
Developing Secure Systems

Introduction

Aug 30, 2018

James Joshi 

Professor 

School of Computing and Information



Contact

 James Joshi

 706A, IS Building

 Phone: 412-624-9982 

 E-mail: jjoshi@pitt.edu

 Web: http://www.sis.pitt.edu/~jjoshi/courses/IS2620/Fall18/

Office Hours: By appointment

 GSA: Runhua Xu and team



Course Objectives

 Understand the principles and methodologies for designing and 

implementing secure systems, and establishing software assurance
 Life cycle models/ security engineering principles, …

 Architectural risk analysis; threat modeling, …

 Understand and analyze code for vulnerabilities and learn secure 

programming practices
 Secure programming & vulnerability analysis (e.g., C, C++ /Java); Web application 

security, 

 To learn about the tools/techniques towards assurance 

(validation/verification/testing) 
 Use of tools/techniques to detect coding/design flaws; formal verification issues, 

 Apply secure design principles to build a real system (projects) 

 Understand emerging technologies and secure design challenges (time 

permitting)



Course Coverage

 Secure programming
 Coding practices, issues and guidelines

 Code analysis; 
 Buffer overflows      Race conditions

 Input validation SQL injection

 Cross-site scripting Mobile Code Safe Languages

 Secure software development & Assurance process

 Security Engineering/Lifecycle models 
 E.g. Capability Maturity Models and Extensions, Building security In

 Secure Design, Testing, Implementation Principles
 Systems / software &Formal methods and testing

 UMLSec, Model Checking (code, protocols)

 Secure environments -- Supply Chain, Healthcare, 
etc.

 Verification / model checking, Threat modeling, 
reverse engineering

 Trusted computing modules/environments

Several sources: Books, 

Research papers / article 

/ Standard documents, 

etc.

Mostly available online



Pre-requisite

 IS 2150/TEL 2810 Information Security & Privacy
 OR background in security

 Following courses are preferred but not required: 
 IS 2170/TEL 2820 Cryptography; TEL 2821 Network Security 

 Talk to me if you are not sure of the background

 Course Reference: Check website



Grading (Tentative)

 Assignments/Presentation: 40%
 Read/Review and/or present research papers 

or articles

 Assignments/quizzes

 Lab exercises

 Two Exams: 30%

 Project : 30%



Course Policy

 Your work MUST be your own
 Zero tolerance for cheating/plagiarism

 You get an F for the course if you cheat in anything however 
small – NO DISCUSSION

 Discussing the problem is encouraged

 Homework
 Penalty for late assignments (15% each day)

 Ensure clarity in your answers – no credit will be given for vague 
answers

 Check webpage for everything!
 You are responsible for checking the webpage for updates



Why Secure 

Software/System 

Development?



Software/Systems Security

 Renewed  ---- interest & importance

 “idea of engineering software so that it 

continues to function correctly under 

malicious attack”

 Existing software is riddled with design 

flaws and implementation bugs

 ~70% related to design flaws*

 “any program, no matter how 

innocuous it seems, can harbor 

security holes” [Cheswick & Bellovin, 1994]



Software Problem

 More than half of the vulnerabilities are due to buffer overruns

 Others such as race conditions, design flaws are equally prevalent

# vulnerabilities 

Reported by CERT/CC



CERT Vulnerability

Source: Seacord’s Webinar on Secure Coding on C and C++



NVD statistics (NIST)



SourceFire report:
25 years of vulnerabilities (1988 – 2012)

 Based on CVE database classification & NVD
Source: https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf



Severity of 7 or higher (SourceFire)



SourceFire (over 25 years) 

Buffer Overflow

XSS Scripting



SourceFire (over 25 years):

High & Critical 

Buffer Overflow

SQL Injection



By product .. 

 Note different versions of windows & mac OSs



Mobile …

 .. Although iPhone has the most – now they 

are market leaders in mitigations

Windows M-OS: W-CE, 

W-Mobile, W-RT, W-Phone



SourceFire ..

 Buffer overflow is one of the top ..

 While fewer vulnerabilities were reported % 

of more critical vulnerabilities has increased

 Microsoft has significantly improved

 Chrome is quite high in terms of # 

vulnerabilities

 iPhone leads in the group



From Flexera.com ..

Source: 

https://resources.flexera.com/web/pdf/Research-SVM-Vulnerability-Review-2018.pdf



2018 Vulnerability 

Statistics Report



From CheckPoint

https://www.checkpoint.com/downloads/product-related/report/2018-security-report.pdf

And we have Russian cyber attack … increasing attack on CI ….



Insider vs Outsider;

Healthcare …

Source: Healthcare Industry 

Cybersecurity taskforce June 2017 



Increasing Impact on Individual and 

society!

Critical to address security of 

systems/environments:

Secure-by-design

Privacy-by-design



Software security

 It is about 

 Understanding software-induced security risks 
and how to manage them

 Leveraging software engineering practice,

 thinking security early in the software lifecyle

 Knowing and understanding common problems

 Designing for security

 Subjecting all software artifacts to thorough 
objective risk analyses and testing

 It is a knowledge intensive field



Trinity of trouble

Bigger problem today 

.. And growing
 Three trends

 Connectivity

 Inter networked, IoT/devices

 Include SCADA (supervisory control and 
data acquisition systems)

 Automated attacks, botnets

 Multiple paths – attack vectors

 Extensibility

 Mobile code – functionality evolves
incrementally

 Web/OS Extensibility

 Complexity

 XP is at least 40 M lines of code 

 Add to that use of unsafe languages 
(C/C++)

 Current estimate: Google Internet services 
total around 2B LoC & Windows ~50M 
(https://www.wired.com/2015/09/google-2-billion-lines-

codeand-one-place/) 
INFOGRAPHICS Link:

http://h.fastcompany.net/multisite_files/fastcompany/imagecache/inline

-large/inline/2013/11/3021256-inline-800linesofcode5.jpg

(Click to see)

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://h.fastcompany.net/multisite_files/fastcompany/imagecache/inline-large/inline/2013/11/3021256-inline-800linesofcode5.jpg


It  boils down to …

more code, 

more bugs, 

more security problems

Diffusion delay



Security problems in software

 Defect
 implementation and 

design vulnerabilities

 Can remain dormant

 Bug
 An implementation level 

software problem

 Flaw
 A problem at a deeper 

level

 Bugs + Flaws 
 leads to Risk

Bug Flaw

Buffer overflow: stack smashing

Buffer overflow: one-stage attacks

Buffer overflow: string format attacks

Race conditions: TOCTOU

Unsafe environment variables

Unsafe system calls (fork(), exec(), 

system())

Incorrect input validation (black list vs. 

white list

Method over-riding problems 

(subclass issues)

Compartmentalization problems in 

design

Privileged block protection failure 

(DoPrivilege())

Error-handling problems (fails open)

Type safety confusion error

Insecure audit log design

Broken or illogical access control 

(role-based access control [RBAC] 

over tiers)

Signing too much code



Cost of fixing

Relative Costs to Fix Software Defects (Source: IBM Systems Sciences Institute)



OWASP Top Ten 

Vulnerabilities (for 2013)

 A1-Injection  
 SQL, OS, LDAP – input validation problem

 A2-Broken Authentication and Session 

Management
 Incorrect implementation (compromise passwords, 

keys, implementation flaws

 A3-Cross-Site Scripting (XSS)
 Improper validation

 A4-Insecure Direct Object References
 Improper exposure of internal implementation

 A5-Security Misconfiguration

 A6-Sensitive Data Exposure



OWASP Top Ten 

Vulnerabilities (for 2013)

 A7-Missing Function Level Access Control
 Web applications UI and server need to enforce consistent access control 

enforcement

 A8-Cross-Site Request Forgery (CSRF)

 Forged HTTP requests and compromise of victim’s session cookie

 Victim’s browser is forced to generate requests to the vulnerable application 

 A9-Using Components with Known Vulnerabilities

 Components could run with full privileges – vulnerable program could be 

exploited

 Components could be libraries or software modules and frameworks

 A10-Unvalidated Redirects and Forwards

 Improper validation issue

 Web apps can redirect victims to phishing or malware sites.

Comparison: http://www.port80software.com/support/articles/2013-owasp-top-10

http://www.port80software.com/support/articles/2013-owasp-top-10


A1-Injection  

A2-Broken Authentication and Session 

Management

A3-Cross-Site Scripting (XSS)

A4-Insecure Direct Object References

A5-Security Misconfiguration

A6-Sensitive Data Exposure

A7-Missing Function Level Access Control

A8-Cross-Site Request Forgery (CSRF)

A9-Using Components with Known 

Vulnerabilities

A10-Unvalidated Redirects and Forwards

A1-Injection  

A2-Broken Authentication

A3-Sensitive Data Exposure

A4 – XML External Entities (XXE)

A5- Broken Access Control

A6 – Security Misconfiguration

A7-Cross-Site Scripting

A8 -Insecure Deserialization

A9-Using components with known 

vulnerabilities

A10 – Insufficient Logging & Monitoring

2013 -> 2017 OWASP top 10



Recent incidents ..

 HeartBleed (CVE-2014-0160)
 A serious threat in OpenSSL

 Estimated to have made 2/3 of Internet vulnerable

 Essentially a buffer overflow issue (overreads)

 Improper input validation – allows access to more data

 Automated software testing did not catch !!

 Static analysis did not catch it ! And dynamic/hybrid not designed for such 

vulnerability

 Some approaches that would have helped

 Negative testing/Fuzzing with special checks

 Better Source code analysis; safer language (it was in C)

 Formal methods

Source: “Preventing Heartbleed” by David Wheeler, IEEE Computer

Also Check out: http://www.kb.cert.org/vuls/id/720951



Recent incidents ..

 Stuxnet

 Affected several ICSs; Includes 
 exploit of the LNK files – shortcut file in windows as a start (other 

exploits possible)

 exploit some unpatched version of Win XP

 Target data breach*
 Financial and personal info of ~110M customers

 Payment card system flaw – malware installed in POS terminals 

(RAM Scraping attack)

 Network access from third party (PA HVAC) which was weak in 

security – allowed to gain foothold in Target’s network

*http://docs.ismgcorp.com/files/external/Target_Kill_Chain_Analysis_FINAL.pdf



Recent incidents ..

 Russian hackers

 Targets: Oil, Gas, Energy security – industrial espionage

 Also target seizing control of ICS

http://www.nytimes.com/2014/07/01/technology/energy-sector-faces-attacks-from-hackers-in-russia.html



Hence we need …

 Robust and Secure Software Design and Secure 

Systems Engineering practice
 Secure development life-cycle/methodologies

 Secure process models to support large scale team management

 Fix flaw early in the life-cycle – LOW COST !!

 Secure Design principles & Secure coding 

practices/standards

 Proper Testing and Verification/Validation

 Effective Tools and Techniques

 Security Engineering education

 Etc..



Let’s get started with basics

 Secure design principles
1. Least Privilege

2. Fail-Safe Defaults

3. Economy of Mechanism (KISS)

4. Complete Mediation

5. Open Design

6. Separation Privilege

7. Least Common Mechanism

8. Psychological Acceptability

9. Defense in Depth

(http://www.cs.virginia.edu/~evans/cs551/saltzer/) 

McGraw’s Update

1. Secure the weakest link

2. Defend in depth

3. Fail securely

4. Grant least privilege

5. Separate privileges

6. Economize mechanism

7. Do not share mechanism

8. Be reluctant to trust

9. Assume your secrets are 

not safe

10. Mediate completely

11. Make security usable

12. Promote privacy (PII)

13. Use your resources – ask 

for help
(http://searchsecurity.techtarget.com/o

pinion/Thirteen-principles-to-ensure-

enterprise-system-security) 

http://www.cs.virginia.edu/~evans/cs551/saltzer/
http://searchsecurity.techtarget.com/opinion/Thirteen-principles-to-ensure-enterprise-system-security


Mead et al.’s 7 principles

 To address challenges of acquiring, building, deploying, and 

sustaining systems to achieve a desired level of confidence for 

Software assurance:

1. Risk shall be properly understood in order to drive appropriate 

assurance decisions

2. Risk concerns shall be aligned across all stakeholders and all 

interconnected technology elements

3. Dependencies shall not be trusted until proven trustworthy

4. Attacks shall be expected

5. Assurance requires effective coordination among all technology 

participants

6. Assurance shall; be well planned and dynamic

7. A means to measure and audit overall assurance shall be built in\

Book: “Cybersecurity Engineering: …”



Privacy by design

By Ann Covoukian
https://www.ryerson.ca/pbdce/certi

fication/seven-foundational-

principles-of-privacy-by-design/

https://iab.org/wp-content/IAB-

uploads/2011/03/fred_carter.pdf

Deloitte

https://www2.deloitte.com/content/

dam/Deloitte/ca/Documents/risk/ca

-en-ers-privacy-by-design-

brochure.PDF

https://www.ryerson.ca/pbdce/certification/seven-foundational-principles-of-privacy-by-design/
https://iab.org/wp-content/IAB-uploads/2011/03/fred_carter.pdf
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/risk/ca-en-ers-privacy-by-design-brochure.PDF


Summary

 Highly complex systems on which increasing 

dependence

 Secure-by-design & privacy-by-design

 Increasingly crucial for trustworthy Computing and 

Information infrastructures


