
Static Code AnalysisStatic Code Analysis

Lecture 9
Oct 8, 2014

Source:
“Secure Programming with Static Analysis”

St ti A l iStatic Analysis
 Analyzing code before executing it Analyzing code before executing it
 Analogy: Spell checker

 Suited to problem identification because Suited to problem identification because
 Checks thoroughly and consistently
 Can point to the root cause of the problem Can point to the root cause of the problem

 E.g., presence of buffer overflow; helps to focus on what to fix

 Help find errors/bugs early in the development
 Helps reduce cost

 New information can be easily incorporated to recheck
a given programa given program

U f lUsefulness

Better than manual code review Better than manual code review
 Faster and more concrete than testing
 Consistency in coverage
 Embody the existing security knowledge and

gets extended
 Great for use by non-experts

K IKey Issues
 Can give a lot of noise! Can give a lot of noise!
 False Positives & False Negative
 Which is worse? Need to balance the FP and FN Which is worse? Need to balance the FP and FN

 Defects must be visible to the tool
Different types of Static analysis: Different types of Static analysis:

 Type checking; Style checking
 Program understanding ; Program verificationg g ; g
 Property checking; Bug finding
 Security Review

It i C t ti ll d id bl blIt is Computationally undecidable problem

T Ch kiType Checking

St l Ch kiStyle Checking
 Superficial set of rules Superficial set of rules
 Focused on rules related to

 Whitespace, naming, deprecated functions, commenting,
program structure

 Affect: readability and maintainability rather than coding error
 -Wall in gccg

 Detect when a switch statement does not account for all possible
values

 For large project many people with their own style may be g p j y p p y y
involved

 Examples: lint, PMD

P U d t diProgram Understanding

Helps make sense of a large Codebase Helps make sense of a large Codebase
 Examples
 Tool example: Fujaba Tool example: Fujaba

 UML and Java Code – can help back and forth
 “Finding all uses of a method”
 “Finding declaration of a global variable”

 Helpful to work on code one has not written
some reverse engineer the design “big picture” some reverse engineer the design – “big picture”

 IDEs typically include some

Program verification and
P t h kiProperty checking
 Accepts a specification and associated

Memory leak
 Accepts a specification and associated

Code
 Aims to prove that the code is faithful

implementation
 “equivalence checking” to check the two

match

 Complete specification is time
i !consuming !

 So “Partial” verification – “property
verification”
 Try to find a “counterexample” Try to find a counterexample

 Sound wrt the spec
 It will always return a problem if one exists !

 (false negative? False positive?)

Counter example

(g p)
 Soundness may be very difficult to establish

B Fi diBug Finding

Points out places where the program will Points out places where the program will
behave in a way that the coder did not intend
 Use patterns that indicate bugs Use patterns that indicate bugs
 Example: FindBug (Java), Coverity (C, C++)
Early tools: ITS4 RATS Flawfinder Early tools: ITS4, RATS, Flawfinder
 Little more than glorified “grep”
 Closer to style checkers Closer to style checkers

 Modern tools
 Typically hybrid of property checkers and bug finders Typically hybrid of property checkers and bug finders

F t f tilit f SAFactors for utility of SA

Ability of the tool to make sense of the Ability of the tool to make sense of the
program
T d ff it k b t i i d Trade-offs it makes between precision and
scalability
E th t it h k/d t t Errors that it can check/detect

 How easily usable by programmers/users

Some examples

A l i S C il dAnalyzing Source vs Compiled
 Static analysis can examine a program Static analysis can examine a program

 As a compiler sees it (Source code) OR
 As a run-time env sees it (in some cases – bytecode or

t bl)executable)

 Advantages of compile code analysis
 No need to guess how compiler will interpretg p p
 Source code may be not available

 Disadvantages
 Making sense is more difficult (e.g., may lack type info)

SA i C d R iSA in Code Review

SA M t iSA Metrics
 Metrics helps Metrics helps
 Prioritizing remedial efforts
 Estimating risk associated with code (tricky!) Estimating risk associated with code (tricky!)

 False positive/negative – manual inspection needed
 No way to sum/aggregate risks from flaws

 Some metrics for tactical focus
 Measuring vulnerability density
 #results/LOC maybe deceptive #results/LOC – maybe deceptive

 Comparing projects by severity
 Breaking down results by category
 Monitoring trends

SA M t iSA Metrics

Comparing modules based on severity Comparing modules based on severity
 Breaking down by categories

SA I t lSA Internals

A Generic SA Tool A Generic SA Tool

B ildi d lBuilding a model
 Create a program model from code Create a program model from code
 A set of data structures
 Depends on the type of analysis that a tool performs Depends on the type of analysis that a tool performs

 SA - Closer to compiler
 Lexical analysis – e g regular expression for tokens Lexical analysis e.g., regular expression for tokens
 Parsing – uses a context free grammars

 Set of production rules
 Parse tree: Lex and Yacc

P iParsing
 Can have nonterminal Can have nonterminal

symbols
 Syntactic sugar!

 Can perform analysis on
Parse Tree – can be
inconvenientinconvenient
 Directly from grammar

Ab t t S t TAbstract Syntax Tree
 Does away with the details of grammar and Does away with the details of grammar and

syntactic sugar
 Create a standard version of program Create a standard version of program
 Lowering (e.g., loops may be converted to while loop)

Semantic Analysis & Control
FlFlow
 Semantic analysis based on: AST + Symbol Semantic analysis based on: AST + Symbol

table
 Type checking can be done Type checking can be done
 Semantic analysis – symbol resolution and type

checking
 Optimization or intermediate forms may be created

 Tracking Control Flow
 Different execution paths need to be explored
 Build a control flow graph on top of AST

C t l Fl G hControl Flow Graph

Trace: sequence of blocks that define a path Trace: sequence of blocks that define a path
 E.g., bb0, bb1, bb3

C ll hCall graph

Call graph control flow between functions Call graph – control flow between functions

Function pointer &
Vi t l f ti DynamicallyVirtual functions
complicate things

Dynamically
loaded
modules
make itmake it
further
challenging

..
Data flow &
data type
analysis

Call graph
may be
incompletey

may be needed

D t flDataflow
 Analyzes how data move through the program Analyzes how data move through the program ..

 Helps compilers optimize!

 Traverse functions control flow graph
 Where data values are generated & where used
 Convert a function to static single assignment form (SSA)

 SSA: allows assigning a value to a variable only once SSA: allows assigning a value to a variable only once
 New variables may need to be added

 SSA variable can have a constant (use that to replace future
variable places)variable places)

 SSA variable may have different values along different control
paths – need to be reconciled
 Merge point: φ-function Merge point: φ-function

SSA E lSSA Examples

T i t P tiTaint Propagation

It is important It is important
 to identify which values in a program an attacker

could potentially control/targetcould potentially control/target
 Need to know where values enter and how they move
 E.g., Buffer overflow vulnerability

 Taint propagation algorithm
 Key to identifying many input validation and

t ti d f trepresentation defects
 Static as well as dynamic taint propagation analysis

P i t Ali iPointer Aliasing

Several pointers may refer to the same Several pointers may refer to the same
memory

*p1 = 1 Can p1 an p2 refer to the same location?p1 1 Can p1 an p2 refer to the same location?
*p2 = 2 Can these be reordered?

F th f ll i il h ld d t d th t i tFor the following, compiler should understand that input
data flows to process Input

p1 = p2;
*p1 = getUserInput();
processInput(*p2);processInput(p2);

SA Al ithSA Algorithms
 Local component and global component Local component and global component
 Improve context sensitivity

intraprocedural analysis component
for analyzing an individual function

interprocedural analysis component
for analyzing an individual function

A tiAssertions
 Many properties can be specified as assertions Many properties can be specified as assertions

– which need to be true

Example: Buffer Overflow prevention check
strcpystrcpy((destdest, , srcsrc););

Add assertion
assert(assert(alloc_sizealloc_size((destdest) >) > strlenstrlen((srcsrc));));

 If there are conditions under which an assertion
can fail report potential overflowcan fail – report potential overflow

A tiAssertions
 Typically three varieties of assertions Typically three varieties of assertions
 Taint propagation problems

 When programmers trust input when they should not – so SAWhen programmers trust input when they should not so SA
should check data values moving

 data is tainted (controlled by an attacker) or not

 Range Analysis Range Analysis
 To Identify buffer overflow – need to know the size of the

buffer and the data value
U d t d th f l d t i h Understand the range of values data or size may have

 Type state: concern about the state of an object as
execution proceedsp

Naïve Local Analysis
(i f l)(informal)
Consider x = 1; x = v; SymbolicConsider x = 1;

y = 1;
assert(x < y);

y = v; Simulation
assert(x < y);
Same Result

 Maintain facts before each statement is
executed

x = 1; {} (no facts)
y = 1; { x = 1 }
assert(x < y); { x = 1, y = 1 }

 Always false!! SA should report a problem

C diti l k it l !Conditional makes it complex!
x = v;x v;
if (x < y) { this condition may or may not be TRUE

y = v;
} x = v; {} (no facts)}
assert (x < y);

; {} (o ac s)
if (x < y) { x = v }
assert (x < y) { x = v, ￢(x < y) }

x = v; {}(no facts)
if (x < y) { x = v }
y = v; { x = v, x < y }

When BRANCH is not taken x < y is FALSE

Need to check they { y }
assert (x < y) { x = v, x < y, y = v }

When BRANCH is taken x < y is TRUE

conjunction of assertion
predicate and all the facts:

(<) () (<)v < v means assertion
is violated

(x < y) (x = v) ￢(x < y)

Again fails!

Conditional makes it complex!
L dd f thLoops add further ..

The previos approach is problematic The previos approach is problematic
 #paths grows with the number of conditionals

Sh i f b h Share info among common subpaths
 Program slicing – to remove code cannot effect

the outcome of the assert predicatethe outcome of the assert predicate
 Also eliminate false paths – logically inconsistent

paths that will never be executedpaths that will never be executed
 Adding loops makes it even more complex!

A h t L l A l iApproaches to Local Analysis
 Abstract interpretation Abstract interpretation
 Abstract away aspects of the program that are not

relevant to properties of interest and perform and p p p
interpretation

 Loop problems – do flow-insensitive analysis
 Tries to guarantee that all statement orderings are considered

(not follow the program statement order)
 No need for control flow analysis
 But some useless execution order may be performed as well

 More practical tools – partially flow sensitive!

P di t T fPredicate Transformers

Use the weakest precondition Use the weakest precondition
 Fewest set of requirements on the callers of a

program that are necessary to arrive at a desired final p g y
state or post condition
E.g.,

(0 0) i t i t th(x < 0 y > 0) is a strong requirement than
(x < y);

M d l Ch ki A hModel Checking Approach
 Accepts properties as specifications transforms the program to be Accepts properties as specifications, transforms the program to be

check into an automaton (called the model)
 Now compare the specification to the model
 Example: “memory should be freed only once” Example: memory should be freed only once

Model checking ill look for a ariable rtModel checking will look for a variable wrt
which system will reach state error

Gl b l A l iGlobal Analysis
 Context sensitive analysis Context-sensitive analysis

 Takes into account the context of the calling function

 Whole-program analysis
 Tries to analyze every function with a complete understanding

of the context of its calling functions
 One way is “inlining” (Recursion will be problem)y g (p)
 Time consuming and very ambitious

 More flexible approach
L l l i t th f ti i Local analysis generates the function summaries

 Example

R lRules
 Good SA tools externalize the rules they check Good SA tools externalize the rules they check

 Added, removed, altered easily

RATS will report a violation of the ruleRATS will report a violation of the rule
whenever it sees a call to system()
where the first argument is not
constant.

The argument number

In some cases rules are
annotated within the program
(in JML)(in JML)

R l f T i t P tiRules for Taint Propagation
 Variety of rule types to accommodate different Variety of rule types to accommodate different

taint propagation problems
 Source rules define program locations where tainted Source rules define program locations where tainted

data enter the system.
 Functions named read() often introduce taint in an obvious

th t () t () t ()manner; others: getenv(), getpass(), gets().
 Sink rules define program locations that should not

receive tainted data.
 For SQL injection in Java, Statement.executeQuery() is a sink.
 For buffer overflow in C, assigning to an array is a sink, as is

the function strcpy()the function strcpy()

R l f T i t P tiRules for Taint Propagation
 Pass through rules define the way a function Pass-through rules define the way a function

manipulates tainted data.
 E.g.,, a pass-through rule for the java.lang.String method trim() might

explain “if a String s is tainted the return value from calling s trim() isexplain if a String s is tainted, the return value from calling s.trim() is
similarly tainted.”

 Cleanse rule is a form of pass-through rule that removes
t i t f i bltaint from a variable.

 represents input validation functions.

 Entry-point rules (similar to source)-y p ()
 they introduce taint into the program, entry-point functions are

invoked by an attacker.
 E.g., main() is an entry point (java, C) E.g., main() is an entry point (java, C)

Example: Command injection
l bilitvulnerability

T i tTaints
 Essentially BINARY attribute Essentially BINARY attribute
 But can have taint flags to indicate variety of tainted

data – can help prioritize!p p
 FROM_NETWORK data from network
 FROM_CONFIGURATION data from config file

 Sing functions may be dangerous for a specific taint type Sing functions may be dangerous for a specific taint type

 Taint propagation rules include various elements
 Method or function
 Precondition
 Postcondition
 Severity Severity

