
Static Code Analysis

Lecture 8
Oct 5, 2017

Source:
“Secure Programming with Static Analysis” 1

Static Analysis
 Analyzing code before executing it
 Analogy: Spell checker

 Suited to problem identification because
 Checks thoroughly and consistently
 Can point to the root cause of the problem

 E.g., presence of buffer overflow; helps to focus on what to fix
 Help find errors/bugs early in the development

 Helps reduce cost
 New information can be easily incorporated to recheck

a given program
2

Usefulness
 Better than manual code review
 Faster and more concrete than testing
 Consistency in coverage
 Embody the existing security knowledge and

gets extended
 Great for use by non-experts

3

Key Issues
 Can give a lot of noise!
 False Positives & False Negative
 Which is worse? Need to balance the FP and FN

 Defects must be visible to the tool
 Different types of Static analysis:

 Type checking; Style checking
 Program understanding ; Program verification
 Property checking; Bug finding
 Security Review

It is Computationally undecidable problem
4

Type Checking

5

Presenter
Presentation Notes
Type checking is limited in its capacity to catch errors, though, and
it suffers from false positives and false negatives just like all other static
analysis techniques. Interestingly, programmers rarely complain about a
type checker’s imperfections. The Java statements in Example 2.1 will not
compile because it is never legal to assign an expression of type int to a
variable of type short, even though the programmer’s intent is unambiguous.
Example 2.2 shows the output from the Java compiler. This is an example
of a type-checking false positive. The problem can be fixed by
introducing an explicit type cast, which is the programmer’s way of overriding
the default type inference behavior.

The Java statements in
Example 2.3 will pass type checking and compile without a hitch, but will
fail at runtime. Arrays in Java are covariant, meaning that the type checker
allows an Object array variable to hold a reference to a String array
(because the String class is derived from the Object class), but at runtime
Java will not allow the String array to hold a reference to an object of type
Object. The type checker doesn’t complain about the code in Example 2.3,
but when the code runs, it throws an ArrayStoreException. This represents
a type-checking false negative.

Style Checking
 Superficial set of rules
 Focused on rules related to

 Whitespace, naming, deprecated functions, commenting,
program structure

 Affect: readability and maintainability rather than coding error
 -Wall in gcc

 Detect when a switch statement does not account for all possible
values

 For a large project many people with their own style may be
involved

 Examples: lint, PMD

6

Program Understanding
 Helps make sense of a large Codebase
 Examples
 Tool example: Fujaba

 UML and Java Code – can help back and forth
 “Finding all uses of a method”
 “Finding declaration of a global variable”

 Helpful to work on code one has not written
 some reverse engineer the design – “big picture”

 IDEs typically include some PU functionality

7

Program verification and
Property checking
 Accepts a specification and associated

Code
 Aims to prove that the code is faithful

implementation
 “equivalence checking” to check the two

match

 Complete specification is time
consuming !
 So “Partial” verification – “property

verification”
 Try to find a “counterexample”

 Sound wrt the spec
 It will always return a problem if one exists !

 (false negative? False positive?)
 Soundness may be very difficult to establish

Memory leak

Counter example for:
Allocated memory
should always be

freed
8

Bug Finding
 Points out places where the program will

behave in a way that the coder did not intend
 Use patterns that indicate bugs
 Example: FindBug (Java), Coverity (C, C++)

 Early tools: ITS4, RATS, Flawfinder
 Little more than glorified “grep”
 Closer to style checkers

 Modern tools
 Typically hybrid of property checkers and bug finders

9

Factors for utility of SA
 Ability of the tool to make sense of the

program
 Trade-offs it makes between precision and

scalability
 Errors that it can check/detect
 How easily usable by programmers/users

10

Some examples

11

Analyzing Source vs Compiled
 Static analysis can examine a program

 As a compiler sees it (Source code) OR
 As a run-time env sees it (in some cases – bytecode or

executable)
 Advantages of compiled code analysis

 No need to guess how compiler will interpret
 Source code may be not available

 Disadvantages
 Making sense is more difficult (e.g., may lack type info)

12

SA in Code Review

Code
review
cycle

13

Establish Goals: SA Metrics
 Prioritize code to review + criteria … based on risks
 Metrics helps

 Prioritizing remedial efforts
 Estimating risk associated with code (tricky!)

 False positive/negative – manual inspection needed
 No way to sum/aggregate risks from flaws

 Some metrics for tactical focus
 Measuring vulnerability density

 #results/LOC – maybe deceptive

 Comparing projects by severity
 Breaking down results by category
 Monitoring trends – from one group (dev) to another (security)

14

SA Metrics
 Comparing modules based on severity
 Breaking down by categories

15

Prioritizing remedial efforts

SA Internals
 A Generic SA Tool

16

program

Building a model
 Create a program model from code
 A set of data structures
 Depends on the type of analysis that a tool performs

 SA - Closer to compiler
 Lexical analysis – e.g., regular expression for tokens
 Parsing – uses a context free grammar

 Set of production rules
 Parse tree: Lex and Yacc

Lexical Rules:

if { return IF; }
({ return LPAREN; }
) { return RPAREN; }
[{ return LBRACKET; }
] { return LBRACKET; }
= { return EQUAL; }
; { return SEMI; }
/[\t\n]+/ { /* ignore whitespace */ }
/\/\/.*/ { /* ignore comments */ }
/[a-zA-Z][a-zA-Z0-9]*/ { return ID; } 17

Parsing
 Can have nonterminal

symbols
 Syntactic sugar!

 Can perform analysis on
Parse Tree – can be
inconvenient
 Directly from grammar

stmt := if_stmt | assign_stmt
if_stmt := IF LPAREN expr RPAREN stmt
expr := lval
assign_stmt := lval EQUAL expr SEMI
lval = ID | arr_access
arr_access := ID arr_index+
arr_idx := LBRACKET expr RBRACKET

18

if (ret) // probably true
mat[x][y] = END_VAL;

Abstract Syntax Tree
 Does away with the details of grammar and

syntactic sugar
 Create a standard version of program
 Lowering (e.g., loops may be converted to while loop)

19

Semantic Analysis & Control
Flow
 Semantic analysis based on: AST + Symbol

table
 Type checking can be done
 Semantic analysis – symbol resolution and type

checking
 Optimization or intermediate forms may be created

 Tracking Control Flow
 Different execution paths need to be explored
 Build a control flow graph on top of AST

20

Control Flow Graph
 Trace: sequence of blocks that define a path
 E.g., bb0, bb1, bb3

if (a > b) {
nConsec = 0;

} else {
s1 = getHexChar(1);
s2 = getHexChar(2);

}
return nConsec

21

Call graph
 Call graph – control flow between functions

Function pointers &
Virtual functions
complicate things

..
Data flow &
data type
analysis
may be needed

Dynamically
loaded
modules
make it
further
challenging

Call graph
may be
incomplete

int larry(int fish) {
if (fish) {
moe(1);

} else {
curly();

}

}

int moe(int scissors) {
if (scissors) {
curly();
moe(0);

} else {
curly();

}
}

int curly() {
/* empty */

}

22

Dataflow
 Analyzes how data move through the program ..

 Helps compilers optimize!
 Traverse function’s control flow graph

 Where data values are generated & where used
 Convert a function to static single assignment form (SSA)

 SSA: allows assigning a value to a variable only once
 New variables may need to be added

 SSA variable can have a constant (use that to replace future
variable places) – constant propagation (pwds?, keys)

 SSA variable may have different values along different control
paths – need to be reconciled
 Merge point: φ-function

23

SSA Examples

24

Taint Propagation
 It is important
 to identify which values in a program an attacker

could potentially control/target
 Need to know where values enter and how they move
 E.g., Buffer overflow vulnerability

 Taint propagation algorithm
 Key to identifying many input validation and

representation defects
 Static as well as dynamic taint propagation analysis

25

Pointer Aliasing
 Several pointers may refer to the same

memory
*p1 = 1 Can p1 and p2 refer to the same location?
*p2 = 2 Can these be reordered?

For the following, compiler should understand that input
data flows to process Input

p1 = p2;
*p1 = getUserInput();
processInput(*p2);

26

Presenter
Presentation Notes
Alias analysis algorithms describe pointer relationships with terms
such as “must alias,” “may alias,” and “cannot alias.” Many compiler optimizations
require some form of alias analysis for correctness. For example,
a compiler would be free to reorder the following two statements only if the
pointers p1 and p2 do not refer to the same memory location:
*p1 = 1;
*p2 = 2;
For security tools, alias analysis is important for performing taint
propagation. A flow-sensitive taint-tracking algorithm needs to perform
alias analysis to understand that data flow from getUserInput() to
processInput() in the following code:
p1 = p2;
*p1 = getUserInput();
processInput(*p2);

SA Algorithms
 Local component and global component
 Improve context sensitivity

intraprocedural analysis component
for analyzing an individual function

interprocedural analysis component
for analyzing an individual function 27

Presenter
Presentation Notes
The motivation for using advanced static analysis algorithms is to improve
context sensitivity—to determine the circumstances and conditions under
which a particular piece of code runs. Better context sensitivity enables a
better assessment of the danger the code represents. It’s easy to point at all
calls to strcpy() and say that they should be replaced, but it’s much harder
to call special attention to only the calls to strcpy() that might allow an
attacker to overflow a buffer.
Any advanced analysis strategy consists of at least two major pieces: an
intraprocedural analysis component for analyzing an individual function,
and an interprocedural analysis component for analyzing interaction
between functions. Because the names intraprocedural and interprocedural
are so similar, we use the common vernacular terms local analysis to mean
intraprocedural analysis, and global analysis to mean interprocedural analysis.
Figure 4.6 diagrams the local analysis and global analysis components,
and associates the major data structures commonly used by each.

Assertions
 Many properties can be specified as assertions

– which need to be true

Example: Buffer Overflow prevention check
strcpy(dest, src);

Add assertion before the call
assert(alloc_size(dest) > strlen(src));

 If there are conditions under which an assertion
can fail – report potential overflow

28

Assertions
 Typically three varieties of assertions

 Taint propagation problems
 When programmers trust input when they should not – so SA should

check data values moving
 data is either tainted (controlled by an attacker) or not

 Range Analysis
 To Identify buffer overflow – need to know the size of the buffer and

the data value
 Understand the range of values data or size may have

 Type state: concern about the state of an object as execution
proceeds
 In freed state (can lead to double free vuln?)

29

Naïve Local Analysis
(informal)
Consider x = 1;

y = 1;
assert(x < y);

 Maintain facts before each statement is
executed

x = 1; {} (no facts)
y = 1; { x = 1 }
assert(x < y); { x = 1, y = 1 }

 Always false!! SA should report a problem

30

x = v; Symbolic
y = v; Simulation
assert(x < y);
Same Result

No concrete
values
needed

Conditionals make it complex!
x = v;
if (x < y) { this condition may or may not be TRUE

y = v;
}
assert (x < y);

x = v; {}(no facts)
if (x < y) { x = v }
y = v; { x = v, x < y }
assert (x < y) { x = v, x < y, y = v }

When BRANCH is taken x < y is TRUE

v < v means assertion
is violated

x = v; {} (no facts)
if (x < y) { x = v }
assert (x < y) { x = v, ￢(x < y) }

When BRANCH is not taken x < y is FALSE

Need to check the
conjunction of assertion
predicate and all the facts:

(x < y) ∧ (x = v) ∧￢(x < y)

Again fails!
31

Presenter
Presentation Notes
This approach to evaluating branches is problematic. The number of
paths through the code grows exponentially with the number of conditionals,
so explicitly gathering facts along each path would make for an unacceptably
slow analyzer. This problem can be alleviated to some degree by
allowing paths to share information about common subpaths and with
techniques that allow for implicit enumeration of paths. Program slicing
removes all the code that cannot affect the outcome of the assert predicate.
The tool also needs a method for eliminating false paths, which are paths
through the code that can never be executed because they are logically
inconsistent.

Conditionals make it complex!
Loops add further ..
 The previous approach is problematic
 #paths grows with the number of conditionals
 Share info among common subpaths
 Program slicing – to remove code that cannot

affect the outcome of the assert predicate
 Also eliminate false paths – logically inconsistent

paths that will never be executed
 Adding loops makes it even more complex!

32

Approaches to Local Analysis
 Abstract interpretation
 Abstract away aspects of the program that are not

relevant to properties of interest and then perform an
interpretation

 Loop problems – do flow-insensitive analysis
 Tries to guarantee that all statement orderings are considered

(not follow the program statement order)
 No need for control flow analysis
 But some useless execution order may be performed as well

 More practical tools – partially flow sensitive!

33

Predicate Transformers
 Use the weakest precondition

 Fewest set of requirements on the callers of a
program that are necessary to arrive at a desired final
state or post condition
E.g., consider assert(x < y)

(x < 0 ∧ y > 0) // always satisfied
is a strong requirement than

(x < y);

34

Model Checking Approach
 Accepts properties as specifications, transforms the program to be

check into an automaton (called the model)
 Now compare the specification to the model
 Example: “memory should be freed only once”

Model checking will look for a variable wrt
which system will reach state error

35

Global Analysis
 Context-sensitive analysis

 Takes into account the context of the calling function

 Whole-program analysis
 Tries to analyze every function with a complete understanding

of the context of its calling functions
 One way is “inlining” (Recursion will be problem)
 Time consuming and very ambitious

 More flexible approach
 Local analysis generates the function summaries

 Example

36

Rules
 Good SA tools externalize the rules they check

 Added, removed, altered easily

RATS will report a violation of the rule
whenever it sees a call to system()
where the first argument is not
constant.

The argument number

In some cases rules are
annotated within the program
(in JML)

37

Presenter
Presentation Notes
In some cases, it is preferable to have rules appear directly in the text of the
program, in the form of annotations. If special rules govern the use of a particular
module, putting the rules directly in the module (or the header file for
the module) is a good way to make sure that the rules are applied whenever
the module is used. Annotations are often more concise than rules that
appear in external files because they do not have to explain the context they
apply to; an annotation’s context is provided by the code around it. For
example, instead of having to specify the name of a function, an annotation
can simply appear just before the function declaration.
This tight binding to the source code has its disadvantages, too. For
example, if the people performing the analysis are not the owners or maintainers
of the code, they might not be allowed to add permanent annotations.
One might be able to overcome this sort of limitation by creating
special source files that contain annotations almost exclusively and using
these source files only for the purpose of analysis.
Languages such as Java and C# have a special syntax for annotations.
For languages that do not have an annotation syntax, annotations usually
take the form of specially formatted comments. Example 4.12 shows an
annotation written in the Java Modeling Language (JML). Although Sun
has added syntax for annotations as of Java 1.5, annotations for earlier versions
of Java must be written in comments. Annotations are useful for more
than just static analysis. A number of dynamic analysis tools can also use
JML annotations.

Example 4.12 A specification for the java.io.Reader method read() written in
JML. The specification requires the reader to be in a valid state when read() is called. It
stipulates that a call to read() can change the state of the reader, and it ensures that the
return value is in the range 1 to 65535.

Rules for Taint Propagation
 Variety of rule types to accommodate different

taint propagation problems
 Source rules define program locations where tainted

data enter the system.
 Functions named read() often introduce taint in an obvious

manner; others: getenv(), getpass(), gets().
 Sink rules define program locations that should not

receive tainted data.
 For SQL injection in Java, Statement.executeQuery() is a sink.
 For buffer overflow in C, assigning to an array is a sink, as is

the function strcpy()

38

Rules for Taint Propagation
 Pass-through rules define the way a function

manipulates tainted data.
 E.g.,, a pass-through rule for the java.lang.String method trim() might

explain “if a String s is tainted, the return value from calling s.trim() is
similarly tainted.”

 Cleanse rule is a form of pass-through rule that removes
taint from a variable.

 represents input validation functions.

 Entry-point rules (similar to source)-
 they introduce taint into the program, entry-point functions are

invoked by an attacker.
 E.g., main() is an entry point (java, C)

39

Example: Command injection
vulnerability

40

Presenter
Presentation Notes
To see how the rule types work together to detect a vulnerability, consider
Figure 4.8. It shows a source rule, a pass-through rule, and a sink rule
working together to detect a command injection vulnerability. A source rule
carries the knowledge that fgets() taints its first argument (buf). Dataflow
analysis connects one use of buf to the next, at which point a pass-through
rule allows the analyzer to move the taint through the call to strcpy() and
taint othr. Dataflow analysis connects one use of othr to the next, and
finally a sink rule for system() reports a command injection vulnerability
because othr is tainted.

Taints
 Essentially BINARY attribute
 But can have taint flags to indicate variety of tainted

data – can help prioritize!
 FROM_NETWORK data from network
 FROM_CONFIGURATION data from config file

 Sink functions may be dangerous for a specific taint type
 E.g., arbitrary user-controlled data vs. numeric data

 Taint propagation rules include various elements
 Method or function – to apply to
 Precondition – on taint propagation
 Postcondition – changes to taint propagation (taint or cleanse)
 Severity – when the sink rule is triggered

41

Summary
 Overview of Static Analysis

42

43

	Slide Number 1
	Static Analysis
	Usefulness
	Key Issues
	Type Checking
	Style Checking
	Program Understanding
	Program verification and Property checking
	Bug Finding
	Factors for utility of SA
	Some examples�
	Analyzing Source vs Compiled
	SA in Code Review
	Establish Goals: SA Metrics
	SA Metrics
	SA Internals
	Building a model
	Parsing
	Abstract Syntax Tree
	Semantic Analysis & Control Flow
	Control Flow Graph
	Call graph
	Dataflow
	SSA Examples
	Taint Propagation
	Pointer Aliasing
	SA Algorithms
	Assertions	
	Assertions
	Naïve Local Analysis (informal)
	Conditionals make it complex!
	Conditionals make it complex!�Loops add further ..
	Approaches to Local Analysis
	Predicate Transformers
	Model Checking Approach
	Global Analysis
	Rules
	Rules for Taint Propagation
	Rules for Taint Propagation
	Example: Command injection vulnerability
	Taints
	Summary	
	Slide Number 43

