security evaluation criteria
 Used for evaluating commercial products

 Policy model based on Bell-LaPadula
 Enforcement: Reference Validation Mechanism
 Every reference checked by compact, analyzable

body of code
 Emphasis on Confidentiality
 Metric: Seven trust levels:
 D, C1, C2, B1, B2, B3, A1
 D is “tried but failed”

TCSEC Class Assurances

 C1: Discretionary Protection
 Identification
 Authentication
 Discretionary access control

 C2: Controlled Access Protection
 Object reuse and auditing

 B1: Labeled security protection
 Mandatory access control on limited set of objects
 Informal model of the security policy

TCSEC Class Assurances
(continued)

 B2: Structured Protections
 Trusted path for login
 Principle of Least Privilege
 Formal model of Security Policy
 Covert channel analysis
 Configuration management

 B3: Security Domains
 Full reference validation mechanism
 Constraints on code development process
 Documentation, testing requirements

 A1: Verified Protection
 Formal methods for analysis, verification
 Trusted distribution

How is Evaluation Done?

 Government-sponsored independent
evaluators
 Application: Determine if government cares
 Preliminary Technical Review

 Discussion of process, schedules
 Development Process
 Technical Content, Requirements

 Evaluation Phase

TCSEC:
Evaluation Phase

 Three phases
 Design analysis

 Review of design based on documentation
 Test analysis
 Final Review

 Trained independent evaluation
 Results presented to Technical Review Board
 Must approve before next phase starts

 Ratings Maintenance Program
 Determines when updates trigger new evaluation

TCSEC: Problems

 Based heavily on confidentiality
 Did not address integrity, availability

 Tied security and functionality
 Base TCSEC geared to operating systems
 TNI: Trusted Network Interpretation
 TDI: Trusted Database management System

Interpretation

Later Standards

 CTCPEC – Canadian Trusted Computer Product Evaluation
Criteria

 ITSEC – European Standard (Info Tech SEC)
 Did not define criteria
 Levels correspond to strength of evaluation
 Includes code evaluation, development methodology requirements
 Known vulnerability analysis

 CISR: Commercial outgrowth of TCSEC (Commercial
International Security Requirements)

 FC: Modernization of TCSEC
 FIPS 140: Cryptographic module validation
 Common Criteria: International Standard
 SSE-CMM: Evaluates developer, not product

Presenter
Presentation Notes
CMM levels: Informally, planned and tracked, well-defined, quantitatively controlled, continuous improvement

ITSEC: Levels

 E1: Security target defined, tested
 Must have informal architecture description

 E2: Informal description of design
 Configuration control, distribution control

 E3: Correspondence between code and security target
 E4: Formal model of security policy

 Structured approach to design
 Design level vulnerability analysis

 E5: Correspondence between design and code
 Source code vulnerability analysis

 E6: Formal methods for architecture
 Formal mapping of design to security policy
 Mapping of executable to source code

ITSEC Problems:
 No validation that security requirements

made sense
 Product meets goals
 But does this meet user expectations?

 Inconsistency in evaluations
 Not as formally defined as TCSEC

 Replaced TCSEC, ITSEC
 7 Evaluation Levels (functionally tested to

formally designed and tested)
 Functional requirements, assurance

requirements and evaluation methodology
 Functional and assurance requirements are

organized hierarchically into: class, family,
component, and, element. The components
may have dependencies.

Key terms
 Protection profile
 implementation-independent;
 community/group; government sponsor, etc.

 Security Target
 Set of security requirements that can be stated

explicitly; product specific; implementation
independent

 Target of Evaluation
 Specific product

Presenter
Presentation Notes

The Common Criteria contain a grouping of 60 security functional requirements in 11 classes [Abrams 00]. This grouping allows specific classes of requirements to be evaluated in a standard way in order to arrive at an Evaluation Assurance Level.

A package is an intermediate combination of requirements components that allows expression of a set of functional or assurance requirements that meet a subset of security objectives.

A Protection Profile (PP) is an implementation-independent set of security requirements for a class of Targets of Evaluation (TOEs) that meet specific consumer needs. An example of a TOE is an IT product or system, together with its documentation and administration, that is the subject of a CC evaluation. Other examples of TOEs can be found in [CC 06].

A PP allows security requirements to be expressed using a template in an implementation-independent way, and is thus reusable. This provides benefits when implementing a family of related products or a product line.

A Security Target (ST) contains a set of security requirements that can be stated explicitly. An ST includes detailed product-specific information. It can be viewed as a refinement of the PP, and forms the agreed-upon basis for evaluation.

PP/ST Framework
Security
Problem
Definition

Presenter
Presentation Notes
OSP – Organizational Security policies

Security Objectives – Security objectives for the operational environment; Security objectives for the TOE

The Common Criteria contain a grouping of 60 security functional requirements in 11 classes [Abrams 00]. This grouping allows specific classes of requirements to be evaluated in a standard way in order to arrive at an Evaluation Assurance Level.

A package is an intermediate combination of requirements components that allows expression of a set of functional or assurance requirements that meet a subset of security objectives.

A Protection Profile (PP) is an implementation-independent set of security requirements for a class of Targets of Evaluation (TOEs) that meet specific consumer needs. An example of a TOE is an IT product or system, together with its documentation and administration, that is the subject of a CC evaluation. Other examples of TOEs can be found in [CC 06].

A PP allows security requirements to be expressed using a template in an implementation-independent way, and is thus reusable. This provides benefits when implementing a family of related products or a product line.

A Security Target (ST) contains a set of security requirements that can be stated explicitly. An ST includes detailed product-specific information. It can be viewed as a refinement of the PP, and forms the agreed-upon basis for evaluation.

This hierarchy is shown in Figure 1. Note that in Figure 1, development of security objectives would precede identification of security requirements. Another way to view this is to consider the refinement of specifications, as shown in Figure 2, which has a waterfall-like quality. Figure 2 links the specification framework to the TOE or product/system.

CC defines two types of IT security requirements--

Functional Requirements
- for defining security behavor

of the IT product or system:
• implemented requirements

become security functions

Assurance Requirements
- for establishing confidence in

security functions:
• correctness of implementation
• effectiveness in satisfying

security objectives

Examples:
•Identification & Authentication
•Audit
•User Data Protection
•Cryptographic Support

Examples:
•Development
•Configuration Management
•Life Cycle Support
•Testing
•Vulnerability Analysis

IT Security Requirements

Evaluation

Documentation

 Part 1: Introduction and General Model
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5_marked_changes.pdf

 Part 2: Security Functional Requirements
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5_marked_changes.pdf

 Part 3: Security Assurance Requirements
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5_marked_changes.pdf

 CEM (Evaluation Methodology)
 https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5_marked_changes.pdf

 Latest version: 3.1 Revision 5 (April 2017)
 https://www.commoncriteriaportal.org/cc/

Class Decomposition
Class

Family

Components

Elements Note:
Applicable to both functional
and assurance documents

CC Evaluation 1: Protection Profile

Implementation independent,
domain-specific set of
security requirements

 Narrative Overview
 Conformance Claims
 Security Problem Definitions
 Security Objectives:
 IT Security Requirements

 Functional requirements
drawn from CC set

 Assurance level
 Rationale for objectives and

requirements

CC Evaluation 2: Security Target

Specific requirements
used to evaluate
system

 Narrative introduction
 Conformance claims
 Security Problem

Definition
 Security Objectives

 How met
 Security Requirements

 Environment and
system

 Drawn from CC set

Common Criteria:
Functional Requirements

 323 page document
 11 Classes
 Security Audit, Communication, Cryptography,

User data protection, ID/authentication, Security
Management, Privacy, Protection of Security
Functions, Resource Utilization, Access, Trusted
paths

 Several families per class
 Lattice of components in a family

Common Criteria: Functional Requirements

Class Example:
Communication

 Non-repudiation of origin
1. Selective Proof. Capability to request verification

of origin
2. Enforced Proof. All communication includes

verifiable origin

Class Example: Privacy

1. Pseudonymity
– The TSF shall ensure that [assignment:

set of users and/or subjects] are unable
to determine the real user name bound
to [assignment: list of subjects and/or
operations and/or objects]

– The TSF shall be able to provide
[assignment: number of aliases] aliases
of the real user name to [assignment:
list of subjects]

– The TSF shall [selection: determine an
alias for a user, accept the alias from
the user] and verify that it conforms to
the [assignment: alias metric]

2. Reversible Pseudonimity
• …

3. Alias Pseudonimity
1. …

Presenter
Presentation Notes
TSF  TOE Security Functionaliy

Common Criteria:
Assurance Requirements

 247 page document
 10 Classes
 Protection Profile Evaluation, Security Target

Evaluation, Configuration management,
Delivery and operation, Development,
Guidance, Life cycle, Tests, Vulnerability
assessment, Maintenance

 Several families per class
 Lattice of components in family

Common Criteria:
Evaluation Assurance Levels

1. Functionally tested
2. Structurally tested
3. Methodically tested and checked
4. Methodically designed, tested, and

reviewed
5. Semi-formally designed and tested
6. Semi-formally verified design and tested
7. Formally verified design and tested

Common Criteria:
Evaluation Process

 National Authority authorizes evaluators
 U.S.: NIST accredits commercial organizations
 Fee charged for evaluation

 Team of four to six evaluators
 Develop work plan and clear with NIST
 Evaluate Protection Profile first
 If successful, can evaluate Security Target

Defining Requirements
ISO/IEC Standard

15408

A flex ible, robust catalogue of
standardized IT security

requirements
(features and assurances)

Protection Profiles

Consumer-driven security
requirements in specific
information technology

areas

 Operating Systems
 Database Systems
 Firewalls
 Smart Cards
 Applications
 Biometrics
 Routers
 VPNs

Access Control
Identification

Authentication
Audit

Cryptography

Industry Responds

Protection Profile

Consumer statement of IT security
requirements to industry in a

specific information technology
area

Security Targets

Vendor statements of
security claims for their IT

products

 CISCO Firewall
 Lucent Firewall
 Checkpoint Firewall
 Network Assoc. FWSecurity

Features
and

Assurances

Firewall
Security

Requirements

Demonstrating Conformance

IT Products

Vendors bring IT products to
independent, impartial

testing facilities for security
evaluation

Security
Features

and
Assurances

Private sector, accredited
security testing laboratories

conduct evaluations

Common
Criteria

Testing Labs

Test results submitted
to the National

Information Assurance
Partnership (NIAP) for

post-evaluation
validation

Test
Reports

Validating Test Results

Laboratory submits
test report to

Validation Body

Test
Report

Validation Body validates
laboratory’s test results

Common
Criteria

Validation
Body

NIAP issues Validation
Report and Common
Criteria Certificate

Validation
Report

National Information Assurance
Partnership

Common Criteria
Certificate

TM

Common Criteria: Statistics

Source:
https://www.comm
oncriteriaportal.org
/products/stats/

Common Criteria: Statistics

Source: https://www.commoncriteriaportal.org/products/stats/

Common Criteria: Statistics

Source: https://www.commoncriteriaportal.org/pps/

Certified products: https://www.commoncriteriaportal.org/products/

https://www.commoncriteriaportal.org/pps/
https://www.commoncriteriaportal.org/products/

Summary
 Assurance
 Formal methods
 Common Criteria

	Slide Number 1
	Formal Verification
	Formal Approach
	Verification techniques – Criteria for classifying verification technologies
	Verification techniques – Criteria for classifying verification technologies
	Inductive verification
	Propositional �logic
	Model-checking
	Formal Verification:�Components
	Specification Languages
	Example:�Primitive commands (HRU)
	Example:�Primitive commands (HRU)
	Specification Languages
	SPECIAL
	Example: SPECIAL
	Example: Enhanced Hierarchical Development Methodology
	Levels of Abstraction
	Example: Enhanced Hierarchical Development Methodology
	HDM Verification
	Boyer-Moore Theorem Prover
	Boyer-Moore Theorem Prover
	Gypsy verification environment (GVE)
	Other Examples
	Other Examples
	Protocol Verification
	Common Criteria:�An Evolutionary Process
	Common Criteria:�Origin
	TCSEC
	TCSEC: The Original
	TCSEC Class Assurances
	TCSEC Class Assurances�(continued)‏
	How is Evaluation Done?
	TCSEC:�Evaluation Phase
	TCSEC: Problems
	Later Standards
	ITSEC: Levels
	ITSEC Problems:
	Slide Number 38
	Key terms
	PP/ST Framework
	Slide Number 41
	Slide Number 42
	Evaluation
	Documentation
	Class Decomposition
	CC Evaluation 1: Protection Profile
	CC Evaluation 2: Security Target
	Common Criteria:�Functional Requirements
	Common Criteria: Functional Requirements�
	Class Example:�Communication
	Class Example: Privacy
	Common Criteria:�Assurance Requirements
	Common Criteria:�Evaluation Assurance Levels
	Common Criteria:�Evaluation Process
	Defining Requirements
	Industry Responds
	Demonstrating Conformance
	Validating Test Results
	Common Criteria: Statistics�
	Common Criteria: Statistics�
	Common Criteria: Statistics�
	Summary

