IS 2620

Static Code Analysis -
0000
[XX
o0
Lecture 9 |
Oct 8, 2014

Source:
“Secure Programming with Static Analysis”

Static Analysis

e Analyzing code before executing it
Analogy: Spell checker

e Suited to problem identification because
Checks thoroughly and consistently
Can point to the root cause of the problem
E.g., presence of buffer overflow; helps to focus on what to fix

Help find errors/bugs early in the development
Helps reduce cost

New information can be easily incorporated to recheck
a given program

Usefulness

e Better than manual code review
e Faster and more concrete than testing
e Consistency in coverage

e Embody the existing security knowledge and
gets extended

e Great for use by non-experts

Key Issues

e Can give a lot of noise!

e False Positives & False Negative
Which is worse? Need to balance the FP and FN

e Defects must be visible to the tool

e Different types of Static analysis:
Type checking; Style checking
Program understanding ; Program verification
Property checking; Bug finding
Security Review
It is Computationally undecidable problem

Type Checking

Example 2.1 A type-checking false positive: These |ava statements do not meet type
safety rules even though they are logically correct.

18 short s = 8; ®
11 1int 1 = 5; /* the type checker allows this */

12 short r = 1; /* false positive: this will cause a

13 type checking error at compile time «/

Example 2.2 Output from the |ava compiler demonstrating the type-checking false
positive.

£ javac bar.java
bar.java:12: possible loss of precision

found : Int
required: short
short r = 1; /* false positive: this will cause a

&

1 error

Example 2.3 These Java statements meet type-checking rues but will fail at runtime.

Object[] objs = new String[1];
objs[@] = new Object()

Style Checking

e Superficial set of rules

e Focused on rules related to

Whitespace, naming, deprecated functions, commenting,
program structure

Affect: readability and maintainability rather than coding error
-Wall in gcc

Detect when a switch statement does not account for all possible
values

For large project many people with their own style may be
involved

Examples: lint, PMD

Program Understanding

e Helps make sense of a large Codebase

Examples

Tool example: Fujaba

UML and Java Code — can help back and forth
« “Finding all uses of a method”
- “Finding declaration of a global variable”

Helpful to work on code one has not written
some reverse engineer the design — “big picture”

IDESs typically include some

Program verification and
Property checking

s _ Memory leak
e Accepts a specification and associated

Code

Aims to prove that the code is faithful
implementation

“equivalence checking” to check the two

1nBuf = {chars} malloc(bufsz);
1f (inBuf == NULL)

return -1;
outBuf = (char*) malloc(bufSz);
1f {outBuf == NULL)

=T B N R L

match return -1;
e Complete specific
Consuming ! Violation of property "allocated memory should always be freed™:

. o ... 1ine 2: 1nBuf !'= NULL
* So "Partial” verif Tine §: outBuf = NULL

verification line &: function returns (-1) without freeing inBuf
Try to find a “cc

e Sound wrt the spec Counter example
It will always return a problem if one exists !
(false negative? False positive?)
Soundness may be very difficult to establish

Bug Finding

e Points out places where the program will
behave in a way that the coder did not intend
Use patterns that indicate bugs
Example: FindBug (Java), Coverity (C, C++)

e Early tools: ITS4, RATS, Flawfinder

Little more than glorified “grep”
Closer to style checkers

e Modern tools
Typically hybrid of property checkers and bug finders

Factors for utility of SA

e Ability of the tool to make sense of the
program

e Trade-offs it makes between precision and
scalability

e Errors that it can check/detect
e How easily usable by programmers/users

Visual Studio 2005 \analyze

Klocwoark

o0
Some examples T

o000
aa

Type of Tool/Vendors Web Site

Siple Checking

PMD hittp://pmd_sourceforge. net

Parasoft hittp: / fwww_parasoft.com

Program Understanding

Fujaba hittp: / fwwecs.uni-paderborn.de/cs/fujaba/

CAST hittp:/ fwwwicastsoftware. com

Erograom Verffication

Praxis High Integrity Systems hittp: / fewow praxis-hils.com

Escher Technologies hittp:/ fwww.eschertech.com

Doy Cleding

Palyspace hittp:/ fwww_polyspace. com

Grammatech hittp:/ f'www.gramatech.com

Bug Finding

FindBugs hittp:/ Awww findbugs. org

Coverity hittp:/ fwwaw coverity.com

hittp:/ /msdn.microsoft. com Avstudio/
hittp:/ fwewes_ idoowork.com

Secunty Review
Fortify Software
Ounce Labs

hittp:/ Aeawea_fortify.com
hittp:/ fwswsaouncelabs. com

Analyzing Source vs Compiled

e Static analysis can examine a program
As a compiler sees it (Source code) OR

As a run-time env sees it (in some cases — bytecode or
executable)

e Advantages of compile code analysis
No need to guess how compiler will interpret
Source code may be not available

e Disadvantages
Making sense is more difficult (e.g., may lack type info)

SA In Code Review

- SGlhrce
v Code .

\

/
_.,

Rules

Goals

4, Make Fixe =~ P

1. Establish

3. Review Code

X
Fesults
Perorm Analysis
Siatic Analysis
*

2. Aun Tools

l-';)O—l-

Hurmam Review

(][]

Findings

3. Review Code

SA Metrics

e Metrics helps
Prioritizing remedial efforts

Estimating risk associated with code (tricky!)
False positive/negative — manual inspection needed
No way to sum/aggregate risks from flaws

e Some metrics for tactical focus

Measuring vulnerability density
= #results/LOC — maybe deceptive

Comparing projects by severity
Breaking down results by category
Monitoring trends

SA Metrics

e Comparing modules based on severity
e Breaking down by categories

Cross-Sita Scriping (12)

Oricn Project Log Forgng (12)

W Tilkde Propact
A0 =
90
Anca Condition (2]

Privacy Violation {3) ™ Prssmced M -
a0 - anagameant (]
10

0 [__.]
High
Severity

hdadiurm Liow

SA Internals

e A Generic SA Tool

Iﬂ:l

«adalr G F P

oae | T —— G ——
Build Parform Presant
bod=l Analysis Results

Secunty
Fonowiledgs

Building a model

e Create a program model from code
A set of data structures
Depends on the type of analysis that a tool performs

e SA - Closer to compiler
Lexical analysis — e.g., regular expression for tokens

Parsing — uses a context free grammars
Set of production rules
Parse tree: Lex and Yacc

Parsing

e Can have nonterminal
symbols
e Syntactic sugar!

e Can perform analysis on
Parse Tree — can be
Inconvenient
e Directly from grammar

semt 1= iF_sStme | assign_stma
if_stet = IF LPARIN expr EPAREN stmi
expr - lval

assign_stmt - Ival EQUAL expr SEMI
Ival = ID | arr_access

arr access -= ID arr indexs

arr_idu ;= LERACKET expr RERACKET

000
0000
| X X N J
o000
o0
®
.
.:-"_'-F-F. -
— -‘-h-ﬁ""‘
EXpT gtmkt
+ 4
1vwa.l aaalgn atmi
} ~,
[D{re=t] \\\‘
lval EXPT
: }
L L1 EAS ~ -1
ol . R '
ID {mat) arr idx arr idx ID (EMD VAL
!]
'_I', |-'1||r

Abstract Syntax Tree

e Does away with the details of grammar and
syntactic sugar
o Create a standard version of program
e Lowering (e.g., loops may be converted to while loop)

Semantic Analysis & Control | ¢s
Flow

e Semantic analysis based on: AST + Symbol
table
Type checking can be done

Semantic analysis — symbol resolution and type
checking

Optimization or intermediate forms may be created
e Tracking Control Flow

Different execution paths need to be explored
Build a control flow graph on top of AST

Control Flow Graph

e Trace: sequence of blocks that define a path
» E.g., bb0, bb1, bb3

(e]
if (a>b) |
NConSer = 0]
Foelse |

51 = getHexlhar(l};

52 = getHexChar(2);

1%
}

a)
returm nfonsec; \ fr)’ﬁ
FREUFh RLaShEs

"l:i':l

Call graph

e Call graph — control flow between functions

int larry{int fish} {

if CFish) Function pointer 3

| et : Virtual functions HIDyr;arglcally
curly(}; - i i 1 loade

} Ty() 7N i(:ompllcate things i

'i modules

| H.Frr !
1- \‘x—/\ ;/_\ i make it
int moe(int scissors) | ﬁ b further

if (scissors) { _/ Challenging

curly(}; f,r"' "\II
moe{0); f |
alse { | o= L ¥
} clr]yﬁ]: e _./J Data flow & Call graph
. ' data type i may be
- analysis | incomplete
R ' may be needed

1 L e e e

Dataflow

e Analyzes how data move through the program ..
Helps compilers optimize!

e Traverse functions control flow graph
Where data values are generated & where used

Convert a function to static single assignment form (SSA)

SSA: allows assigning a value to a variable only once
New variables may need to be added

SSA variable can have a constant (use that to replace future
variable places)

SSA variable may have different values along different control
paths — need to be reconciled
Merge point: ¢-function

000
0000
o000
o000
o0
SSA Examples :
' Reqular source code form:
sum = sum + delta ; . Regular source form:
sum = sum & top;
v = ¥ + (z<<d)+k[0] A z4sum A (z>>5)+k[1]; . 1f (bytesRead < 8) |
¥y = ¥y & top; tail = (byte) bytesRead;
z =z + (y<ed)+k[2] A yesum A (y>>5)4k[3]; .
z =z & top; :
§ ' 5SA form:
| 35A form: :
| . if (bytesRead, < 8) {
sum; = sum, + delta, : | tail, = (byte) bytesRead,;
sum, = sum; & top,; : }
vy, = ¥y + (zy<cd)d+k[0], A z +5um; A I.'.'-:1:=-3=-5'.'|+Ivec[l]11 taily(= ¢(tail,, tail,);
¥; = ¥; & top; ,
z, = 7, + (yy=edl+k[2], & yytsumy & Oyp==Bl+k [3]1 __

z, & top,;

Taint Propagation

e |t is important

to identify which values in a program an attacker
could potentially control/target
Need to know where values enter and how they move
- E.g., Buffer overflow vulnerability
Taint propagation algorithm
Key to identifying many input validation and
representation defects
Static as well as dynamic taint propagation analysis

Pointer Aliasing

e Several pointers may refer to the same

memory
*p1 =1 Can p1 an p2 refer to the same location?
*p2 =2 Can these be reordered?

For the following, compiler should understand that input
data flows to process Input

p1 = p2;
*p1 = getUserlnput();
processlnput(*p2);

SA Algorithms

e Local component and global component
e Improve context sensitivity

/;nah_.rsis Algorithm \\'

"'f Local Analysis ™ ."/- Global Analysis ™
AST — Call (sraph
Control Flow Graph (_'

\ intraprocedural analysis component i interprocedural analysis component
+ for analyzing an individual function ; + for analyzing an individual function

__

Assertions T

e Many properties can be specified as assertions
— which need to be true

Example: Buffer Overflow prevention check
strcpy(dest, src);

Add assertion
assert(alloc_size(dest) > strlen(src));

e If there are conditions under which an assertion
can fail — report potential overflow

Assertions

e Typically three varieties of assertions

Taint propagation problems

When programmers trust input when they should not — so SA
should check data values moving

data is tainted (controlled by an attacker) or not

Range Analysis

To ldentify buffer overflow — need to know the size of the
buffer and the data value

Understand the range of values data or size may have
Type state: concern about the state of an object as
execution proceeds

Naive Local Analysis H
(iInformal)
Consider X =1; = S IE
’ y =V; Simulation
y=1, assert(x <y):
assert(x <y); Same Result
e Maintain facts before each statement is
executed
X=1; {} (no facts)
y=1; {x=1}
assert(x <vy); {x=1,y=1}

Always false!! SA should report a problem

Conditional makes it complex!

X =V

if (x<y){ this condition may or may not be TRUE
Y =V
) X =V, {} (no facts)
assert (x < y); 'f(X<Y) {x=v}
> assert(x<y) {x=v, (x<y)}

X =V, {}(no facts) When BRANCH is not taken x <y is FALSE
E |f (X < y) { X =V } i """"""" :'_‘_‘_'.'.‘_‘_'_'_‘_‘_'.'.‘_‘_'_'_’_‘_'.'.‘_‘_'_'_’_’_'_'_‘_‘_'_'_’_’_'_'_‘_‘_'_'_'_’_'_'_‘_‘_'_'_’_’_'_',I ““““
Y=V [X=V,x<y} ; . Need to check the §
‘assert (x<y) {X=v,x<yy=v} | : conjunction of assertion

; | : predicate and all the facts:
| When BRANCH is taken x < "y is TRUE

v <v means assertion | (X<Y)A(X=V)AT(x<y)

' is violated ; :
-- i Again fails!

Conditional makes it complex! | ¢
Loops add further ..

e The previos approach is problematic

e #paths grows with the number of conditionals

Share info among common subpaths

Program slicing — to remove code cannot effect
the outcome of the assert predicate

Also eliminate false paths — logically inconsistent
paths that will never be executed

e Adding loops makes it even more complex!

Approaches to Local Analysis

e Abstract interpretation

Abstract away aspects of the program that are not

relevant to properties of interest and perform and
interpretation

Loop problems — do flow-insensitive analysis

Tries to guarantee that all statement orderings are considered
(not follow the program statement order)

No need for control flow analysis

But some useless execution order may be performed as well
More practical tools — partially flow sensitive!

Predicate Transformers

e Use the weakest precondition

Fewest set of requirements on the callers of a
program that are necessary to arrive at a desired final

state or post condition

E.g.,
(x <0 Ay>0)is a strong requirement than

(x <y);

Model Checking Approach

e Accepts properties as specifications, transforms the program to be
check into an automaton (called the model)

e Now compare the specification to the model
o Example: “memory should be freed only once”

N e /N

start |/ \ ae (x) .
initial L - l

l, state ! i \ freed |

/‘
,<' _{ \/
__/

(other nperatlnns} (other oparations)

Y

Model checking will look for a variable wrt
which system will reach state error

Global Analysis

e Context-sensitive analysis
Takes into account the context of the calling function
e \Whole-program analysis

Tries to analyze every function with a complete understanding
of the context of its calling functions

One way is “inlining” (Recursion will be problem)
Time consuming and very ambitious

e More flexible approach
Local analysis generates the function summaries

memcpy(dest, src, len) [

Example 5 requires:

{ alloc_si1ze(dest) == len) }

} o (alloc_size(src) == len }

ENSUres:
¥ 10 .. len-1: dest[1]" == src[1]

000
00
| X XN
o000
o0
Rules :
e Good SA tools externalize the rules they check
o Added, removed, altered easily
<NVulnerability=
RATS will report a violation of the rule Name>systam</Name>
. <InputProblem:
whenever it sees a call to system() cArgsle/Args
where the first argument is not <Severi :E;Hi gh</Severity>
</ InputProb | em-
constant. </Vulnerability=
: The argument number !
___ J+@ public normal_behavior
@ reguires valid;
In some cases rules are @ assignable state;
2 ENSUres -1 <= ‘Zresult &% ‘“result <= 65535;

annotated within the program @*/
(in JML) public int read();

Rules for Taint Propagation

e Variety of rule types to accommodate different
taint propagation problems

e Source rules define program locations where tainted
data enter the system.

Functions named read() often introduce taint in an obvious
manner; others: getenv(), getpass(), gets().
e Sink rules define program locations that should not
receive tainted data.
For SQL injection in Java, Statement.executeQuery() is a sink.

For buffer overflow in C, assigning to an array is a sink, as is
the function strcpy()

Rules for Taint Propagation

e Pass-through rules define the way a function

manipulates tainted data.

E.g.,, a pass-through rule for the java.lang.String method trim() might
explain “if a String s is tainted, the return value from calling s.trim() is
similarly tainted.”

e Cleanse rule is a form of pass-through rule that removes
taint from a variable.
represents input validation functions.
e Entry-point rules (similar to source)-

e they introduce taint into the program, entry-point functions are
invoked by an attacker.

E.g., main() is an entry point (java, C)

Example: Command injection
vulnerability

i:i.E [fgets | buf , sizecf(buf), stdin] == buf } -I

@ A source nule for fgets () taints buf othr

O 'fl’\\ L é@mmmmrﬂgcmumesm buf

{@ @ A pass-through nule for stropy t@nts

@ i@mmmmwcmumem othr
system | othr }; !

] @ Because othr i3 tanied, a sink nule for

system() reports a command ngechon

weulinee radelety

Taints

e Essentially BINARY attribute

But can have taint flags to indicate variety of tainted
data — can help prioritize!

FROM_ NETWORK data from network
FROM_CONFIGURATION data from config file

Sing functions may be dangerous for a specific taint type

e Taint propagation rules include various elements

Method or function
Precondition
Postcondition
Severity

