IS-2620: Developing Secure Systems (Fall, 2017)

Lab 1: Lab Environment & Data Execution Prevention in Windows

This lab has three parts:

Part 1: The purpose of this lab part is to introduce you to set up the lab environment:
virtual machine installation, network configuration, and C/C++ development setup.

Part 2: The purpose of this lab assignment is to introduce the Data Execution
Presentation (DEP) in the Windows environment and conduct a simple buffer
overflow attack with and without the enforcement of DEP.

Part3: The purpose of this lab assignment is to understand the buffer overflows and
know how to exploit them in the Windows environment.

Students’ Names:

Date:

1S-2620: Developing Secure Systems (Fall, 2017)

Part 1: Lab Environment Setup

1.1 Virtual Machine Installation
Please download the following tools at first:

e VirtualBox: it is a virtualization software package and it supports additional guest
operating systems (e.g. Linux, Mac OS X and Windows) to be installed in your host
operating system. It can be downloaded at http://www.oracle.com/technetwork/server-
storage/virtualbox/downloads/index.html. Note that the latest versions of VirtualBox may
have some compatible issues and the version of VirtualBox-4.2.24 is suggested in this
lab. VirtualBox-4.2.24 can be obtained from
https://www.virtualbox.org/wiki/Download Old Builds 4 2.

(As the old VirtualBox version could not be installed on new Mac OS, the latest versions
for Mac OS is also fine.)

e Windows 7 Virtual Box Image: you can download the official Microsoft Windows 7 for
VirtualBox from https://www.modern.ie/en-us/virtualization-tools#downloads. Note that
IE11 - Win7 is suggested.

Please refer to http://www.virtualbox.org/manual/ch02.html to install the VirtualBox in your host
operating system. After the VirtualBox is installed, please follow the instructions at
http://blog.reybango.com/2013/02/04/making-internet-explorer-testing-easier-with-new-ie-vms/

to install Windows 7 in the VirtualBox. At last, setup the virtual network and make the Windows
7 to be able to access Internet based on the instruction at

https://www.virtualbox.org/manual/ch06.html.

Question 1.1: What networking mode you adopt for the Window 7 in the VirtualBox?

1.2 Development Environment Setup
First, please logon to the Windows 7 in the VirtualBox and prepare to download C/C++
development IDE in it.

(If you have a preference on or are familiar with a specific C/C++ development IDE in Windows
7, you can skep the following steps)

In Windows 7, download Netbeans IDE for C/C++ at https:/netbeans.org/downloads/. After that,
please follow the instructions at https:/netbeans.org/community/releases/72/cpp-setup-

instructions.html to download all the required components of the Cygwin and setup the C/C++
compiler and debug environment. The Cygwin can be found at https:/www.cygwin.com/.

Please create the first C++ application, named “labl 17, using the following codes to be familiar
with the Netbeans development environment:

| #include <cstdlib> |

1S-2620: Developing Secure Systems (Fall, 2017)

#include <iostream>
using namespace std;
int main(int argc, char** argv) {

std::cout << "Welcome to Developing Secure System!\n";
if (std::cout.fail()) {

std::cerr << "Sorry, greeting failed.\n";

return EXIT FAILURE;
} else {

return EXIT SUCCESS;

}

}

Question 1.2: What is the output of labl 1?

1S-2620: Developing Secure Systems (Fall, 2017)

Part 2: Data Execution Prevention (DEP) in Windows

2.1 Introduction of DEP

Data Execution Prevention (DEP) is a security feature that can help prevent certain malicious
exploits, especially attacks that store executable instructions in a data area via a buffer overflow.
Please read the following three links to generally understand its mechanism.

e Wikipedia: http://en.wikipedia.org/wiki/Data_Execution_Prevention
e Microsoft: http://support.microsoft.com/kb/875352
e Microsoft: http://support.microsoft.com/kb/912923

Question 1.3: List the modes of the DEP enforcement?

Open the VirtualBox and Start Windows 7 in your computer. Check the default DEP setting in the
Windows 7. Please do not change the default setting of the DEP in your computer.

Question 1.4: What DEP mode(s) does your computer support?

2.2 Enforcement of the DEP: A Simple Example of a Buffer Overflow Problem

First, you need to get a computer with Windows 7 64bit installed. It should not be a virtual
machine and the hardware-enable DEP is active. Then, install Netbeans and Cygwin in that
Windows 7. Open the Netbeans and create another C++ application, named labl 2, using the
following codes:

#include <stdio.h>
#include <string.h>

using namespace std;
int main(int arge, char** argv) {

int value = 5;

char buffer one[8], buffer two[8];

strecpy(buffer _one, "one"); /* Put "one" into buffer one. */

strepy(buffer two, "two"); /* Put "two" into buffer two. */

printf("[BEFORE] buffer two is at %p and contains \'%s\"\n", buffer two, buffer two);
printf("[BEFORE] buffer one is at %p and contains \'%s\"\n", buffer _one, buffer one);
printf("[BEFORE] value is at %p and is %d (0x%08x)\n", &value, value, value);

/*Start a buffer overflow instance*/

1S-2620: Developing Secure Systems (Fall, 2017)

printf("\n[STRCPY] copying %d bytes into buffer two\n\n", strlen(argv[1]));
strepy(buffer _two, argv[1]); /* Copy first argument into buffer two. */
printf("[AFTER] buffer two is at %p and contains \'%s\\n", buffer two, buffer two);
printf("[AFTER] buffer one is at %p and contains \'%s\"\n", buffer one, buffer one);
printf("[AFTER] value is at %p and is %d (0x%08x)\n", &value, value, value);

Run labl_2 using the argument 1234567890 (e.g. labl 2.exe 1234567890).

Question 1.5: What are the outputs of labl_2? Is the buffer overflow prevented by the DEP?

Now, you need to turn off the DEP in the Windows 7.

Open the VirtualBox and Start Windows 7. After you logon the system, open the Command Prompt
in Windows 7 and use “bcdedit /set {current} nx AlwaysOff” to turn off the DEP.

Restart the Windows 7. Run the Command prompt again and type “wmic OS Get
DataExecutionPrevention_Drivers” to check if all the DEP modes have been turned off.

Then, open the Netbeans installed in the Window 7 and create another C++ application, also
named lab1l 2, using the same codes used above.

Run lab1 2 using the same argument 1234567890

Question 1.6: What are the outputs of labl_2 now?

1S-2620: Developing Secure Systems (Fall, 2017)

Question 1.7: Is the buffer overflow exploited? If it is, briefly explain what happened and the
outputs?

1S-2620: Developing Secure Systems (Fall, 2017)

Part 3: Buffer Overflow Attacks

3.2 Heap-based Buffer Overflow
In the Windows 7 installed in the Virtual Box, first make sure that DEP is turned off. Then, open
the Netbeans and create another C++ application, named lab1l 3, using the following codes:

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUFSIZE 16
#define OVERSIZE 8

using namespace std;

typedef unsigned long u_long;
typedef unsigned int u_int;

/*

k
*/
int main(int argc, char** argv) {

u_long diff;
char *bufl = (char *) malloc(BUFSIZE), *buf2 = (char *) malloc(BUFSIZE);

diff = (u_long) buf2 - (u_long) bufl;
printf("bufl = %p, buf2 = %p, diff = 0x%x bytes\n", bufl, buf2, diff);

memset(buf2, 'A', BUFSIZE - 1), buf2[BUFSIZE - 1] ="0";
printf("before overflow: buf2 = %s\n", buf2);
memset(bufl, 'B', (u_int) (diff + OVERSIZE));
printf("after overflow: buf2 = %s\n", buf2);

return 0;

Question 1.8: What are the outputs? Where is the buffer overflow in the above codes? Briefly
explain it.

1S-2620: Developing Secure Systems (Fall, 2017)

3.1 Stack-Based Buffer Overflow Attack
In the Windows 7 installed in the Virtual Box, first make sure that DEP is turned off. Then, open
the Netbeans and create another C++ application, named lab1l 4, using the following codes:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

using namespace std;

int check authentication(char *password) {
int auth flag = 0;
char password buffer[16];
strepy(password _buffer, password);
if (strcmp(password_buffer, "brillig") == 0)

auth flag=1;
if (strcmp(password_buffer, "outgrabe") == 0)
auth flag=1;

return auth flag;
!
s

/ %k
*
*/
int main(int argc, char** argv) {

if (arge <2) {
printf("Usage: %s <password>\n", argv[0]);
exit(0);

§

if (check authentication(argv[1])) {
printf("\n-=-—=-=-=-=-=======-= \n");
printf(" Access Granted.\n");
printf("-=-=-====mm== === \n");

} else {
printf("\nAccess Denied.\n");

}

return 0;

Question 1.9: Where is the buffer overflow vulnerability in the above codes?

IS-2620: Developing Secure Systems (Fall, 2017)

Question 1.10: What are the required passwords to pass the authentication? Can you try to exploit
the buffer overflow in the above codes to pass the authentication without entering the required
passwords (HINTS: Enter an enough long string for the argument)? If you can, what is your input
(argument) and what is the corresponding output? Also, briefly explain how you exploited the
vulnerability and why you can do it?

Question 1.11: Briefly explain the differences between the stack-based buffer overflow and the
heap-based buffer overflow?

IS-2620: Developing Secure Systems (Fall, 2017)

10

