
Secure Coding in C 
and C++

Pointer Subterfuge

Lecture 4
Sept 14, 21, 2017         

Acknowledgement: These slides are based on author Seacord’s original 
presentation



Pointer Subterfuge
 A pointer is a variable that contains the address of a 

function, array element, or other data structure. 

 Function pointers can be overwritten to transfer control 
to attacker-supplied shellcode.

 Data pointers can also be modified to run arbitrary 
code. 
 attackers can control the address to modify other memory 

locations.



Data Locations - 1

 For a buffer overflow to overwrite a function/ 
data pointer the buffer must be
 allocated in the same segment as the target 

function/data pointer.
 at a lower memory address than the target 

function/data pointer.
 susceptible to a buffer overflow exploit.



Data Locations - 2

 UNIX executables contain both a data and a 
BSS segment. 
 The data segment contains all initialized global 

variables and constants. 
 The Block Started by Symbols (BSS) segment 

contains all uninitialized global variables. 
 Initialized global variables are separated from 

uninitialized variables.



1. static int GLOBAL_INIT = 1; /* data segment, global */ 

2. static int global_uninit; /* BSS segment, global */ 
3. 
4. void main(int argc, char **argv) { /* stack, local */ 
5. int local_init = 1; /* stack, local */ 
6. int local_uninit; /* stack, local */ 
7. static int local_static_init = 1; /* data seg, local */
8. static int local_static_uninit; /* BSS segment, local*/

/* storage for buff_ptr is stack, local */
/* allocated memory is heap, local */
int *buff_ptr = (int *) malloc(32);

9. }

Data declarations and process 
memory organization



funcPtr declared are both 
uninitialized and stored 
in the BSS segment.

Function Pointers - Example 
Program 1

 1. void good_function(const char *str) {...} 
 2. void main(int argc, char **argv) {
 3. static char buff[BUFFSIZE]; 
 4. static void (*funcPtr)(const char *str); 
 5. funcPtr = &good_function;
 6. strncpy(buff, argv[1], strlen(argv[1])); 
 7. (void)(*funcPtr)(argv[2]); 
 8. } 

The static 
character 
array buff



Function Pointers - Example 
Program - 2
1. void good_function(const char *str) {...} 
2. void main(int argc, char **argv) {
3. static char buff[BUFFSIZE]; 
4. static void (*funcPtr)(const char *str); 
5. funcPtr = &good_function;
6. strncpy(buff, argv[1], strlen(argv[1])); 
7. (void)(*funcPtr)(argv[2]); 
8. } A buffer 

overflow 
occurs when 
the length of 
argv[1] 
exceeds 
BUFFSIZE.

When the program invokes the function 
identified by funcPtr, the shellcode is 
invoked instead of good_function().



Data/objecy Pointers
 Used in C and C++ to refer to
 dynamically allocated structures 
 call-by-reference function arguments
 arrays
 other data structures

 Arbitrary Memory Write occurs when an Attacker 
can control an address to modify other memory 
locations



Data Pointers - Example 
Program

1. void foo(void * arg, size_t len) {
2. char buff[100];
3. long val = ...;
4. long *ptr = ...;
5. memcpy(buff, arg, len); //unbounded memory copy 
6. *ptr = val;
7. ...
8. return;
9. }

 By overflowing the buffer, an attacker can
overwrite ptr and val.

 When *ptr = val is evaluated (line 6), an 
arbitrary memory write is performed.



Modifying the Instruction 
Pointer
 For an attacker to succeed an exploit needs to

modify the value of the instruction pointer to
reference the shellcode.
1. void good_function(const char *str) {
2. printf("%s", str);
3. } 
4. int _tmain(int argc, _TCHAR* argv[]) {
5. static void (*funcPtr)(const char *str);  

// Function pointer declaration
6. funcPtr = &good_function;
7. (void)(*funcPtr)("hi "); 
8. good_function("there!\n");
9. return 0;

10. }



Function Pointer Disassembly  
Example - Program
 (void)(*funcPtr)("hi "); 

 00424178 mov esi, esp
 0042417A push offset string "hi" (46802Ch) 
 0042417F call dword ptr [funcPtr (478400h)] 
 00424185 add esp, 4 
 00424188 cmp esi, esp
 good_function("there!\n");

 0042418F push offset string "there!\n" 
(468020h) 

 00424194 call good_function (422479h) 
 00424199 add esp, 4

First function call invocation takes place at 
0x0042417F. The machine code at this 
address is        ff 15 00 84 47 00

This address 
can also be 
found in the 
dword ptr 
[funcPtr

The actual address of 
good_function() 
stored at this address 
is 0x00422479.

opcode

Tells which 
registers of mem 

loc to us as 
opperands

(absolute, indirect 
call)



Function Pointer Disassembly  
Example - Program
 (void)(*funcPtr)("hi "); 

 00424178 mov esi, esp 
 0042417A push offset string "hi" (46802Ch) 
 0042417F call dword ptr [funcPtr (478400h)] 
 00424185 add esp, 4 
 00424188 cmp esi, esp 

 good_function("there!\n");

 0042418F push offset string "there!\n" 
(468020h) 

 00424194 call good_function (422479h) 
 00424199 add esp, 4

The second, static call to 
good_function() takes place at 
0x00424194. The machine code at this 
location is       e8 e0 e2 ff ff.

Opcode: indicates 
call with 

displacement 
relative to the next 

instruction



Function Pointer Disassembly 
Analysis - 1

 call Goodfunction(..)
 indicates a near call with a displacement relative 

to the next instruction. 
 The displacement is a negative number, which means 

that good_function() appears at a lower address
 The invocations of good_function() provide 

examples of call instructions that can and cannot 
be attacked



Function pointer disassembly 
analysis - 2

 The static invocation uses an immediate value
as relative displacement,
 this displacement cannot be overwritten because it is

in the code segment.
 The invocation through the function pointer uses

an indirect reference,
 the address in the referenced location can be

overwritten.
 These indirect function references can be

exploited to transfer control to arbitrary code.



Global Offset Table - 1
 Windows and Linux use a similar mechanism for linking and 

transferring control to library functions. 
 Linux solution is exploitable
 Windows version is not

 The default binary format on Linux, Solaris 2.x, and SVR4 is called 
the executable and linking format (ELF).

 ELF was originally developed and published by UNIX System 
Laboratories (USL) as part of the application binary interface (ABI).

 The ELF standard was adopted by the Tool Interface Standards 
committee (TIS) as a portable object file format for a variety of IA-32 
operating systems. 



Global Offset Table - 2

 The process space of any ELF binary includes a section called the 
global offset table (GOT). 
 The GOT holds the absolute addresses, 
 Provides ability to share the program text. 

 essential for the dynamic linking process to work. 
 Every library function used by a program has an entry in the GOT 

that contains the address of the actual function. 
 Before the program uses a function for the first time, the entry 

contains the address of the runtime linker (RTL). 
 If the function is called by the program, control is passed to the RTL 

and the function’s real address is resolved and inserted into the 
GOT. 

 Subsequent calls invoke the function directly through the GOT entry 
without involving the RTL



Global Offset Table - 3

 The address of a GOT entry is fixed in the ELF executable.
 The GOT entry is at the same address for any executable process

image.

 The location of the GOT entry for a function can be found using the
objdump

 An attacker can overwrite a GOT entry for a function with the
address of shellcode using an arbitrary memory write.

 Control is transferred to the shellcode when the program subsequently invokes 
the function corresponding to the compromised GOT entry. 



Global Offset Table Example
 % objdump --dynamic-reloc test-prog
 format:     file format elf32-i386

 DYNAMIC RELOCATION RECORDS
 OFFSET   TYPE              VALUE
 08049bc0 R_386_GLOB_DAT    __gmon_start__
 08049ba8 R_386_JUMP_SLOT   __libc_start_main
 08049bac R_386_JUMP_SLOT  strcat
 08049bb0 R_386_JUMP_SLOT   printf
 08049bb4 R_386_JUMP_SLOT  exit
 08049bb8 R_386_JUMP_SLOT   sprintf
 08049bbc R_386_JUMP_SLOT   strcpy

The offsets specified for each
R_386_JUMP_SLOT relocation record contain
the address of the specified function (or the RTL
linking function)



The .dtors Section
 Another function pointer attack is to overwrite function pointers in

the .dtors section for executables generated by GCC

 GNU C allows a programmer to declare attributes about
functions by specifying the __attribute__ keyword followed by an
attribute specification inside double parentheses

 Attribute specifications include constructor and destructor.

 The constructor attribute specifies that the function is called
before main()

 The destructor attribute specifies that the function is called after
main() has completed or exit() has been called.



The .dtors Section - Example 
Program

1. #include <stdio.h>
2. #include <stdlib.h>

3. static void create(void) 
__attribute__ ((constructor));

4. static void destroy(void) 
__attribute__ ((destructor));

5. int main(int argc, char *argv[]) {
6. printf("create: %p.\n", create);
7. printf("destroy: %p.\n", destroy);
8. exit(EXIT_SUCCESS);
9. }

10. void create(void) {
11. printf("create called.\n");
12. }

13. void destroy(void) {
14. printf("destroy called.\n");
15. }

create called.
create: 0x80483a0.

destroy: 0x80483b8.
destroy called.



The .dtors Section - 1

 Constructors and destructors are stored in the .ctors and .dtors
sections in the generated ELF executable image. 

 Both sections have the following layout:
 0xffffffff {function-address} 0x00000000

 The .ctors and .dtors sections are mapped into the process 
address space and are writable by default. 

 Constructors have not been used in exploits because they are 
called before the main program. 

 The focus is on destructors and the .dtors section.
 The contents of the .dtors section in the executable image can be 

examined with the objdump command



The .dtors Section - 2

 An attacker can transfer control to arbitrary code by overwriting the 
address of the function pointer in the .dtors section. 

 If the target binary is readable by an attacker, an attacker can find the 
exact position to overwrite by analyzing the ELF image. 

 The .dtors section is present even if no destructor is specified. 

 The .dtors section consists of the head and tail tag with no function 
addresses between. 

 It is still possible to transfer control by overwriting the tail tag 
0x00000000 with the address of the shellcode. 



The .dtors Section - 3

 For an attacker,.dtors section has advantages 
over other targets: 
 .dtors is always present and mapped into memory. 

 It is difficult to find a location to inject the shellcode 
onto so that it remains in memory after main() has 
exited.

 The .dtors target only exists in programs that have 
been compiled and linked with GCC. 



Virtual Pointers - 1

 A virtual function is a function member of a class, declared using
the virtual keyword.

 Functions may be overridden by a function of the same name in
a derived class.

 A pointer to a derived class object may be assigned to a base
class pointer, and the function called through the pointer.

 Without virtual functions, the base class function is called
because it is associated with the static type of the pointer.

 When using virtual functions, the derived class function is called
because it is associated with the dynamic type of the object



Virtual Pointers - Example 
Program- 1

 1. class a {
 2. public:
 3. void f(void) {
 4. cout << "base f" << endl;
 5. };

 6. virtual void g(void) {
 7. cout << "base g" << endl;
 8. };
 9. };

 10. class b: public a {
 11. public:
 12. void f(void) {
 13. cout << "derived f" << endl;
 14. };

 15. void g(void) {
 16. cout << "derived g" << endl;
 17. };
 18. };

 19. int _tmain(int argc, _TCHAR* argv[]) {
 20. a *my_b = new b();
 21. my_b->f();
 22. my_b->g();
 23. return 

Class a is defined as the base 
class and contains a regular 
function f() and a virtual 
function g().

Class b is derived from
a and overrides both
functions.

A pointer my_b to the base class
is declared in main() but
assigned to an object of the
derived class b.



Virtual Pointers - Example 
Program- 1

 19. int _tmain(int argc, _TCHAR* argv[]) {
 20. a *my_b = new b();
 21. my_b->f();
 22. my_b->g();
 23. return 

When the non-virtual 
function my_b->f() is called 
on the function f() 
associated with a (the base 
class) is called.

When the virtual function
my_b->g() is called on the
function g() associated with b
(the derived class) is called

A pointer my_b to the base class is
declared in main() but assigned to an
object of the derived class b.



Virtual Pointers - 2
 Most C++ compilers implement virtual functions 

using a virtual function table (VTBL). 
 The VTBL is an array of function pointers that is 

used at runtime for dispatching virtual function 
calls. 

 Each individual object points to the VTBL via a 
virtual pointer (VPTR) in the object’s header. 

 The VTBL contains pointers to each 
implementation of a virtual function.



VTBL Runtime Representation

b object b vtable

g()my_b

other
virtual
function



Virtual Pointers - 3
 It is possible to overwrite function pointers in 

the VTBL or to change the VPTR to point to 
another arbitrary VTBL. 
 by an arbitrary memory write or by a buffer 

overflow directly into an object. 
 The buffer overwrites the VPTR and VTBL of 

the object and allows the attacker to cause 
function pointers to execute arbitrary code.



The atexit() and on_exit() 
Functions - 1

 The atexit() function is a general utility function
defined in C99.

 The atexit() function registers a function to be called
without arguments at normal program termination.

 C99 requires that the implementation support the
registration of at least 32 functions.

 The on_exit() function from SunOS performs a
similar function.

 This function is also present in libc4, libc5, and glibc



The atexit() and on_exit() –
Example Program

1. char *glob;

2. void test(void) {
3. printf("%s", glob);
4. }

5. void main(void) {
6. atexit(test);
7. glob = "Exiting.\n";
8. }



The atexit() and on_exit() 
Functions - 2

 The atexit() function works by adding a specified
function to an array of existing functions to be called
on exit.

 When exit() is called, it invokes each function in the
array in last in, first out (LIFO) order.

 Because both atexit() and exit() need to access this
array, it is allocated as a global symbol (__atexit on
*bsd and __exit_funcs on Linux)



Debug session of atexit program 
using gdb - 1

 (gdb) b main
 Breakpoint 1 at 0x80483f6: file atexit.c, line 6.
 (gdb) r
 Starting program: /home/rcs/book/dtors/atexit


 Breakpoint 1, main (argc=1, argv=0xbfffe744) at atexit.c:6
 6 atexit(test);
 (gdb) next
 7 glob = "Exiting.\n";
 (gdb) x/12x __exit_funcs
 0x42130ee0 <init>: 0x00000000 0x00000003 0x00000004 0x4000c660
 0x42130ef0 <init+16>: 0x00000000 0x00000000 0x00000004 0x0804844c
 0x42130f00 <init+32>: 0x00000000 0x00000000 0x00000004 0x080483c8
 (gdb) x/4x 0x4000c660
 0x4000c660 <_dl_fini>: 0x57e58955 0x5ce85356 0x81000054 0x0091c1c3
 (gdb) x/3x 0x0804844c
 0x804844c <__libc_csu_fini>: 0x53e58955 0x9510b850 x102d0804 
 (gdb) x/8x 0x080483c8
 0x80483c8 <test>: 0x83e58955 0xec8308ec 0x2035ff08 0x68080496



Debug session of atexit program 
using gdb - 2

 Three functions have been registered _dl_fini(),
__libc_csu_fini(), test().

 It is possible to transfer control to arbitrary code with
an arbitrary memory write or a buffer overflow
directly into the __exit_funcs structure.

 The _dl_fini() and __libc_csu_fini() functions are
present even when the vulnerable program does not
explicitly call the atexit() function.



The longjmp() Function

 C99 defines the setjmp() macro, longjmp() function, and
jmp_buf type, which can be used to bypass the normal
function call and return discipline.

 The setjmp() macro saves its calling environment for
later use by the longjmp() function.

 The longjmp() function restores the environment saved
by the most recent invocation of the setjmp() macro.



The longjmp() Function- Example 
Program - 1

1. #include <setjmp.h>
2. jmp_buf buf;
3. void g(int n);
4. void h(int n);
5. int n = 6;

6. void f(void) {
7. setjmp(buf);
8. g(n);
9. }

10. void g(int n) {
11. h(n);
12. }

13. void h(int n){
14. longjmp(buf, 2); 
15. }



The longjmp() Function Example 
Program- 2

1. typedef int __jmp_buf[6];

2. #define JB_BX 0
3. #define JB_SI 1
4. #define JB_DI 2
5. #define JB_BP 3
6. #define JB_SP 4
7. #define JB_PC 5
8. #define JB_SIZE 24

9. typedef struct __jmp_buf_tag     
{

10. __jmp_buf __jmpbuf; 
11. int __mask_was_saved; 
12. __sigset_t __saved_mask; 
13. } jmp_buf[1]

 The jmp_buf structure (lines
9-13) contains three fields.

 The calling environment is
stored in __jmpbuf (declared
on line 1).

 The __jmp_buf type is an
integer array containing six
elements.

 The #define statements
indicate which values are
stored in each array element.

 The base pointer (BP) is
stored in __jmp_buf[3],

 The program counter (PC) is
stored in __jmp_buf[5]



The longjmp() Function Example 
Program- 3

longjmp(env, i) 
1. movl i, %eax /* return i */
2. movl env.__jmpbuf[JB_BP], %ebp 
3. movl env.__jmpbuf[JB_SP], %esp
4. jmp (env.__jmpbuf[JB_PC])

The movl instruction on line 2
restores the BP

The movl instruction
on line 3 restores the
stack pointer (SP).

Line 4 transfers control to the
stored PC



The longjmp() Function
 The longjmp() function can be exploited by

overwriting the value of the PC in the jmp_buf
buffer with the start of the shellcode.

 This can be accomplished with an arbitrary
memory write or by a buffer overflow directly
into a jmp_buf structure



Mitigation Strategies

 The best way to prevent pointer subterfuge is
to eliminate the vulnerabilities that allow
memory to be improperly overwritten.
 Pointer subterfuge can occur as a result of
 Overwriting data pointers
 Common errors managing dynamic memory
 Format string vulnerabilities

 Eliminating these sources of vulnerabilities is
the best way to eliminate pointer subterfuge.



W^X

 One way to limit the exposure from some of 
these targets is to reduce the privileges of the 
vulnerable processes. 
 The policy called “W xor X” or “W^X” states that a 

memory segment may be writable or executable, but 
not both. 

 cannot be effectively enforced to prevent overwriting 
targets such as atexit() that need to be both writable at 
runtime and executable.


	Secure Coding in C and C++�Pointer Subterfuge
	Pointer Subterfuge
	Data Locations - 1
	Data Locations - 2
	 
	Function Pointers - Example Program 1
	Function Pointers - Example Program - 2
	Data/objecy Pointers
	Data Pointers - Example Program
	Modifying the Instruction Pointer
	Function Pointer Disassembly  Example - Program
	Slide Number 12
	Function Pointer Disassembly Analysis - 1
	Function pointer disassembly analysis - 2
	Global Offset Table - 1
	Global Offset Table - 2 
	Global Offset Table - 3
	Global Offset Table Example
	The .dtors Section
	The .dtors Section - Example Program
	The .dtors Section - 1
	The .dtors Section - 2
	The .dtors Section - 3
	Virtual Pointers - 1
	Virtual Pointers - Example Program- 1
	Virtual Pointers - Example Program- 1
	Virtual Pointers - 2
	VTBL Runtime Representation
	Virtual Pointers - 3
	The atexit() and on_exit() Functions - 1
	The atexit() and on_exit() –       Example Program
	The atexit() and on_exit() Functions - 2
	Debug session of atexit program using gdb - 1
	Debug session of atexit program using gdb - 2
	The longjmp() Function�
	The longjmp() Function- Example Program - 1
	The longjmp() Function Example Program- 2
	The longjmp() Function Example Program- 3
	The longjmp() Function
	Mitigation Strategies�
	W^X�

