
IS 2620: Developing Secure Systems

Building Security InBuilding Security In

Lecture 2Lecture 2
Sept 3, 2014

R S ft itRecap: Software security
 It is about It is about
 Understanding software-induced security risks

and how to manage themg
 Leveraging software engineering practice,
 thinking security early in the software lifecyle
 Knowing and understanding common problems
 Designing for security

S bj ti ll ft tif t t th h Subjecting all software artifacts to thorough
objective risk analyses and testing

 It is a knowledge intensive field It is a knowledge intensive field

R T i it f t blRecap: Trinity of trouble
 Three trends

Bigger problem today .. And growing

 Three trends
 Connectivity

 Inter networked
 Include SCADA (supervisory Include SCADA (supervisory

control and data acquisition
systems)

 Automated attacks, botnets
 Extensibility

 Mobile code – functionality
evolves incrementally
W b/O E t ibilit Web/Os Extensibility

 Complexity
 XP is at least 40 M lines of code

Add t th t f f Add to that use of unsafe
languages (C/C++)

It b il d tIt boils down to …

more code,
more bugs,

more security problems

S it bl i ftSecurity problems in software
 Defect Defect
 implementation and

design vulnerabilities
 Can remain dormant Can remain dormant

 Bug
 An implementation level

software problemsoftware problem
 Flaw
 A problem at a deeper

level
Bug Flaw
Buffer overflow: stack smashing Method over-riding problemslevel

 Bugs + Flaws
 leads to Risk

Buffer overflow: stack smashing
Buffer overflow: one-stage attacks
Buffer overflow: string format attacks
Race conditions: TOCTOU
Unsafe environment variables
Unsafe system calls (fork(), exec(),
system())

Method over riding problems
(subclass issues)
Compartmentalization problems in
design
Privileged block protection failure
(DoPrivilege())
Error-handling problems (fails open)y ())

Incorrect input validation (black list vs.
white list

Type safety confusion error
Insecure audit log design
Broken or illogical access control
(role-based access control [RBAC]
over tiers)
Signing too much code

Solution …
Th ill f itThree pillars of security

Pillar I:
A li d Ri k tApplied Risk management

Architectural risk analysis Architectural risk analysis
 Sometimes called threat modeling or security

design analysisdesign analysis
 Is a best practice and is a touchpoint

 Risk management framework Risk management framework
 Considers risk analysis and mitigation as a full life

cycle activitycycle activity

Pillar II:
S ft S it T h i tSoftware Security Touchpoints
 “Software security is not security software”y y

 Software security
 is system-wide issues (security mechanisms and design security)
 Emergent property

 Touchpoints in order of effectiveness (based on experience) Touchpoints in order of effectiveness (based on experience)
 Code review (bugs)
 Architectural risk analysis (flaws)

 These two can be swapped
 Penetration testing Penetration testing
 Risk-based security tests
 Abuse cases
 Security requirements

S it ti Security operations

Pill II (td)Pillar II: (contd.)

Many organization Many organization
 Penetration first
 Is a reactive approach Is a reactive approach

 CR and ARA can be switched however
skipping one solves only half of the problemskipping one solves only half of the problem

 Big organization may adopt these touchpoints
simultaneouslysimultaneously

Pill II (td)Pillar II: (contd.)

Software security best practices applied to various software artifacts

Pillar II: (contd.)
Mi ft’Microsoft’s move ..

Pillar II: (contd.)

Apply Security Touchpoints
(Process-Agnostic)

Apply Security Touchpoints
(Process-Agnostic)(g)(g)

Software SecuritySoftware Security

Process models

CMMI

System-wide
I

System-wide
I

Emergent
P t

Emergent
P t

iCMM
CMMI

IssueIssue PropertyProperty

account for
Security Mechanisms

XP
RUP

Security Mechanisms
Design for Security

Pillar III:
K l dKnowledge
 Involves Involves
 Gathering, encapsulating, and sharing security knowledge

 Software security knowledge catalogs Software security knowledge catalogs
 Principles
 Guidelines

Can be put into three categories
 Rules
 Vulnerabilities
 Exploits

Can be put into three categories

Prescriptive knowledge
Diagnostic knowledge

 Exploits
 Attack patterns
 Historical risks

g g
Historical knowledge

Pillar III: Knowledge catalogs
t / tif tto s/w artifacts

Risk management framework:
Fi StFive Stages

RMF occurs in parallel with SDLC activities RMF occurs in parallel with SDLC activities

Measurement and reporting

Understand
the Business

context

Identify
the Business

and Technical
Risk

Synthesize and
Rank the Risks

Define the Risk
Mitigation
Strategy

1 2 3 4

context Risk
Artifact Analysis

Strategy

Business
C t t

Carry out fixes
And validate

Context
5

In parallel withIn parallel with
SDLCSDLCSDLCSDLC

Stage 1:
U d t d B i C t tUnderstand Business Context
 Risk management Risk management
 Occurs in a business context
 Affected by business motivation

 Key activity of an analyst
 Extract and describe business goals – clearly

 Increasing revenue; reducing dev cost; meeting SLAs; Increasing revenue; reducing dev cost; meeting SLAs;
generating high return on investment (ROI)

 Set priorities
 Understand circumstances Understand circumstances

 Bottomline – answer the question
 who cares?

Stage 2: Identify the business
& t h i l i k& technical risks

Business risks have impact Business risks have impact
 Direct financial loss; loss of reputation; violation of

customer or regulatory requirements; increase incustomer or regulatory requirements; increase in
development cost

 Severity of risks Severity of risks
 Should be captured in financial or project

management termsg
 Key is –
 tie technical risks to business context

Stage 3: Synthesize and rank
th i kthe risks

Prioritize the risks alongside the business Prioritize the risks alongside the business
goals
A i i k i t i ht f Assign risks appropriate weights for
resolution
Ri k t i Risk metrics
 Risk likelihood

Ri k i t Risk impact
 Number of risks mitigated over time

Stage 4: Risk Mitigation
St tStrategy
 Develop a coherent strategy Develop a coherent strategy
 For mitigating risks
 In cost effective manner; account for;

 Cost Implementation time
 Completeness Impact
 Likelihood of success

 A mitigation strategy should
 Be developed within the business context
 Be based on what the organization can afford, integrate

and understand
 Must directly identify validation techniques Must directly identify validation techniques

Stage 5: Carry out Fixes and
V lid tValidate

Execute the chosen mitigation strategy Execute the chosen mitigation strategy
 Rectify the artifacts

 Measure completeness Measure completeness
 Estimate
 Progress residual risks Progress, residual risks

 Validate that risks have been mitigated
 Testing can be used to demonstrate Testing can be used to demonstrate
 Develop confidence that unacceptable risk does

not remain

RMF M lti lRMF - Multi-loop
 Risk management is a continuous processRisk management is a continuous process

 Five stages may need to be applied many times
 Ordering may be interleaved in different ways

 Risk can emerge at any time in SDLC
 One way – apply in each phase of SDLC

 Risk can be found between stages
 Level of application

 Primary – project level Primary – project level
 Each stage must capture complete project

 SDLC phase level
 Artifact level

 It is important to know that RM is
 Cumulative
 At times arbitrary and difficult to predict

S T h i tSeven Touchpoints

Cost of fixing defect at each
tstage

C d iCode review
 Focus is on implementation bugs Focus is on implementation bugs
 Essentially those that static analysis can find
 Security bugs are real problems – but architectural flaws y g p

are just as big a problem
 Code review can capture only half of the problems

 E g E.g.
 Buffer overflow bug in a particular line of code

 Architectural problems are very difficult to find by looking at
the code
 Specially true for today’s large software

C d iCode review
 Taxonomy of coding errors Taxonomy of coding errors
 Input validation and representation

 Some source of problems
 Metacharacters alternate encodings numeric representations Metacharacters, alternate encodings, numeric representations
 Forgetting input validation
 Trusting input too much
 Example: buffer overflow; integer overflow

 API abuse
 API represents contract between caller and callee
 E.g., failure to enforce principle of least privilege

 Security features
 Getting right security features is difficult
 E.g., insecure randomness, password management,

a thentication access control cr ptograph pri ilegeauthentication, access control, cryptography, privilege
management, etc.

C d iCode review
 Taxonomy of coding errors Taxonomy of coding errors
 Time and state

 Typical race condition issuesyp
 E.g., TOCTOU; deadlock

 Error handling
Sec rit defects related to error handling are er common Security defects related to error handling are very common

 Two ways
 Forget to handle errors or handling them roughly
 Produce errors that either give out way too much information or so

radioactive no one wants to handle them
 E.g., unchecked error value; empty catch block

C d iCode review
 Taxonomy of coding errorsTaxonomy of coding errors

 Code quality
 Poor code quality leads to unpredictable behavior
 Poor usability

All tt k t t th t i t d Allows attacker to stress the system in unexpected ways
 E.g., Double free; memory leak

 Encapsulation
 Object oriented approach Object oriented approach
 Include boundaries
 E.g., comparing classes by name

 Environment
 Everything outside of the code but is important for the security of the

software
 E.g., password in configuration file (hardwired)

C d iCode review

Static analysis tools Static analysis tools
 False negative (wrong sense of security)
 A sound tool does not generate false negatives A sound tool does not generate false negatives

 False positives
 Some examples Some examples
 ITS4 (It’s The Software Stupid Security Scanner);
 RATS; Flawfinder

R l lRules overlap

Cigital
Static
analysis y
process

A hit t l i k l iArchitectural risk analysis

 Design flaws Design flaws
 about 50% of security problem
 Can’t be found by looking at code

 A higher level of understanding required
 Risk analysis
 Track risk over time Track risk over time
 Quantify impact
 Link system-level concerns to probability and impact

measuresmeasures
 Fits with the RMF

ARA ithi RMFARA within RMF
2 Measurement and reporting

Identify
the Business

Risk

A tif t A l i

2
Technical
expertise

Measurement and reporting

Understand
the Business

context

Synthesize and
Rank the Risks

Define the Risk
Mitigation
Strategy

Business
Context

1 4 5
Artifact Analysis

3context Strategy
Identify

the Technical
Risk

A tif t A l i

3

Validate the
artifacts

7

Fix the artifacts

6

Validation loop

Artifact Analysis

Initiate process
improvement Validation loopimprovement

ARAARA

Three critical steps Three critical steps
 Attack resistance analysis

Ambiguity analysis Ambiguity analysis
 Weakness Analysis

ARAARA process

Figure 5 4 Figure 5-4

ARAARA process

Attack resistance analysis Attack resistance analysis
 Steps

 Identify general flaws using secure design literature and y g g g
checklists
 Knowledge base of historical risks useful

 Map attack patterns using either the results of abuse case Map attack patterns using either the results of abuse case
or a list of attack patterns

 Identify risk based on checklist
U d t d d d t t th i bilit f th k Understand and demonstrate the viability of these known
attacks
 Use exploit graph or attack graph

- Note: particularly good for finding known problems

ARAARA process
 Ambiguity analysisg y y

 Discover new risks – creativity requried
 A group of analyst and experience helps – use multiple points of view

 Unify understanding after independent analysis
 Uncover ambiguity and inconsistencies Uncover ambiguity and inconsistencies

 Weakness analysis
 Assess the impact of external software dependencies
 Modern software

is b ilt on top of middle are s ch as NET and J2EE is built on top of middleware such as .NET and J2EE
 Use DLLs or common libraries

 Need to consider
 COTS

F k Framework
 Network topology
 Platform
 Physical environment

B ild i t Build environment

S ft t ti t tiSoftware penetration testing

 Most commonly used today Most commonly used today
 Currently
 Outside  in approach
 Better to do after code review and ARA
 As part of final preparation acceptance regimen
 One major limitation One major limitation

 Almost always a too-little-too-late attempt at the end of a
development cycle
 Fixing things at this stageFixing things at this stage
 May be very expensive
 Reactive and defensive

S ft t ti t tiSoftware penetration testing
 A better approach A better approach
 Penetration testing from the beginning and throughout the

life cycle
 Penetration test should be driven by perceived risk Penetration test should be driven by perceived risk
 Best suited for finding configuration problems and other

environmental factors
 Make use of tools

 Takes care of majority of grunt work
 Tool output lends itself to metrics
 Eg., g ,
 fault injection tools;
 attacker’s toolkit: disassemblers and decompilers; coverage tools

monitors

Ri k b d it t tiRisk based security testing

 Testing must be Testing must be
 Risk-based
 Grounded in both the system’s architectural reality Grounded in both the system s architectural reality

and the attacker’s mindset
 Better than classical black box testing
Diff f i i Different from penetration testing
 Level of approach
 Timing of testing Timing of testing
 Penetration testing is primarily on completed software in

operating environment; outside  in

Ri k b d it t tiRisk based security testing

Security testing Security testing
 Should start at feature or component/unit level

testingtesting
 Must involve two diverse approaches
 Functional security testingFunctional security testing
 Testing security mechanisms to ensure that their

functionality is properly implemented
 Adversarial security testing Adversarial security testing
 Performing risk-based security testing motivated by

understanding and simulating the attacker’s approach

AbAbuse cases
 Creating anti requirements Creating anti-requirements
 Important to think about
 Things that you don’t want your software to dog y y
 Requires: security analysis + requirement analysis

 Anti-requirements
 Provide insight into how a malicious user, attacker,

thrill seeker, competitor can abuse your system
 Considered throughout the lifecyleg y
 indicate what happens when a required security function is

not included

AbAbuse cases

Creating an attack model Creating an attack model
 Based on known attacks and attack types

Do the following Do the following
 Select attack patterns relevant to your system – build

abuse case around the attack patternsp
 Include anyone who can gain access to the system

because threats must encompass all potential sources
Al d t d l tt k Also need to model attacker

AbAbuse cases

Figure 8 1 Figure 8-1

Security requirements and
tioperations

 Security requirements Security requirements
 Difficult tasks
 Should cover both overt functional security and Should cover both overt functional security and

emergent characteristics
 Use requirements engineering approach

 Security operations
 Integrate security operations

E g soft are sec rit sho ld be integrated ith E.g., software security should be integrated with
network security

H d t C di EHandout: Coding Errors
 Input validation and representation Input validation and representation
 API Abuse

S F t Secure Features
 Time and State

E H dli Error Handling
 Code Quality
 Encapsulation
 Environment

Building Security In Maturity
M d l (BSIMM V)Model (BSIMM-V)

Purpose: Purpose:
 quantify the activities carried out by real software

security initiativessecurity initiatives
 Requires
 a framework to describe all of the initiatives a framework to describe all of the initiatives

uniformly.
 Software Security Framework (SSF) and activity Software Security Framework (SSF) and activity

descriptions provide
 a common vocabulary for explaining the salient

elements of a software security initiative

Building Security In Maturity
M d l (BSIMM V)Model (BSIMM-V)

How it was built How it was built
 Software Security Framework
 Based on knowledge of software security practices Based on knowledge of software security practices

 Set of common activities
 Based on interviews with executives in charge of Based on interviews with executives in charge of

software security interviews
 Created scoreboards for each of the nine

initiatives – reviewed by the participates

BSIMM Obj tiBSIMM Objectives

The BSIMM is appropriate where business The BSIMM is appropriate where business
goals for software security include:
 Informed risk management decisions Informed risk management decisions
 Clarity on what is “the right thing to do” for

everyone involved in software securityeveryone involved in software security
 Cost reduction through standard, repeatable

processes
 Improved code quality

Acknowledgement: Figures are from the BSIMM-V documents

S ft S it F kSoftware Security Framework
 Twelve practices in four domains Twelve practices in four domains

Practices that help
organize manage

Practices that result in
collections of corporate

Practices that interface
with traditional networkorganize, manage,

and measure a
software security

initiative

collections of corporate
knowledge used in

carrying out software
security activities

with traditional network
security and software

maintenance
organizations

BSIMM VBSIMM-V
 Maturity model: a series of activities associated with Maturity model: a series of activities associated with

each of the twelve practices; and goals of each practice

BSIMM Sk l t tBSIMM Skeleton - assessment
 Detailed description of each activity is provided Detailed description of each activity is provided

in the BSIMM document

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

Oth Sk l tOther Skeletons

C BSIMM ti itiCore BSIMM activities

About 64% carried out About 64% carried out

SSummary

Building Security In approach Building Security In approach
 Building Security In Maturity Model approach

