
IS 2620: Developing Secure Systems

Secure Software Development
Models/Methods

Lecture 1
Sept 6, 2018

James Joshi
Professor

School of Computing and Information

Objective
 Understand/Familiarize with various process

models for secure software development and
assurance

 Capability Maturity Models
 CMMI, iCMM, SSE-CMM, TSP
 Security Assurance Maturity Model

 Secure software development life cycle models

Process Models
 Secure Process

 Set of activities performed to develop, maintain, and
deliver a secure software solution

 Activities could be concurrent or iterative
 Process model
 provides a reference set of best practices
 process improvement and process assessment.

 defines the characteristics of processes
 usually has an architecture or a structure

Process Models

 Process Models
 Help identify technical and management practices
 good software engineering practices to manage and

build software
 Establishes
 common measures of organizational processes

throughout the software development lifecycle (SDLC).

 But … no guarantees product is bug free

Process Models
 Typically also have a
 capability or maturity dimension

 Purposes: assessment and evaluation.
 Assessments, evaluations, appraisals includes:
 comparison of a process being practiced to a reference

process model or standard
 understanding process capability in order to improve

processes
 determining if the processes being practiced are
 adequately specified, designed, and implemented

Software Development Life Cycle
(SDLC)

 Four key SDLC focus areas for secure software
development
 Security Engineering Activities
 Security Assurance
 Security Organizational and Project Management Activities
 Security Risk Identification and Management Activities

Based on a survey of existing processes, process
models, and standards

SDLC
 Security Engineering Activities
 activities needed to engineer a secure solution.

security requirements elicitation and definition,
secure design based on design principles for security,
use of static analysis tools,
reviews and inspections, security testing, etc..

 Security Assurance Activities
verification, validation, expert review,
artifact review, and evaluations.

Waterfall Model

SDLC
 Security Focused Activities

 Organizational management focused
 organizational policies, senior management sponsorship and

oversight, establishing organizational roles, ….
 Project management focused

 project planning and tracking,
 resource allocation and usage

 Security Risk Identification and Management
Activities
 Cost-based Risk analysis
 Risk mitigation

System DLC

Capability Maturity Models (CMM)

 CMM – focuses on process characteristics
 Provides reference model of mature practices
 Helps identify the potential areas of improvement
 Provides goal-level definition for and key

attributes for specific processes

 No operational guidance !!
Focuses on/Defines process characteristics

CMM
 Three CMMs
 Capability Maturity Model Integration® (CMMI®),
 The integrated Capability Maturity Model (iCMM),

and the
 Systems Security Engineering Capability Maturity

Model (SSE-CMM)
 Specifically to develop secure systems

Why CMM?

Source: http://www.secat.com/

CMMI
 CMM Integration (CMMI) provides

 the latest best practices related to –
 development, maintenance, and acquisition,

 Includes
 Mechanisms to improve processes and
 Criteria for evaluating process capability and process maturity.

 As of Dec 2005, the SEI reports
 1106 organizations and 4771 projects have reported results from CMMI-based

appraisals
 its predecessor, the software CMM (SW-CMM)

 Since 80s – Dec, 2005
 3049 Organizations + 16,540 projects

 Current: 101 countries, 11 govs, 10 languages (10K orgs)
 Half of global execs rate capability building as top 3 priorities
 (Source: http://www.cmmiinstitute.com/)

(See: http://www.sei.cmu.edu/reports/02tr012.pdf)
SOURCE: https://cmmiinstitute.zendesk.com/hc/en-us/article_attachments/205847598/CMMI_Benefits_and_Who_Uses_CMMI_Presentation_2015.pdf

Sample result

CMMI Framework Models
 3 constellations

 CMMI for Development
 Focuses on development of products, services (across SDL)

 CMMI for Acquisition
 Focuses on “acquiring” capabilities/services

 CMMI for Services (Service industry is big!
 Focuses on activities of service providers – capacity & availability management, service – continuity, delivery,

transition, deployment, management, etc.
+ People CMM --- focusing on workforce

CMMI DEV

CMMI

CMMI – ACQ/SVC

Integrated
CMM

 iCMM is widely used in the Federal Aviation
Administration (FAA-iCMM)
 Provides a single model for enterprise-wide improvement

 integrates the following standards and models:
 ISO 9001:2000, EIA/IS 731,
 Malcolm Baldrige National Quality Award and President's Quality

Award criteria,
 CMMI-SE/SW/IPPD and
 CMMI-A, ISO/IEC TR 15504, ISO/IEC 12207, and ISO/IEC CD

15288.

Integrated CMM

Trusted CMM

 Trusted CMM
 Early 1990 -Trusted Software Methodology (TSM)
 TSM defines trust levels
 Low emphasizes resistance to unintentional

vulnerabilities
 High adding processes to counter malicious

developers
 TSM was later harmonized with CMM
 Not much in use

Systems Security
Engineering CMM

 The SSE-CMM
 To improve and assess the security engineering

capability of an organization
 provides a comprehensive framework
 evaluating security engineering practices against the

generally accepted security engineering principles.
 provides a way to
 measure and improve performance in the application of

security engineering principles.

SSE-CMM: ISO/IEC 21827
 Purpose for SSE-CMM

 To fill the lack of a comprehensive framework for evaluating
security engineering practices against the principles

 Helps
 Identify Security Goals
 Assess Security Posture
 Support Security Life Cycle

 The SSE-CMM also
 describes the essential characteristics of an organization’s

security engineering processes.
 The SSE-CMM is now ISO/IEC 21827 standard
 (See https://www.iso.org/standard/44716.html)

SSE-CMM

22 Process Areas

Security Engineering Process

Security Risk Process

Security is part of Engineering

Assurance

SSE-CMM
Dimensions

All the base practices

Practices (generic) that indicate
Process Management &
Institutionalization Capability

SSE-CMM
 129 base practices organized into 22 process areas

 Security engineering : 61 of these - organized in 11 process
areas

 Project and Organization domains : remaining

 Base practice
 Applies across the life cycle of the enterprise
 Does not overlap with other base practices
 Represents a “best practice” of the security community
 Does not simply reflect a state of the art technique
 Is applicable using multiple methods in multiple business context
 Does not specify a particular method or tool

Process Area
 Assembles related activities in one area for ease of use
 Relates to valuable security engineering services
 Applies across the life cycle of the enterprise
 Can be implemented in multiple organization and product

contexts
 Can be improved as a distinct process
 Can be improved by a group with similar interests in the process
 Includes all base practices that are required to meet the goals of

the process area

Process Areas

Generic Process Areas

 Activities that apply to all processes
 They are used during
 Measurement and institutionalization

 Capability levels
 Organize common features
 Ordered according to maturity

Capability Levels

5
Continuously

improving

4
Quantitatively

Controlled

3
Well

Defined

2
Planned &
Tracked

1
Performed
Informally

0
Not

Performed

Base Practices
Performed

Committing to
perform
Planning performance
Disciplined
performance
Tracking performance
Verifying performance

Defining a standard
process
Tailoring standard
process
Using data
Perform a defined
process

Establishing
measurable quality
goals
Determining process
capability to achieve
goals
Objectively managing
performance

Establishing
quantitative process
goals
Improving process
effectiveness

Summary Chart.

Using SSE-CMM

 Can be used in one of the three ways
 Process improvement
 Facilitates understanding of the level of security

engineering process capability
 Capability evaluation
 Allows a consumer organization to understand the

security engineering process capability of a provider
 Assurance
 Increases the confidence that product/system/service

is trustworthy

Process Improvement

Capability Evaluation
 No need to use any particular appraisal method
 SSE-CMM Appraisal (SSAM) method has been

developed if needed

 SSAM purpose
 Obtain the baseline or benchmark of actual practice related

to security engineering within the organization or project
 Create or support momentum for improvement within

multiple levels of the organizational structure

SSAM Overview
 Planning phase

 Establish appraisal framework
 Preparation phase

 Prepare team for onsite phase through information gathering
(questionnaire)

 Preliminary data analysis indicate what to look for / ask for
 Onsite phase

 Data gathering and validation with the practitioner interviews
 Post-appraisal

 Present final data analysis to the sponsor

Capability Evaluation

Assurance
 A mature organization
 more likely to create a product or system with

appropriate assurance
 Process evidence
 to support claims for the product trustworthiness

 It is conceivable that
 An immature organization could produce high

assurance product.

CMMI/iCMM/SSE-CMM
 CMMI / iCMM used by more organizations

than the SSE-CMM
 Because of the integration of process disciplines

and coverage of enterprise issues,
 One weakness of CMMI and iCMM
 have gaps in their coverage of safety and security.

 Joint effort sponsored by FAA and the DoD
 to identify best safety and security practices for

use in combination with the iCMM and the CMMI.

Safety/Security additions
 The proposed Safety and Security additions

include the following four goals:
 Goal 1 – An infrastructure for safety and security is

established and maintained.
 Goal 2 – Safety and security risks are identified and

managed.
 Goal 3 – Safety and security requirements are satisfied.
 Goal 4 – Activities and products are managed to

achieve safety and security requirements and objectives.

Goal 1 related practices
1. Ensure safety and security awareness, guidance, and

competency.
2. Establish and maintain a qualified work environment that

meets safety and security needs.
3. Ensure integrity of information by providing for its storage

and protection, and controlling access and distribution of
information.

4. Monitor, report and analyze safety and security incidents
and identify potential corrective actions.

5. Plan and provide for continuity of activities with
contingencies for threats and hazards to operations and
the infrastructure

Goal 1 – An infrastructure for safety and security is
established and maintained.

Goal 2 related
practices
1. Identify risks and sources of risks attributable to

vulnerabilities, security threats, and safety
hazards.

2. For each risk associated with safety or security,
determine the causal factors, estimate the
consequence and likelihood of an occurrence, and
determine relative priority.

3. For each risk associated with safety or security,
determine, implement and monitor the risk
mitigation plan to achieve an acceptable level of
risk.

Goal 2 – Safety and security risks are identified and managed.

Goal 3 related practices
1. Identify and document applicable regulatory requirements,

laws, standards, policies, and acceptable levels of safety and
security.

2. Establish and maintain safety and security requirements,
including integrity levels, and design the product or service to
meet them.

3. Objectively verify and validate work products and delivered
products and services to assure safety and security
requirements have been achieved and fulfill intended use.

4. Establish and maintain safety and security assurance
arguments and supporting evidence throughout the lifecycle.

Goal 3 – Safety and security requirements are satisfied.

Goal 4 related practices
1. Establish and maintain independent reporting of safety

and security status and issues.
2. Establish and maintain a plan to achieve safety and

security requirements and objectives.
3. Select and manage products and suppliers using

safety and security criteria.
4. Measure, monitor and review safety and security

activities against plans, control products, take
corrective action, and improve processes.

Goal 4 – Activities and products are managed to achieve
safety and security requirements and objectives.

Team Software Process for Secure
SW/Dev

 TSP
 provides a framework, a set of processes, and

disciplined methods for applying software
engineering principles at the team and individual
level

 TSP for Secure Software Development (TSP-
Secure)
 focus more directly on the security of software

applications.

Team Software Process for Secure
SW/Dev

 TSP-Secure addresses secure software
development (three ways).

1. “Secure software is not built by accident”
– Plan: TSP-Secure addresses planning for security.
– Self-directed: Since schedule pressures and people

issues get in the way of implementing best
practices, TSP-Secure helps to build self-directed
development teams, and then put these teams in
charge of their own work.

TSP-Secure
1. Since security and quality are closely related,

– TSP-Secure helps manage quality throughout the
product development life cycle.

2. Since people building secure software must
have an awareness of software security issues,

– TSP-Secure includes security awareness training
for developers.

TSP-Secure
 Teams
 Develop their own plans
 Make their own commitments
 Track and manage their own work
 Take corrective action when needed

TSP-Secure
 Initial planning – “Project Launch” (3-4 days)
 Tasks include
 identifying security risks,
 eliciting and defining security requirement, secure

design, and code reviews,
 use of static analysis tools, unit tests, and Fuzz

testing.
 Next, the team executes its plan, and ensures all

security related activities are taking place.
 Security status is presented and discussed during every

management status briefing.

TSP-Secure
 Basis
 Defective software is seldom secure
 Defective software is not inevitable

 Consider cost of reducing defects
 Manage defects throughout the lifecycle

 Defects are leading cause of vulnerabilities
 Use multiple defect removal points in the SD: Defect filters

TSP-Secure
 Key questions in managing defects

 What type of defects lead to security vulnerabilities?
 Where in the software development life cycle should defects be

measured?
 What work products should be examined for defects?
 What tools and methods should be used to measure the defects?
 How many defects can be removed at each step?
 How many estimated defects remain after each removal step?

 TSP-Secure includes training for developers,
managers, and other team members.

Correctness by Construction

 CbC Methodology from Praxis Critical
Systems
 Process for developing high integrity software
 Has been successfully used to develop safety-

critical systems
 Removes defects at the earliest stages
 uses formal methods to specify behavioral,

security and safety properties of the software.

Example: Certification Authority for Smart Cards
ITSEC E6 standard

Correctness by Construction

 The seven key principles of Correctness-by-
Construction are:
 Expect requirements to change
 Know why you're testing (debug + verification)
 Eliminate errors before testing
 Write software that is easy to verify
 Develop incrementally
 Some aspects of software development are just

plain hard
 Software is not useful by itself

Correctness by Construction

 Correctness-by-Construction is
 one of the few secure SDLC processes that

incorporate formal methods into many
development activities.

 Requirements are specified using Z, and verified.
 Code (in Spark) is checked by verification

software.

Correctness by Construction
Defect detection/Correction

Effort and Defect Rate

Agile Methods
 Agile manifesto
 “We are uncovering better ways of developing software by

doing it and helping others do it. Through this work we
have come to value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

Agile manifesto principles
• Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software.
• Welcome changing requirements, even late in development.

Agile processes harness change for the customer's
competitive advantage.

• Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale.

• Business people and developers work together daily
throughout the project.

• Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

• The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

Agile manifesto principles
• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The

sponsors, developers and users should be able to maintain a
constant pace indefinitely.

• Continuous attention to technical excellence and good design
enhances agility.

• Simplicity—the art of maximizing the amount of work not
done—is essential.

• The best architectures, requirements and designs emerge
from self-organizing teams.

• At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.

Agile Processes
 Among many variations
 Adaptive software development (ASP)
 Extreme programming (XP)
 Crystal
 Rational Unified Process (RUP)
 …

TSP Revisited
- How TSP Relates to Agile ..
 Individuals and interactions over processes

and tools

 TSP holds that the individual is key to product
quality and effective member interactions are
necessary to the team's success.
 Project launches strive to create gelled teams.
 Weekly meetings and communication are

essential to sustain them.
 Teams define their own processes in the launch.

How TSP Relates
 Working software over comprehensive

documentation

 TSP teams can choose evolutionary or iterative
lifecycle models to deliver early functionality—the
focus is on high quality from the start. TSP does not
require heavy documentation.
 Documentation should merely be sufficient to facilitate

effective reviews and information sharing.

How TSP Relates
 Customer collaboration over contract

negotiation

 Learning what the customer wants is a key
focus of the “launch”. Sustaining customer
contact is one reason for having a customer
interface manager on the team.
 Focus on negotiation of a contract is more a

factor of the organization than of whether TSP is
used.

How TSP Relates
 Responding to change over following a plan

 TSP teams expect and plan for change by:
 Adjusting the team's process through process improvement

proposals and weekly meetings.
 Periodically re-launching and re-planning whenever the

plan is no longer a useful guide.
 Adding new tasks as they are discovered; removing tasks

that are no longer needed.
 Dynamically rebalancing the team workload as required to

finish faster.
 Actively identifying and managing risks.

Besnosov Comparison

 50% of traditional security assurance activities are
not compatible with Agile methods (12 out of 26),

 less than 10% are natural fits (2 out of 26),
 about 30% are independent of development

method, and
 slightly more than 10% (4 out of 26) could be semi-

automated and thus integrated more easily into the
Agile methods.

Open Web Application Security Project
(AWASP) Software Assurance Maturity
Model (SAMM)

 “an open framework to help organizations formulate and
implement a strategy for software security that is tailored
to the specific risks facing the organization”

 It will help in:
 Evaluating an organization’s existing software security practices.
 Building a balanced software security assurance program in well-

defined iterations.
 Demonstrating concrete improvements to a security assurance

program.
 Defining and measuring security-related activities throughout an

organization.

AWASP SAMM
 Was defined to be “flexible”, an on following principles

 An organization’s behavior changes slowly over time.
 A successful software security program should be specified in small

iterations that deliver tangible assurance gains while incrementally working
toward long-term goals.

 There is no single recipe that works for all organizations
 A software security framework must be flexible and allow organizations to

tailor their choices based on their risk tolerance and the way in which they
build and use software.

 Guidance related to security activities must be prescriptive
 All the steps in building and assessing an assurance program should be

simple, well-defined, and measurable.
This model also provides roadmap templates for common types of organizations

Source: https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf

SAMM Framework

Maturity Levels for each of the practices
0 Implicit starting point representing the activities in the practice being unfulfilled

1 Initial understanding and ad-hoc provision of security practice

2 Increase efficiency and/or effectiveness of the security practice

3 Comprehensive mastery of the security practice at scale

Operations

Governance
Governance is centered on the processes and activities related to how an
organization manages overall software development activities. More specifically,
this includes concerns that impact cross-functional groups involved in
development, as well as business processes that are established at the
organization level.

Strategy & Metrics
involves the overall strategic
direction of the software
assurance program and
instrumentation of
processes and activities to
collect metrics about an
organization’s security
posture

Policy & Compliance
involves setting up a
security, compliance, and
audit control framework
throughout an organization
to achieve increased
assurance in software under
construction and in
operation.

Education & Guidance
involves increasing
security knowledge
amongst personnel in
software development
through training and
guidance on security
topics relevant to
individual job functions

Construction
Construction concerns the processes and activities related to how an
organization defines goals and creates software within development projects. In
general, this will include product management, requirements gathering, high-level
architecture specification, detailed design, and implementation.

Threat Assessment
involves accurately
identifying and
characterizing potential
attacks upon an
organization’s software in
order to better understand
the risks and facilitate risk
management.

Security Requirements
involves promoting the
inclusion of security-
related requirements
during the software
development process in
order to specify correct
functionality from
inception.

Secure Architecture
involves bolstering the
design process with
activities to promote
secure-by-default
designs and control over
technologies and
frameworks upon which
software is built.

Verification
Verification is focused on the processes and activities related to how an
organization checks, and tests artifacts produced throughout software
development. This typically includes quality assurance work such as testing, but it
can also include other review and evaluation activities.

Design Review involves
inspection of the artifacts
created from the design
process to ensure
provision of adequate
security mechanisms, and
adherence to an
organization’s
expectations for security.

Implementation Review
involves assessment of an
organization’s source
code to aid vulnerability
discovery and related
mitigation activities as well
as establish a baseline for
secure coding
expectations.

Security Testing involves
testing the organization’s
software in its runtime
environment, in order to
both discover
vulnerabilities, and
establish a minimum
standard for software
releases.

Operations
Operations entails the processes and activities related to how an organization
manages software releases that has been created. This can involve shipping
products to end users, deploying products to internal or external hosts, and
normal operations of software in the runtime environment

Issue Management
involves establishing
consistent processes for
managing internal and
external vulnerability reports
to limit exposure and gather
data to enhance the security
assurance program.

Environment Hardening
involves implementing
controls for the operating
environment surrounding
an organization’s software
to bolster the security
posture of applications
that have been deployed.

Operational Enablement
involves identifying and
capturing security-relevant
information needed by an
operator to properly
configure, deploy, and run
an organization’s
software.

Microsoft Trustworthy Computing
(TwC) SDLC
 Microsoft wide initiative and mandatory policy since 2004
 Embeds security and privacy in its software development
 Holistic and practical approach

SD3+C Paradigm
Secure by Design
Secure by Default
Secure by Development
Communication

SD3 + C paradigm
 Secure by Design
 Threat modeling and mitigation
 Elimination of vulnerabilities
 Improvements in security

 Secure by Default
 Principle of least privilege
 Defense in depth
 Conservative default settings
 Avoidance of risky default changes
 Less commonly used services off by default

SD3 + C paradigm
 Secure by Deployment
 Deployment guides
 Analysis and management tools
 Patch deployment tools

 Communications
 Security response
 Community engagement

Results – less vulnerable SW

Results: Reduce cost of
development

NIST estimates that code fixes
performed after release can result
in 30 times the cost of fixes
performed during the design
phase.

SDL helps reduce overall
development cost

The Forrester Consulting State of
Application Security study shows
that organizations implementing
an SDL process showed better
ROI results than the overall
surveyed population.
(about 4 times higher ROI)

Source: https://www.microsoft.com/en-us/SDL/about/benefits.aspx

Summary
 Process models
 SDL approaches

 Essential for developed high assurance products!

	IS 2620: Developing Secure Systems
	Objective
	Process Models
	Process Models
	Process Models
	Software Development Life Cycle (SDLC)
	SDLC
	SDLC
	System DLC
	Capability Maturity Models (CMM)
	CMM
	Why CMM?
	CMMI
	Sample result
	CMMI Framework Models�
	CMMI DEV
	CMMI
	CMMI – ACQ/SVC
	Integrated �CMM
	Integrated CMM�
	Trusted CMM
	Systems Security�Engineering CMM
	SSE-CMM: ISO/IEC 21827
	SSE-CMM
	Security Engineering Process
	Security Risk Process
	Security is part of Engineering
	Assurance
	SSE-CMM �Dimensions
	SSE-CMM
	Process Area
	Process Areas
	Generic Process Areas
	Capability Levels
	Slide Number 35
	Using SSE-CMM
	Process Improvement�
	Capability Evaluation
	SSAM Overview
	Capability Evaluation
	Assurance
	CMMI/iCMM/SSE-CMM
	Safety/Security additions
	Goal 1 related practices
	Goal 2 related �practices
	Goal 3 related practices
	Goal 4 related practices
	Team Software Process for Secure SW/Dev
	Team Software Process for Secure SW/Dev
	TSP-Secure
	TSP-Secure
	TSP-Secure
	TSP-Secure
	TSP-Secure
	Slide Number 55
	Correctness by Construction
	Correctness by Construction
	Correctness by Construction
	Slide Number 59
	Correctness by Construction�Defect detection/Correction
	Effort and Defect Rate
	Agile Methods
	Agile manifesto principles �
	Agile manifesto principles �
	Agile Processes
	TSP Revisited�- How TSP Relates to Agile ..
	How TSP Relates
	How TSP Relates
	How TSP Relates
	Slide Number 70
	Besnosov Comparison
	Open Web Application Security Project (AWASP) Software Assurance Maturity Model (SAMM)
	AWASP SAMM
	SAMM Framework
	Governance
	Construction
	Verification
	Operations
	Microsoft Trustworthy Computing (TwC) SDLC
	SD3 + C paradigm
	SD3 + C paradigm
	Results – less vulnerable SW
	Results: Reduce cost of development
	Summary

