IS 2620

Developing Secure Systems

Introduction| $99,
Aug 30, 2017 | eee-
:.

James Joshi,
Professor, SCI

Contact

e James Joshi

e /06A, IS Building

e Phone: 412-624-9982

e E-mail: jjoshi@mail.sis.pitt.edu

o Web: nttp://iwww.sis.pitt.edu/~jjoshi/courses/IS2620/Fall17/
Office Hours: By appointments

e GSA: TBD

Course Objectives

To learn about how to design/implement secure and high assurance
information systems

Understand and analyze code for vulnerabilities

Secure programming (e.g., C, C++, Java)

Secure architectures & security assurance
Understand the principles and practice towards designing secure
information systems

Life cycle models/ security engineering principles

Usability issues
To learn about the tools/techniques towards assurance
(validation/verification/testing)

Use of tools/techniques to detect coding/design flaws;

architectural risk analysis

Course Coverage

e Secure programming

e Coding practices, issues and guidelines

Code analysis;
Buffer overflows Race conditions
Input validation SQL injection
Cross-site scripting Mobile Code Safe Languages

e Secure software development & Assurance process

e Security Engineering/Lifecycle models
E.g. Capability Maturity Models and Extensions, Building security In

e Secure Design/Implementation Principles

Systems / software &Formal methods and testing
UMLSec, Model Checking (code, protocols)

Secure Supply Chain environments
Verification / model checking

Reverse engineering

Trusted computing modules/environments
Some case studies, problems in Healthcare IT

Pre-requisite

e IS 2150/TEL 2810 Information Security & Privacy
OR background in security

e Following courses are preferred but not required:
IS 2170/TEL 2820 Cryptography; TEL 2821 Network Security

e Talk to me if you are not sure of the background

e Course Reference: Check website

Grading (Tentative)

e Assignments/Presentation/Exam: 50%

Read/Review and/or present research papers or

articles
Assignments/quizzes

Lab exercises
e Exams and Project : 50%

Two exams
One project

Course Policy

e Your work MUST be your own
Zero tolerance for cheating/plagiarism

You get an F for the course if you cheat in anything however
small — NO DISCUSSION

Discussing the problem is encouraged

e Homework
Penalty for late assignments (15% each day)

Ensure clarity in your answers — no credit will be given for vague
answers

Homework is primarily the GSA’s responsibility

e Check webpage for everything!
You are responsible for checking the webpage for updates

Why Secure
Software/System
Development?

Software/Systems Security

e Renewed ---- interest & importance

e “Idea of engineering software so that it
continues to function correctly under
malicious attack”

o Existing software is riddled with design
flaws and implementation bugs
~70% related to design flaws™

e “any program, no matter how
InNnOCcuUouUsS it seems, can harbor
security holes” [Cheswick & Bellovin, 1994]

GARY McGRAL

Fareword by Dam Geer

000
0000
| X XN
33
Software Problem e

o Software Vulnerabilities

ot B 1 # vulnerabilities

1500 | Reported by CERT/CC

ol mm O = , |_| , i

1585 1906 1587 194848 1885 2000 2001 2002 2003 2004

e More than half of the vulnerabilities are due to buffer overruns
e Others such as race conditions, design flaws are equally prevalent

CERT Vulnerability :

Reacting to vulnerabilities in
existing systems is not working

Source: Seacord’s Webinar on Secure Coding on C and C++

NVD statistics (NIST) °

7,000 6,608 6514 Total vulnerabilities reported (2004-2012): 45,135

6,000 5632 9,732

5,000 4.932 4,639 4,476
4,151

4,000

3,000 T
2,000 ' " |
0 \ , \ . .

2004 2005 2008 2007 2008 2009 2010 2011 2012

000
0000
g . 0000
SourceFire report: eess
25 years of vulnerabilities (1988 — 2012) coc
n ' / 563N 22
5000 - 4931 = 5281

Figure 1. Vulnerabilities by year

e Based on CVE database classification & NVD

' i i i [i I] ' [I i 1 I I i I
1988 1989 1990 1991 1992 1993 10G4 1995 1996 1697 1948 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Severity of 7 or higher (SourceFire) oo

3a5m

25

2000

15

1000

500

188 1589 1930 1991 1952 1993 1994 1955 1996 1557 1938 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 3. High severity vulnerabilities by year as a percentage of total vulnerabilities

SourceFire (over 25 years)

Authentication
2%

0OS Command Injection

Buffer Overflow

Other
Crypto CSRF

19 Format String 0%
1%

Numeric Errors
2%

XSS Scripting

1% i
in
Credentals 1 7
1%

Configuration
2%

Path Traversal
5%

Resource Management
5%

Information Leak
5%

Figure 6. Top vulnerability types

SourceFire (over 25 years):

High & Critical

information xs5 CSRF
Format Lea>k

1 0%
1% [. =
Stri = Race Conditions
N Cine Crcd:nnuls\cf:#g ink Following e

Authentwcatmn_._ Confi guratmn_ 3% 0% o
\ Other

N Er 0%
umeric Errors—____
2%

05 Command Injections—

Path Traversal
3%
Information Leak
Re Other Race
Conditions ygg

0%
/_ 0% _T‘/Link Following
/- 096

CSRF
0%

Path Traverszl
Credentials Crypta
™N saL

% ’
2% Format] ~ | (1%
- Injectign
Authentication string {0 \

- N

Numeric Errors

3%
05 Command —
Injections
39 Configuration

Resource Management
3%

Code Injection
5%

Figure 8. Top vulnerability types with a critical severity

Buffer Overflow

SQL Injection

By product ..

e Note different versions ¢

Figure 16. Top 10 products with high severity vulnerabilities

Figure 14. Top 10 products with the most reported vulnerabili

Fgure 16. Top 10 products with critical severity vulnerabilities

Mobile ... oo

e .. Although iPhone has the most — now they
are market leaders in mitigations

Windows M-0S: W-CE,
W-Mobile, W-RT, W-Phone

Figure 19. Mobile phone vulnerability market share

SourceFire ..

e Buffer overflow is one of the top ..

e While fewer vulnerabilities were reported %
of more critical vulnerabilities has increase

e Microsoft has significantly improved

e Chrome is quite high in terms of #
vulnerabilities

e IPhone leads in the group

Software security

e It Is about

o Understanding software-induced security risks
and how to manage them

Leveraging software engineering practice,
thinking security early in the software lifecyle
Knowing and understanding common problems
Designing for security

Subjecting all software artifacts to thorough
objective risk analyses and testing

e It is a knowledge intensive field

Trinity of trouble

Three trends

Connectivity
Inter networked

Include SCADA (supervisory control
and data acquisition systems)

Automated attacks, botnets
Extensibility

Mobile code — functionality evolves
incrementally

Web/OS Extensibility
Complexity
XP is at least 40 M lines of code

Add to that use of unsafe languages
(C/C++)

Current estimate: Google Internet
services total around 2B LoC &
Windows ~50M

(

Millions of Lines

45

Windows Complexity

NS N N N
P S
& ﬁ‘g & q‘-\@g F
5 K
<2
&

INFOGRAPHICS Link:

It boils down to

*
L]
.

Opportunity (normalized) i
) Hosts"Wulns

120 P/o more code,
% / more bugs,
60 more security problems
) i
OO—O—O—O—O—O—M_O—O/L{
5 & &5 & & & &8 5 ¥ 3 8 © & 8

Diffusion delay Drivers
I mLocsa O wvulns MLOCs3'2+1 £ Incidents

MNormalized (median, 2-year lag)
O moc O wins -\ Incidents 60

)) 2
. /\ 30 7
. a—u—u—a—u—u—ﬂ—c—f‘-ﬂ%‘g’ﬁ : H—’Z‘—Q—M

0

90
92
93
94
95
96
97
98
99
00
02
03
90
91
92
93
94
95
96
97
98
99
00
01
02
03

a1
01

Security problems in software

e Defect

e implementation and
design vulnerabillities

e Can remain dormant
e Bug

e An implementation level
software problem

e Flaw

e A problem at a deeper
level

e Bugs + Flaws
e |eads to Risk

30

25

20

15

10

5

L\

Security Problems (CERT)

q@q‘*‘ RN ,\q

B CERT alerns

c_n?’q@ q@ o

Bug

Flaw

Buffer overflow: stack smashing
Buffer overflow: one-stage attacks
Buffer overflow: string format attacks
Race conditions: TOCTOU

Unsafe environment variables

Unsafe system calls (fork(), exec(),
system())

Incorrect input validation (black list vs.

white list

Method over-riding problems
(subclass issues)

Compartmentalization problems in
design

Privileged block protection failure
(DoPrivilege())

Error-handling problems (fails open)
Type safety confusion error
Insecure audit log design

Broken or illogical access control
(role-based access control [RBAC]
over tiers)

Signing too much code

O Buffer overflows

Cost of fixing ...

)00 0
000
000
o0

Cost of Fixing Defects at Each Stage

of Softwars Development

n Requirements
[| Design
B coding
(] Testing

|:| Maintenance

£12,000
g
@
2
] £9,000
2
]
26,000
£3.,000
50 A
120 ~
100 100x
B0 -
&0 —
40 -
20 55 15
1x SN I_I
04 e— r I I " " T
Design Implementation Testing Maintenance
Phase/Stage of the S/W Development in Which the Defect is Found

Relative Costs to Fix Software Defects (Source: IBM Systems Sciences Institute)

OWASP Top Ten
Vulnerabilities (for 2013) 3

e A1-Injection
o 3SQL, OS, LDAP — input validation problem
e A2-Broken Authentication and Session

Management

e Incorrect implementation (compromise passwords,
keys, implementation flaws

e A3-Cross-Site Scripting (XSS)

e Improper validation

e A4-Insecure Direct Object References
e Improper exposure of internal implementation

e A5-Security Misconfiguration
e A6-Sensitive Data Exposure

OWASP

The Open Web Application Security Project

OWASP Top Ten oot
Vulnerabilities (for 2013)

e A7-Missing Function Level Access Control

Web applications Ul and server need to enforce consistent access control
enforcement

e AB8-Cross-Site Request Forgery (CSRF)

Forged HTTP requests and compromise of victim’s session cookie

Victim’s browser is forced to generate requests to the vulnerable application
e A9-Using Components with Known Vulnerabilities

Components could run with full privileges — vulnerable program could be
exploited

Components could be libraries or software modules and frameworks

e A10-Unvalidated Redirects and Forwards
Improper validation issue
Web apps can redirect victims to phishing or malware sites.

Comparison:

Recent incidents ..

e HeartBleed (CVE-2014-0160)

A serious threat in OpenSSL

Estimated to have made 2/3 of Internet vulnerable
Essentially a buffer overflow issue (overreads)
Improper input validation — allows access to more data

= Automated software testing did not catch !!

= Static analysis did not catch it ! And dynamic/hybrid not designed for such
vulnerability

Some approaches that would have helped

= Negative testing/Fuzzing with special checks

= Better Source code analysis; safer language (it was in C)
= Formal methods

Source: “Preventing Heartbleed” by David Wheeler, IEEE Computer
Also Check out: http://www.kb.cert.org/vuls/id/720951

Recent incidents ..

e Stuxnet

Affected several ICSs; Includes

exploit of the LNK files — shortcut file in windows as a start (other
exploits possible)
exploit some unpatched version of Win XP

o Target data breach*

Financial and personal info of ~110M customers

Payment card system flaw — malware installed in POS terminals
(RAM Scraping attack)

Network access from third party (PA HVAC) which was weak in
security — allowed to gain foothold in Target’s network

*http://docs.ismgcorp.com/files/external/Target_Kill_Chain_Analysis_FINAL.pdf

Recent incidents ..

e Russian hackers

o Targets: Oil, Gas, Energy security — industrial espionage
e Also target seizing control of ICS

Che Telegraph

Home News World Sport Finance Comment Culture 1

Technology News Technology Companies Technology Reviews

HOME » TECHNOLOMGY » INTERMET SECURITY Homeland Sec“rity News Wire

Russian cyber attack 'could cost £1.4bn’

INFRASTRUCTURE PUBLIC SAFETY PUBLICHEAITH SCI-TECH S

A cyber attack by a Russian hacker group that resulted in the theft of 1.2

billion internet credentials from major companies around the world could Cvberwar |
cost £1.4 billion, according to an insurance group. Russia may launch crippling

The attack. which came to light on Tuesday. allowed hackers to steal cybel:attacks on U.S. in retaliation for
confidential user names and passwords from some 420,000 websites. Ukraine sanctions

ranging from household names to small Internet sites. Published 2 May 2014 Ed share | DEIEIN

U.S. officials and security experts are warning that Russian
hackers may attack the computer networks of U.S. banks and
critical infrastructure firms in retaliation for new sanctions by

http://www.nytimes.com/2014/07/01/technology/energy-sector-fac

Hence we need ...

e Robust and Secure Software Design and Secure
Systems Engineering practice
Secure development life-cycle/methodologies

Secure process models to support large scale team management
Fix flaw early in the life-cycle — LOW COST !l

e Secure Design principles & Secure coding
practices/standards

e Proper Testing and Verification/Validation
o Effective Tools and Techniques

e Security Engineering education

o Eftc..

Let’s get started with basics

e Secure design principles McGraw's Update
. 1. Secure the weakest link

1. Least Privilege Defend in depth

. 12. Promote privacy (PIl) .
) . 13. Use your resources — ask
’ for help |

1

2
2. Fail-Safe Defaults 3. Fail securely
5. Economy of Mechanism (KISS) 4. Grant least privilege

L . 5. Separate privileges
4. Complete Mediation . 6. Economize mechanism
5. Open Design 7. Do not share mechanism !
5. Separation Privilege 8. Be reluctant to trust :
Least C Mechanism 9. Assume your secrets are

7. Least Common Mec : ot safe |
8. Psychological Acceptability ' 10. Mediate completely
9. Defense in Depth E 11. Make Security usable
(

