Formal Verification/Methods Common Criteria

Lecture 11 Oct 25, 2018

Formal Verification

- Formal verification relies on
 - Descriptions of the properties or requirements
 - Descriptions of systems to be analyzed, and
 - Verification techniques showing requirements are met by system description
 - Rely on underlying mathematical logic system and the proof theory of that system

Formal Approach

- Formal Models use language of mathematics
 - Specification languages
 - For policies, models and system descriptions
 - Well-defined syntax and semantics based on maths
- Current trends two general categories
 - Inductive verification techniques
 - Model checking techniques
 - Differences based on
 - Intended use, degree of automation, underlying logic systems, etc.

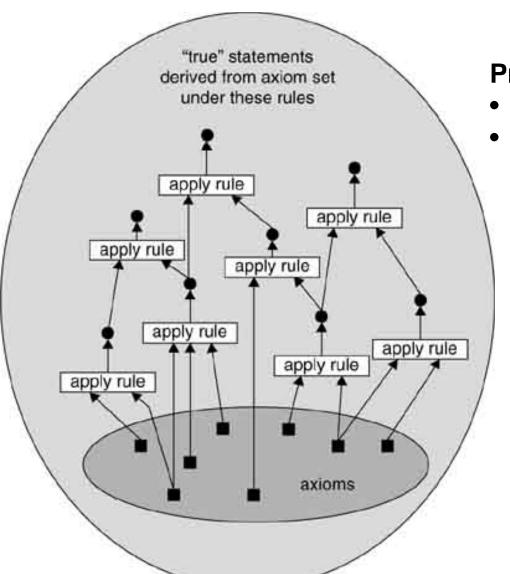
Verification techniques — Criteria for classifying verification technologies

- Proof-based vs model-based
 - Proof-based
 - Formula define premises: embody the system description
 - Conclusions: what needs to be proved
 - Proof shows how to reach conclusions from premises
 - Intermediate formulas need to be found to reach conclusions
 - Model-based:
 - Premises and conclusions have/exhibit the same truth table values
- Degree of automation
 - manual or automated (degree) & in between

Verification techniques — Criteria for classifying verification technologies

- Full verification vs property verification
 - Does methodology model full system?
 - Or just prove certain key properties?
 - Examples?
- Intended domain of application
 - HW/SW, sequential or concurrent, reactive or terminating, ...
- Predevelopment vs post development
 - As design aid or after design has been completed

Inductive verification



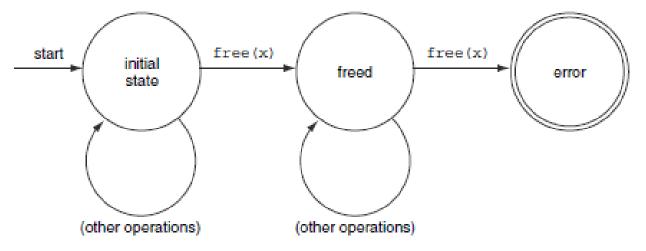
- Typically more general
- May be used
 - To find flaws in design
 - To verify the properties of computer programs
- Uses theorem provers
 - E.g., uses predicate/propositional calculus
 - A sequence of proof steps starting with premises of the formula and eventually reaching a conclusion

Propositional logic

Boolean

- And
- Or
- Not
- **Implies**

Propositional


- **Axioms**
- Inference rules

- Systems modeled as state transition systems
 - Formula may be true in some states and false in others
 - Formulas may change values as systems evolve
- Properties are formulas in logic
 - Truth values are dynamic (Temporal logic)

- Show: Model and the desired properties are semantically equivalent
 - Model and properties express the same truth table
- Often used after development is complete but before a product is released to the general market
 - Primarily for reactive, concurrent systems

Developed primarily for concurrent/reactive systems that react to environment

Formal Verification: Components

- Formal Specification
 - Defined in unambiguous (mathematical) language precise semantics!
 - Restricted syntax, and well-defined semantics based on established mathematical concepts
 - Example: BLP Model
- Implementation Language
 - Generally somewhat constrained
- Formal Semantics relating the two
- Methodology to ensure implementation ensures specifications met

A formal specification is a specification written in a formal language with a restricted syntax and well-defined semantics based on well-established mathematical concepts.

Specification Languages

- Specify WHAT, not HOW
 - Valid states of system
 - Pre/Post-conditions of operations
- Non-Procedural
- Typical Examples:
 - Propositional / Predicate Logic
 - Temporal Logic (supports before/after conditions)
 - Set-based models
 - E.g., RBAC, formal Bell-LaPadula

Example: Primitive commands (HRU)

Create subject s	S does not exist prior to this	
Create object o	Creates new column in ACM o does not exist prior to this	
Enter r into $a[s, o]$	Adds r right for subject s over object o Ineffective if r is already there	
Delete r from $a[s, o]$	Removes r right from subject s over object o	
Destroy subject s	Deletes row, column from ACM;	
Destroy object o	Deletes column from ACM	11

Example: Primitive commands (HRU)

Create subject s

Creates new row, column in ACM; s does not exist prior to this

```
Precondition: s \notin S

Postconditions:

S' = S \cup \{ s \}, O' = O \cup \{ s \}

(\forall y \in O')[a'[s, y] = \emptyset] (row entries for s)

(\forall x \in S')[a'[x, s] = \emptyset] (column entries for s)

(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]
```

Safety Theorems

Specification Languages

- Must support machine processing
 - Strong typing
 - Model input/output/errors
- Example: SPECIAL (from SRI)
 - First order logic based; Non procedural
 - Strongly typed
 - Expressive; has capability to describe
 - Inputs, constraints, errors, outputs
 - A rich set of built-in operators

SPECIAL has a rich set of builtin operators, including set operations such as UNION and DIFF; logical operators such as AND, OR, and => (implies); universal and existential quantifiers (FORALL, EXISTS); IF/THEN/ELSE constructs; arithmetic operators; and many others.

Well suited for functional specification

SPECIAL

- Specification modules for a system
 - Specifier defines the scope of the module
 - Provides convenience and ease of manipulation
- Sections for describing
 - Types,
 - E.g., DESIGNATOR type: Allows use of type whose specifics are to be defined at a lower level of abstraction
 - Parameters: Constants and entities
 - Assertions
 - About elements in the module
 - Functions heart of SPECIAL
 - Statement variables and state transitions
 - Private or visible outside the module

VFUN: describes functions that

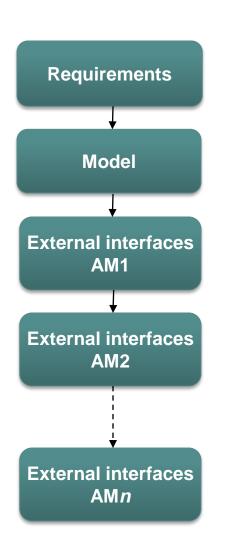
return a value (state)

OFUN/OVFUN: describe state

transitions

Example: SPECIAL

```
MODULE Bell LaPadula Model Give access
TYPES
Subject ID: DESIGNATOR;
Object ID: DESIGNATOR;
Access Mode: {OBSERVE ONLY, ALTER ONLY, OBSERVE AND ALTER};
Access: STRUCT OF( Subject ID subject;
                       Object ID object;
                       Access Mode mode);
FUNCTIONS
VFUN active (Object ID object) -> BOOLEAN active:
HIDDEN:
INITIALLY
      TRUE:
VFUN access matrix () -> Accesses accesses:
HIDDEN:
INITIALLY
      FORALL Access a: a INSET accesses => active (a.object);
OFUN give access (Subject ID giver; Access access);
ASSERTIONS
      active(access.object) = TRUE;
EFFECTS
      'access matrix() = access matrix() UNION (access);
END MODULE
```



Example: Enhanced Hierarchical Development Methodology

- Based on HDM
 - A general purpose design and implementation methodology
 - Goal was
 - To mechanize and formalize the entire development process
 - For reliable, verifiable and maintainable software
 - Design specification and verification + implementation specification and verification
 - Key idea; Successive refinement of specification
 - Design Specification:
 - hierarchy of abstract machines with increasing levels of details
- Proof-based method
 - Uses Boyer-Moore Theorem Prover

Levels of Abstraction

The requirements are analyzed and accepted

The model is proven to be internally consistent and is used as a basis for verification of the lower abstract machines

The first abstract machine is generally the external interface specification, often called a Top Level Specification (TLS) or Formal TLS (FTLS)

Each abstract machine is mapped to successively lowerlevel machines, which represent successively lower levels of specification of the system

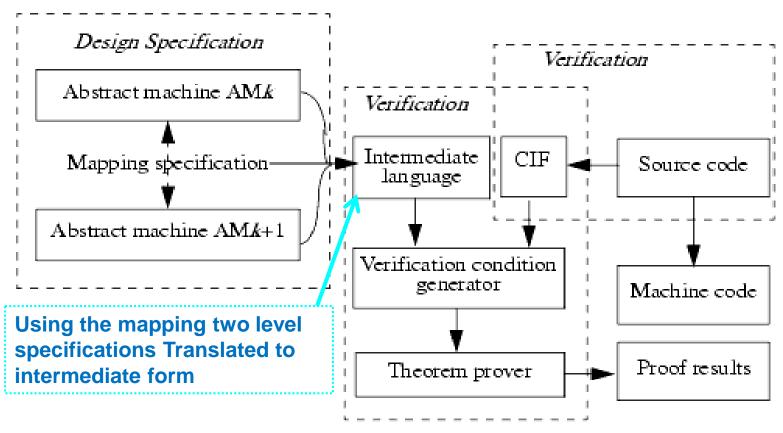
The lowest-level specification id the so-called primitive machine, which is some combination of hardware and software on which the verified system runs

Hierarchy
Specification
Language
for hierarchy
speciation

Abstract machines in SPECIAL

HDM Module and Mapping specification in SPECIAL

Example: Enhanced Hierarchical Development Methodology



- Hierarchical approach
 - Abstract Machines defined at each level
 - Hierarchy specification in Hierarchy Specification Language (HSL)
 - AM specification written in SPECIAL
 - Mapping Specifications in SPECIAL
 - define functionality in terms of machines at next lower layer
 - Hierarchy Consistency Checker
 - validates consistency of HS, Module Spec and Mapping Spec
- Compiler: programs for each AM in terms of calls to lower level
 - that maps a program into a Common Internal Form (CIF) for HDM tools
 - Two levels of spec translated to CIF → correctness is verified (BMT prover)
- Successfully used on MLS systems
 - Few formal policy specifications outside MLS domain

HDM Verification

Used for MLS

Boyer-Moore Theorem Prover

- Fully automated
 - No interface for commands or directions
 - User provides all the theorems, axioms, lemmas, assertions
 - LISP like notation
 - Very difficult for proving complex theorems
- Key idea
 - Used extended propositional calculus
 - Efficiency to find a proof.

Boyer-Moore Theorem Prover

Steps:

- Simplify the formula
 - Apply axioms, lemmata, theorems
- Reformulate the formula with equivalent terms
 - E.g., replace x-1, x by y and y+1
- Substitute equalities
- Generalize the formula by introducing variables
- Eliminate irrelevant terms
- Induct to prove

Gypsy verification environment (GVE)

- Based on Pascal
 - Formal proof and runtime validation support
 - Focused on Implementation proofs rather than design proofs
 - verification of specification and its implementation
 - Also to support incremental development
- Specifications defined on procedures
 - Entry conditions, Exit conditions, Assertions
- Proof techniques ensure exit conditions / assertions met given entry conditions
 - Also run-time checking

Other Examples

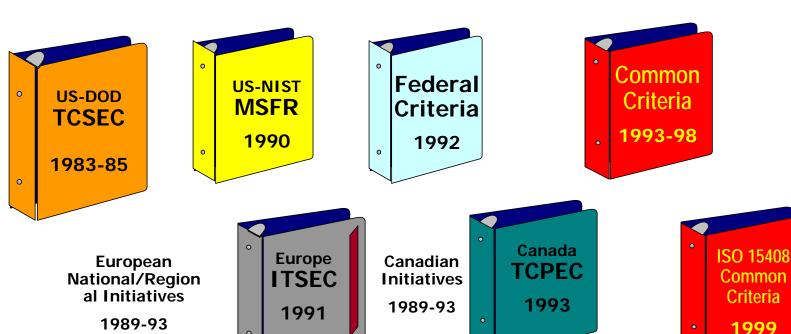
- Prototype Verification System (PVS)
 - Based on EHDM
 - Interactive theorem-prover
- Symbolic Model Verifier
 - Temporal logic based / Control Tree Logic
 - Notion of "path" program represented as tree
 - Statements that condition must hold at a future state, all future states, all states on one path, etc.

Other Examples

- Formal verification of protocols
 - Naval Research Laboratory Protocol Analyzer
 - For Crypto protocols
 - Key management (distribution)
 - Authentication protocols
- Verification of libraries
 - Entire system not verified
 - But components known okay
- High risk subsystems

Protocol Verification

- Generating protocols that meet security specifications
 - BAN Logic
 - Believes, sees, once said
- Assumes cryptography secure
 - But cryptography is not enough



Common Criteria: An Evolutionary Process

0

Decades of research and development...

Common Criteria: Origin

TCSEC

- Known as Orange Book, DoD 5200.28-STD
- Four trust rating divisions (classes)
 - D: Minimal protection
 - C (C1,C2): Discretionary protection
 - B (B1, B2, B3): Mandatory protection
 - A (A1): Highly-secure

TCSEC: The Original

- Trusted Computer System Evaluation Criteria
 - U.S. Government security evaluation criteria
 - Used for evaluating commercial products
- Policy model based on Bell-LaPadula
- Enforcement: Reference Validation Mechanism
 - Every reference checked by compact, analyzable body of code
- Emphasis on Confidentiality
- Metric: Seven trust levels:
 - D, C1, C2, B1, B2, B3, A1
 - D is "tried but failed"

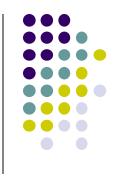
TCSEC Class Assurances

- C1: Discretionary Protection
 - Identification
 - Authentication
 - Discretionary access control
- C2: Controlled Access Protection
 - Object reuse and auditing
- B1: Labeled security protection
 - Mandatory access control on limited set of objects
 - Informal model of the security policy

TCSEC Class Assurances (continued)

- B2: Structured Protections
 - Trusted path for login
 - Principle of Least Privilege
 - Formal model of Security Policy
 - Covert channel analysis
 - Configuration management
- B3: Security Domains
 - Full reference validation mechanism
 - Constraints on code development process
 - Documentation, testing requirements
- A1: Verified Protection
 - Formal methods for analysis, verification
 - Trusted distribution

How is Evaluation Done?


- Government-sponsored independent evaluators
 - Application: Determine if government cares
 - Preliminary Technical Review
 - Discussion of process, schedules
 - Development Process
 - Technical Content, Requirements
 - Evaluation Phase

TCSEC: Evaluation Phase

- Three phases
 - Design analysis
 - Review of design based on documentation
 - Test analysis
 - Final Review
- Trained independent evaluation
 - Results presented to Technical Review Board
 - Must approve before next phase starts
- Ratings Maintenance Program
 - Determines when updates trigger new evaluation

TCSEC: Problems

- Based heavily on confidentiality
 - Did not address integrity, availability
- Tied security and functionality
- Base TCSEC geared to operating systems
 - TNI: Trusted Network Interpretation
 - TDI: Trusted Database management System Interpretation

Later Standards

- CTCPEC Canadian Trusted Computer Product Evaluation Criteria
- ITSEC European Standard (Info Tech SEC)
 - Did not define criteria
 - Levels correspond to strength of evaluation
 - Includes code evaluation, development methodology requirements
 - Known vulnerability analysis
- CISR: Commercial outgrowth of TCSEC (Commercial International Security Requirements)
- FC: Modernization of TCSEC
- FIPS 140: Cryptographic module validation
- Common Criteria: International Standard
- SSE-CMM: Evaluates developer, not product

ITSEC: Levels

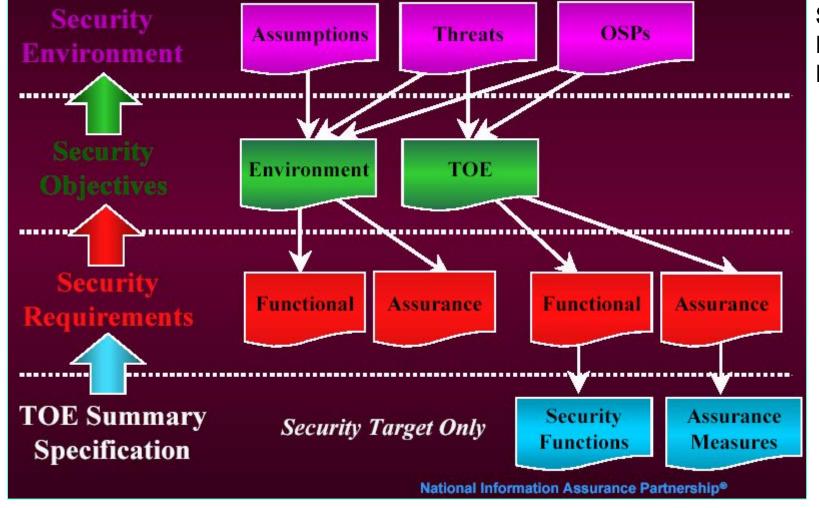
- E1: Security target defined, tested
 - Must have informal architecture description
- E2: Informal description of design
 - Configuration control, distribution control
- E3: Correspondence between code and security target
- E4: Formal model of security policy
 - Structured approach to design
 - Design level vulnerability analysis
- E5: Correspondence between design and code
 - Source code vulnerability analysis
- E6: Formal methods for architecture
 - Formal mapping of design to security policy
 - Mapping of executable to source code

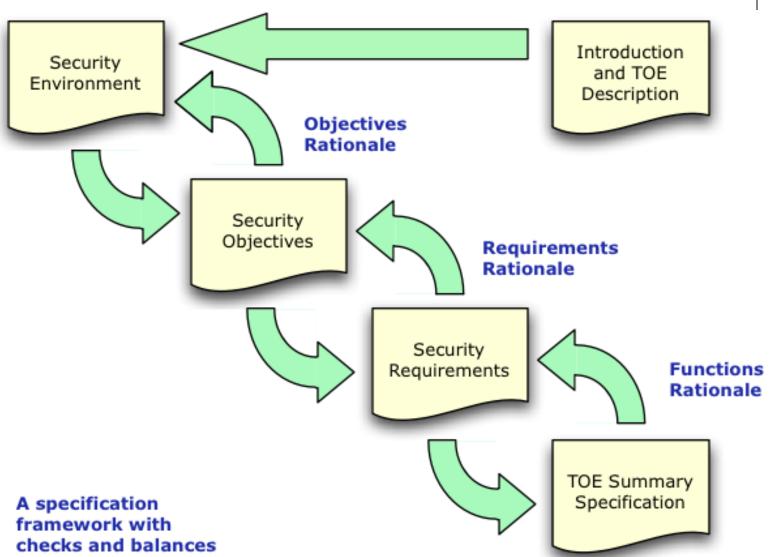
ITSEC Problems:

- No validation that security requirements made sense
 - Product meets goals
 - But does this meet user expectations?
- Inconsistency in evaluations
 - Not as formally defined as TCSEC

- Replaced TCSEC, ITSEC
- 7 Evaluation Levels (functionally tested to formally designed and tested)
- Functional requirements, assurance requirements and evaluation methodology
- Functional and assurance requirements are organized hierarchically into: class, family, component, and, element. The components may have dependencies.

Key terms


- Protection profile
 - implementation-independent;
 - community/group; government sponsor, etc.
- Security Target
 - Set of security requirements that can be stated explicitly; product specific; implementation independent
- Target of Evaluation
 - Specific product


PP/ST Framework

Security Problem Definition

CC defines two types of IT security requirements--

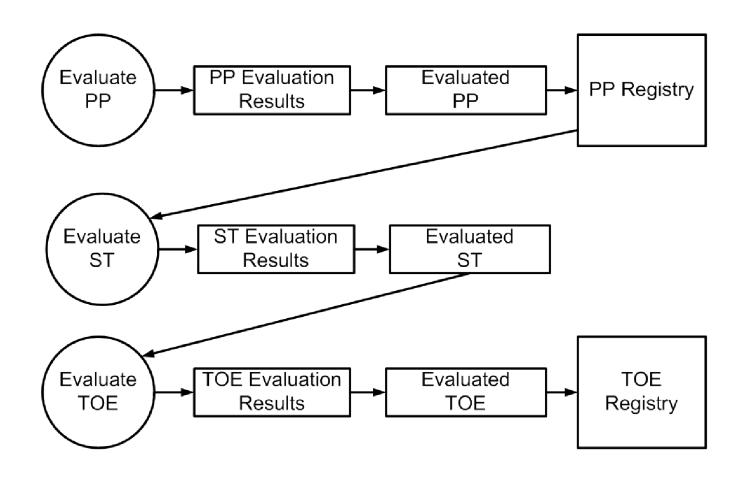
Functional Requirements

- for defining security behavor of the IT product or system:
- implemented requirements become security functions

Assurance Requirements

- for establishing confidence in security functions:
- correctness of implementation
- effectiveness in satisfying security objectives

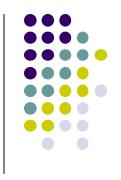
Examples:


- •Identification & Authentication
- •Audit
- •User Data Protection
- •Cryptographic Support

Examples:

- •Development
- •Configuration Management
- •Life Cycle Support
- •Testing
- •Vulnerability Analysis

Evaluation

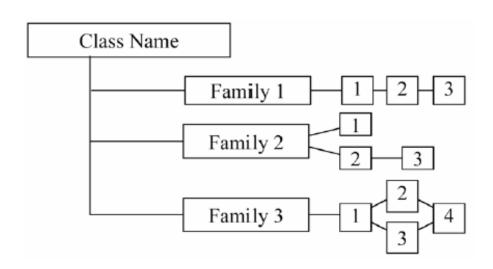


Documentation

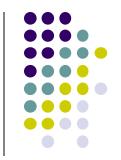
- Part 1: Introduction and General Model
 - https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5_marked_changes.pdf
- Part 2: Security Functional Requirements
 - https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5_marked_changes.pdf
- Part 3: Security Assurance Requirements
 - https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5_marked_changes.pdf
- CEM (Evaluation Methodology)
 - https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5_marked_changes.pdf
- Latest version: 3.1 Revision 5 (April 2017)
- https://www.commoncriteriaportal.org/cc/

Class Decomposition



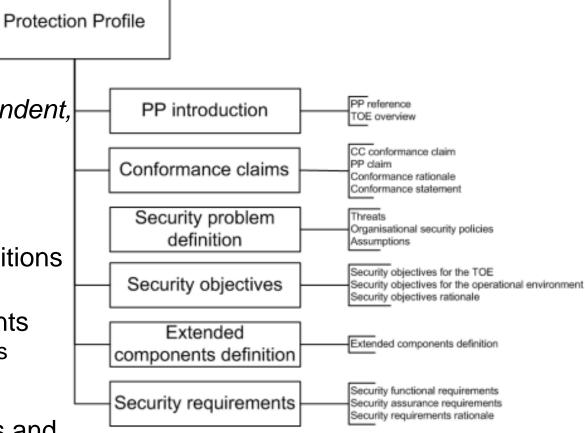


Family


Components

Note:

Applicable to both functional and assurance documents



CC Evaluation 1: Protection Profile

Implementation independent,

domain-specific set of security requirements

- Narrative Overview
- Conformance Claims
- Security Problem Definitions
- Security Objectives:
- IT Security Requirements
 - Functional requirements drawn from CC set
 - Assurance level
- Rationale for objectives and requirements

CC Evaluation 2: Security Target

Specific requirements used to evaluate system

- Narrative introduction
- Conformance claims
- Security Problem Definition
- Security Objectives
 - How met
- Security Requirements
 - Environment and system
 - Drawn from CC set

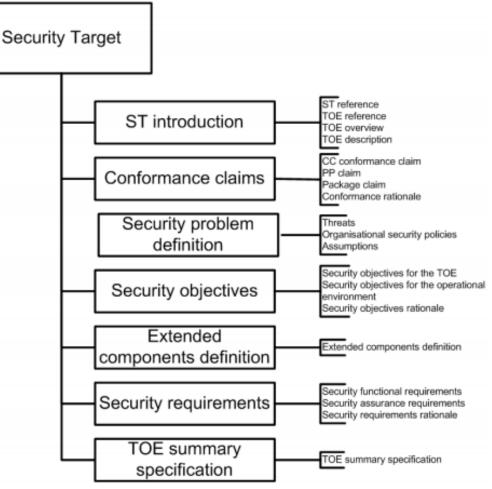


Figure 5 - Security Target contents

Common Criteria: Functional Requirements

- 323 page document
- 11 Classes
 - Security Audit, Communication, Cryptography, User data protection, ID/authentication, Security Management, Privacy, Protection of Security Functions, Resource Utilization, Access, Trusted paths
- Several families per class
- Lattice of components in a family

Common Criteria: Functional Requirements

Figure 3 - Functional class structure

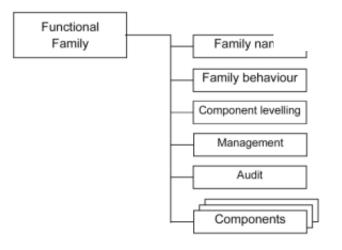
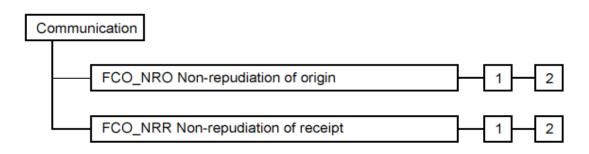
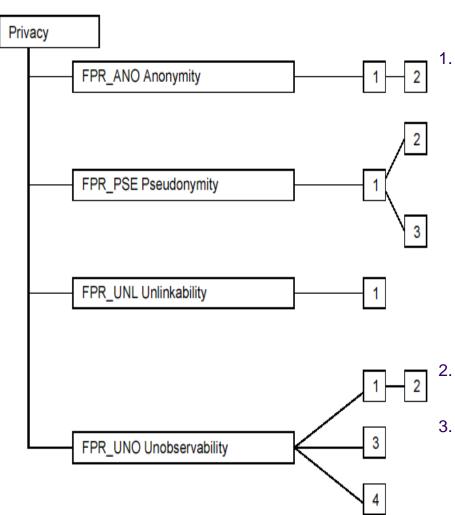



Figure 5 - Functional component structure

Figure 4 - Functional family structure

Class Example: Communication



- Non-repudiation of origin
 - Selective Proof. Capability to request verification of origin
 - Enforced Proof. All communication includes verifiable origin

Class Example: Privacy

Pseudonymity

- The TSF shall ensure that [assignment: set of users and/or subjects] are unable to determine the real user name bound to [assignment: list of subjects and/or operations and/or objects]
- The TSF shall be able to provide [assignment: number of aliases] aliases of the real user name to [assignment: list of subjects]
- The TSF shall [selection: determine an alias for a user, accept the alias from the user] and verify that it conforms to the [assignment: alias metric]
- Reversible Pseudonimity

• ...

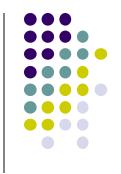
Alias Pseudonimity

1. ...

Common Criteria: Assurance Requirements

- 247 page document
- 10 Classes
 - Protection Profile Evaluation, Security Target Evaluation, Configuration management, Delivery and operation, Development, Guidance, Life cycle, Tests, Vulnerability assessment, Maintenance
- Several families per class
- Lattice of components in family

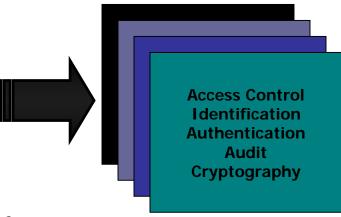
Common Criteria: Evaluation Assurance Levels


- Functionally tested
- Structurally tested
- 3. Methodically tested and checked
- Methodically designed, tested, and reviewed
- 5. Semi-formally designed and tested
- Semi-formally verified design and tested
- Formally verified design and tested

Common Criteria: Evaluation Process

- National Authority authorizes evaluators
 - U.S.: NIST accredits commercial organizations
 - Fee charged for evaluation
- Team of four to six evaluators
 - Develop work plan and clear with NIST
 - Evaluate Protection Profile first
 - If successful, can evaluate Security Target

Defining Requirements



ISO/IEC Standard 15408

A flexible, robust catalogue of standardized IT security requirements (features and assurances)

Protection Profiles

- ✓ Operating Systems
- ✓ Database Systems
- ✓ Firewalls
- ✓ Smart Cards
- ✓ Applications
- ✓ Biometrics
- ✓ Routers
- ✓ VPNs

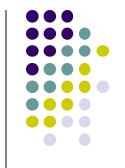
Consumer-driven security requirements in specific information technology areas

Industry Responds

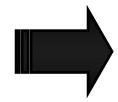
Protection Profile

Firewall Security Requirements

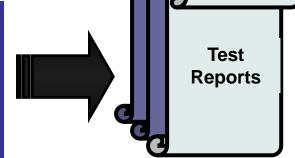
Consumer statement of IT security requirements to industry in a specific information technology area


Security Targets

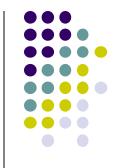
- ✓ CISCO Firewall
- ✓ Lucent Firewall
- ✓ Checkpoint Firewall
- ✓ Network Assoc. FW

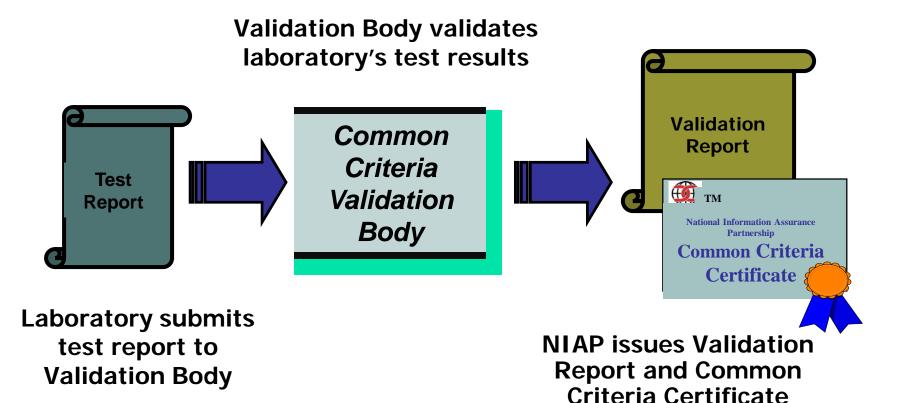

Vendor statements of security claims for their IT products

Demonstrating Conformance



Security Features and Assurances


Common Criteria Testing Labs



Vendors bring IT products to independent, impartial testing facilities for security evaluation

Test results submitted to the National Information Assurance Partnership (NIAP) for post-evaluation validation

Validating Test Results

Common Criteria: Statistics

Source:

https://www.comm oncriteriaportal.org /products/stats/

2490 Certified Products by Category *								
Category	Products	Archived						
Access Control Devices and Systems	69	60						
Biometric Systems and Devices	3	0						
Boundary Protection Devices and Systems	79	122						
Data Protection	70	91						
Databases	31	53						
Detection Devices and Systems	12	57						
ICs, Smart Cards and Smart Card-Related Devices and Systems	1190	32						
Key Management Systems	22	28						
Mobility	32	18						
Multi-Function Devices	194	180						
Network and Network-Related Devices and Systems	251	234						
Operating Systems	104	74						
Other Devices and Systems	294	314						
Products for Digital Signatures	102	8						
Trusted Computing	37	0						
Totals:	2490	1271						
Grand Total:								

^{*} A Certified Product may have multiple Categories associated with it.

Common Criteria: Statistics

Certified Products by Assurance Level and Certification Date																					
EAL	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Total
EAL1	0	0	0	0	0	0	1	1	6	3	1	0	1	10	2	2	3	3	8	6	47
EAL1+	1	0	0	0	0	0	0	0	17	0	2	11	2	0	1	2	1	0	0	1	38
EAL2	0	0	0	0	0	0	1	0	8	1	7	2	3	1	10	12	18	15	23	9	110
EAL2+	0	0	0	1	1	1	2	2	8	8	8	4	5	10	11	27	59	76	66	36	325
EAL3	0	0	0	0	0	0	0	0	10	3	1	9	5	1	7	12	9	2	3	2	64
EAL3+	0	0	0	0	0	2	1	1	37	10	12	11	12	19	7	23	17	19	10	7	188
EAL4	0	1	0	1	0	0	0	0	28	5	9	4	6	2	7	2	0	5	2	8	80
EAL4+	0	1	1	2	2	3	3	2	142	58	66	56	60	87	62	51	57	56	52	33	794
EAL5	0	0	0	0	0	0	0	0	6	3	2	0	1	0	0	0	0	3	1	3	19
EAL5+	0	0	0	0	0	0	3	0	50	27	31	43	35	27	56	51	43	69	68	45	548
EAL6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAL6+	0	0	0	0	0	0	0	0	0	0	2	3	0	4	5	6	10	8	12	20	70
EAL7	0	0	0	0	0	0	0	0	0	0	1	0	0	0	4	0	0	0	0	0	5
EAL7+	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	2
Basic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
US Standard	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
None	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	8	13	23	78	74	200
Totals:	1	2	1	4	3	6	11	6	312	118	142	144	130	161	176	196	230	279	323	245	2490

Source: https://www.commoncriteriaportal.org/products/stats/

Common Criteria: Statistics

Protection Profiles	Statistics	E DOWINGER COV	Collaborative Frotection Fromes	ALCHIVER FIOLECTION FIGURES
expand/collapse all categories				
⊞ Access Control Devices and Systems – 4 P	rotection Profiles			
⊞ Biometric Systems and Devices – 2 Protect	tion Profiles			
⊞ Boundary Protection Devices and Systems	- 11 Protection Profiles			
⊞ Data Protection − 10 Protection Profiles				
⊞ Databases − 3 Protection Profiles				
⊞ ICs, Smart Cards and Smart Card-Related	Devices and Systems – 75	Protection Profiles		
⊞ Key Management Systems – 4 Protection	Profiles			
⊞ Mobility – 4 Protection Profiles				
⊞ Multi-Function Devices − 2 Protection Pro	files			
⊞ Network and Network-Related Devices an	d Systems – 12 Protection	Profiles		
⊞ Operating Systems – 2 Protection Profiles				
⊞ Other Devices and Systems – 49 Protection	n Profiles			
⊞ Products for Digital Signatures – 19 Prote	ction Profiles			
⊞ Trusted Computing – 6 Protection Profiles	:			

Source: https://www.commoncriteriaportal.org/pps/

Certified products: https://www.commoncriteriaportal.org/products/

Summary

- Assurance
 - Formal methods
 - Common Criteria

