
Static Code AnalysisStatic Code Analysis

Lecture 9
Oct 8, 2014

Source:
“Secure Programming with Static Analysis”

St ti A l iStatic Analysis
 Analyzing code before executing it Analyzing code before executing it
 Analogy: Spell checker

 Suited to problem identification because Suited to problem identification because
 Checks thoroughly and consistently
 Can point to the root cause of the problem Can point to the root cause of the problem

 E.g., presence of buffer overflow; helps to focus on what to fix

 Help find errors/bugs early in the development
 Helps reduce cost

 New information can be easily incorporated to recheck
a given programa given program

U f lUsefulness

Better than manual code review Better than manual code review
 Faster and more concrete than testing
 Consistency in coverage
 Embody the existing security knowledge and

gets extended
 Great for use by non-experts

K IKey Issues
 Can give a lot of noise! Can give a lot of noise!
 False Positives & False Negative
 Which is worse? Need to balance the FP and FN Which is worse? Need to balance the FP and FN

 Defects must be visible to the tool
Different types of Static analysis: Different types of Static analysis:

 Type checking; Style checking
 Program understanding ; Program verificationg g ; g
 Property checking; Bug finding
 Security Review

It i C t ti ll d id bl blIt is Computationally undecidable problem

T Ch kiType Checking

St l Ch kiStyle Checking
 Superficial set of rules Superficial set of rules
 Focused on rules related to

 Whitespace, naming, deprecated functions, commenting,
program structure

 Affect: readability and maintainability rather than coding error
 -Wall in gccg

 Detect when a switch statement does not account for all possible
values

 For large project many people with their own style may be g p j y p p y y
involved

 Examples: lint, PMD

P U d t diProgram Understanding

Helps make sense of a large Codebase Helps make sense of a large Codebase
 Examples
 Tool example: Fujaba Tool example: Fujaba

 UML and Java Code – can help back and forth
 “Finding all uses of a method”
 “Finding declaration of a global variable”

 Helpful to work on code one has not written
some reverse engineer the design “big picture” some reverse engineer the design – “big picture”

 IDEs typically include some

Program verification and
P t h kiProperty checking
 Accepts a specification and associated

Memory leak
 Accepts a specification and associated

Code
 Aims to prove that the code is faithful

implementation
 “equivalence checking” to check the two

match

 Complete specification is time
i !consuming !

 So “Partial” verification – “property
verification”
 Try to find a “counterexample” Try to find a counterexample

 Sound wrt the spec
 It will always return a problem if one exists !

 (false negative? False positive?)

Counter example

(g p)
 Soundness may be very difficult to establish

B Fi diBug Finding

Points out places where the program will Points out places where the program will
behave in a way that the coder did not intend
 Use patterns that indicate bugs Use patterns that indicate bugs
 Example: FindBug (Java), Coverity (C, C++)
Early tools: ITS4 RATS Flawfinder Early tools: ITS4, RATS, Flawfinder
 Little more than glorified “grep”
 Closer to style checkers Closer to style checkers

 Modern tools
 Typically hybrid of property checkers and bug finders Typically hybrid of property checkers and bug finders

F t f tilit f SAFactors for utility of SA

Ability of the tool to make sense of the Ability of the tool to make sense of the
program
T d ff it k b t i i d Trade-offs it makes between precision and
scalability
E th t it h k/d t t Errors that it can check/detect

 How easily usable by programmers/users

Some examples

A l i S C il dAnalyzing Source vs Compiled
 Static analysis can examine a program Static analysis can examine a program

 As a compiler sees it (Source code) OR
 As a run-time env sees it (in some cases – bytecode or

t bl)executable)

 Advantages of compile code analysis
 No need to guess how compiler will interpretg p p
 Source code may be not available

 Disadvantages
 Making sense is more difficult (e.g., may lack type info)

SA i C d R iSA in Code Review

SA M t iSA Metrics
 Metrics helps Metrics helps
 Prioritizing remedial efforts
 Estimating risk associated with code (tricky!) Estimating risk associated with code (tricky!)

 False positive/negative – manual inspection needed
 No way to sum/aggregate risks from flaws

 Some metrics for tactical focus
 Measuring vulnerability density
 #results/LOC maybe deceptive #results/LOC – maybe deceptive

 Comparing projects by severity
 Breaking down results by category
 Monitoring trends

SA M t iSA Metrics

Comparing modules based on severity Comparing modules based on severity
 Breaking down by categories

SA I t lSA Internals

A Generic SA Tool A Generic SA Tool

B ildi d lBuilding a model
 Create a program model from code Create a program model from code
 A set of data structures
 Depends on the type of analysis that a tool performs Depends on the type of analysis that a tool performs

 SA - Closer to compiler
 Lexical analysis – e g regular expression for tokens Lexical analysis e.g., regular expression for tokens
 Parsing – uses a context free grammars

 Set of production rules
 Parse tree: Lex and Yacc

P iParsing
 Can have nonterminal Can have nonterminal

symbols
 Syntactic sugar!

 Can perform analysis on
Parse Tree – can be
inconvenientinconvenient
 Directly from grammar

Ab t t S t TAbstract Syntax Tree
 Does away with the details of grammar and Does away with the details of grammar and

syntactic sugar
 Create a standard version of program Create a standard version of program
 Lowering (e.g., loops may be converted to while loop)

Semantic Analysis & Control
FlFlow
 Semantic analysis based on: AST + Symbol Semantic analysis based on: AST + Symbol

table
 Type checking can be done Type checking can be done
 Semantic analysis – symbol resolution and type

checking
 Optimization or intermediate forms may be created

 Tracking Control Flow
 Different execution paths need to be explored
 Build a control flow graph on top of AST

C t l Fl G hControl Flow Graph

Trace: sequence of blocks that define a path Trace: sequence of blocks that define a path
 E.g., bb0, bb1, bb3

C ll hCall graph

Call graph control flow between functions Call graph – control flow between functions

Function pointer &
Vi t l f ti DynamicallyVirtual functions
complicate things

Dynamically
loaded
modules
make itmake it
further
challenging

..
Data flow &
data type
analysis

Call graph
may be
incompletey

may be needed

D t flDataflow
 Analyzes how data move through the program Analyzes how data move through the program ..

 Helps compilers optimize!

 Traverse functions control flow graph
 Where data values are generated & where used
 Convert a function to static single assignment form (SSA)

 SSA: allows assigning a value to a variable only once SSA: allows assigning a value to a variable only once
 New variables may need to be added

 SSA variable can have a constant (use that to replace future
variable places)variable places)

 SSA variable may have different values along different control
paths – need to be reconciled
 Merge point: φ-function Merge point: φ-function

SSA E lSSA Examples

T i t P tiTaint Propagation

It is important It is important
 to identify which values in a program an attacker

could potentially control/targetcould potentially control/target
 Need to know where values enter and how they move
 E.g., Buffer overflow vulnerability

 Taint propagation algorithm
 Key to identifying many input validation and

t ti d f trepresentation defects
 Static as well as dynamic taint propagation analysis

P i t Ali iPointer Aliasing

Several pointers may refer to the same Several pointers may refer to the same
memory

*p1 = 1 Can p1 an p2 refer to the same location?p1 1 Can p1 an p2 refer to the same location?
*p2 = 2 Can these be reordered?

F th f ll i il h ld d t d th t i tFor the following, compiler should understand that input
data flows to process Input

p1 = p2;
*p1 = getUserInput();
processInput(*p2);processInput(p2);

SA Al ithSA Algorithms
 Local component and global component Local component and global component
 Improve context sensitivity

intraprocedural analysis component
for analyzing an individual function

interprocedural analysis component
for analyzing an individual function

A tiAssertions
 Many properties can be specified as assertions Many properties can be specified as assertions

– which need to be true

Example: Buffer Overflow prevention check
strcpystrcpy((destdest, , srcsrc););

Add assertion
assert(assert(alloc_sizealloc_size((destdest) >) > strlenstrlen((srcsrc));));

 If there are conditions under which an assertion
can fail report potential overflowcan fail – report potential overflow

A tiAssertions
 Typically three varieties of assertions Typically three varieties of assertions
 Taint propagation problems

 When programmers trust input when they should not – so SAWhen programmers trust input when they should not so SA
should check data values moving

 data is tainted (controlled by an attacker) or not

 Range Analysis Range Analysis
 To Identify buffer overflow – need to know the size of the

buffer and the data value
U d t d th f l d t i h Understand the range of values data or size may have

 Type state: concern about the state of an object as
execution proceedsp

Naïve Local Analysis
(i f l)(informal)
Consider x = 1; x = v; SymbolicConsider x = 1;

y = 1;
assert(x < y);

y = v; Simulation
assert(x < y);
Same Result

 Maintain facts before each statement is
executed

x = 1; {} (no facts)
y = 1; { x = 1 }
assert(x < y); { x = 1, y = 1 }

 Always false!! SA should report a problem

C diti l k it l !Conditional makes it complex!
x = v;x v;
if (x < y) { this condition may or may not be TRUE

y = v;
} x = v; {} (no facts)}
assert (x < y);

; {} (o ac s)
if (x < y) { x = v }
assert (x < y) { x = v, ￢(x < y) }

x = v; {}(no facts)
if (x < y) { x = v }
y = v; { x = v, x < y }

When BRANCH is not taken x < y is FALSE

Need to check they { y }
assert (x < y) { x = v, x < y, y = v }

When BRANCH is taken x < y is TRUE

conjunction of assertion
predicate and all the facts:

(<) () (<)v < v means assertion
is violated

(x < y) (x = v) ￢(x < y)

Again fails!

Conditional makes it complex!
L dd f thLoops add further ..

The previos approach is problematic The previos approach is problematic
 #paths grows with the number of conditionals

Sh i f b h Share info among common subpaths
 Program slicing – to remove code cannot effect

the outcome of the assert predicatethe outcome of the assert predicate
 Also eliminate false paths – logically inconsistent

paths that will never be executedpaths that will never be executed
 Adding loops makes it even more complex!

A h t L l A l iApproaches to Local Analysis
 Abstract interpretation Abstract interpretation
 Abstract away aspects of the program that are not

relevant to properties of interest and perform and p p p
interpretation

 Loop problems – do flow-insensitive analysis
 Tries to guarantee that all statement orderings are considered

(not follow the program statement order)
 No need for control flow analysis
 But some useless execution order may be performed as well

 More practical tools – partially flow sensitive!

P di t T fPredicate Transformers

Use the weakest precondition Use the weakest precondition
 Fewest set of requirements on the callers of a

program that are necessary to arrive at a desired final p g y
state or post condition
E.g.,

(0 0) i t i t th(x < 0 y > 0) is a strong requirement than
(x < y);

M d l Ch ki A hModel Checking Approach
 Accepts properties as specifications transforms the program to be Accepts properties as specifications, transforms the program to be

check into an automaton (called the model)
 Now compare the specification to the model
 Example: “memory should be freed only once” Example: memory should be freed only once

Model checking ill look for a ariable rtModel checking will look for a variable wrt
which system will reach state error

Gl b l A l iGlobal Analysis
 Context sensitive analysis Context-sensitive analysis

 Takes into account the context of the calling function

 Whole-program analysis
 Tries to analyze every function with a complete understanding

of the context of its calling functions
 One way is “inlining” (Recursion will be problem)y g (p)
 Time consuming and very ambitious

 More flexible approach
L l l i t th f ti i Local analysis generates the function summaries

 Example

R lRules
 Good SA tools externalize the rules they check Good SA tools externalize the rules they check

 Added, removed, altered easily

RATS will report a violation of the ruleRATS will report a violation of the rule
whenever it sees a call to system()
where the first argument is not
constant.

The argument number

In some cases rules are
annotated within the program
(in JML)(in JML)

R l f T i t P tiRules for Taint Propagation
 Variety of rule types to accommodate different Variety of rule types to accommodate different

taint propagation problems
 Source rules define program locations where tainted Source rules define program locations where tainted

data enter the system.
 Functions named read() often introduce taint in an obvious

th t () t () t ()manner; others: getenv(), getpass(), gets().
 Sink rules define program locations that should not

receive tainted data.
 For SQL injection in Java, Statement.executeQuery() is a sink.
 For buffer overflow in C, assigning to an array is a sink, as is

the function strcpy()the function strcpy()

R l f T i t P tiRules for Taint Propagation
 Pass through rules define the way a function Pass-through rules define the way a function

manipulates tainted data.
 E.g.,, a pass-through rule for the java.lang.String method trim() might

explain “if a String s is tainted the return value from calling s trim() isexplain if a String s is tainted, the return value from calling s.trim() is
similarly tainted.”

 Cleanse rule is a form of pass-through rule that removes
t i t f i bltaint from a variable.

 represents input validation functions.

 Entry-point rules (similar to source)-y p ()
 they introduce taint into the program, entry-point functions are

invoked by an attacker.
 E.g., main() is an entry point (java, C) E.g., main() is an entry point (java, C)

Example: Command injection
l bilitvulnerability

T i tTaints
 Essentially BINARY attribute Essentially BINARY attribute
 But can have taint flags to indicate variety of tainted

data – can help prioritize!p p
 FROM_NETWORK data from network
 FROM_CONFIGURATION data from config file

 Sing functions may be dangerous for a specific taint type Sing functions may be dangerous for a specific taint type

 Taint propagation rules include various elements
 Method or function
 Precondition
 Postcondition
 Severity Severity

