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F l V ifi tiFormal Verification

Formal verification relies on Formal verification relies on
 Descriptions of the properties or requirements

Descriptions of systems to be analyzed and Descriptions of systems to be analyzed, and
 Verification techniques showing requirements are 

met by system descriptionmet by system description

 Rely on underlying mathematical logic system and the 
proof theory of that system



F l A hFormal Approach

Formal Models use language of mathematics Formal Models use language of mathematics
 Specification languages
 For policies models and system descriptions For policies, models and system descriptions
 Well-defined syntax and semantics – based on maths

 Current trends - two general categories Current trends - two general categories
 Inductive techniques
 Model checking techniques Model checking techniques
 Differences based on
 Intended use, degree of automation, underlying logic 

systems, etc.



Verification techniques –
C it i f l if iCriteria for classifying

Proof based vs model based Proof-based vs model-based
 Proof-based

 Formula define premises : embody the system description Formula define premises : embody the system description
 Conclusions: what needs to be proved

 Proof shows how to reach conclusions from premises
 Intermediate formulas need to found to reach conclusions

 Model-based:  
Premises and conclusions have same truth table values Premises and conclusions have same truth table values

 Degree of automation
l t t d (d ) & i b t manual or automated (degree) & inbetween



Propositional 
l ilogic

PropositionalPropositional
• Axioms
• Inference rules

Boolean
A d• And

• Or
• Not
• Implies• Implies



Verification techniques –
C it i f l if iCriteria for classifying

Full verification vs property verification Full verification vs property verification
 Does methodology model full system?

Or just prove certain key properties? Or just prove certain key properties?
 Examples?

 Intended domain of application Intended domain of application
 HW/SW, reactive, concurrent
Predevelopment vs post development Predevelopment vs post development
 As design aid or after design



I d ti ifi tiInductive verification
 Typically more general Typically more general
 Uses theorem provers
 E g uses predicate/propositional calculus E.g., uses predicate/propositional calculus
 A sequence of proof steps starting with premises 

of the formula and eventually reaching a 
conclusion

 May be used 
T fi d fl i d i To find flaws in design

 To verify the properties of computer programs



M d l h kiModel-checking
 Systems modeled as state transition  Show: Model and the desired Systems modeled as state transition 

systems
 Formula may be true in some states 

and false in others
 Formulas may change values as 

properties are semantically equivalent
 Model and properties express the same 

truth table
 Often used after development is o u as ay c a ge a ues as

systems evolve
 Properties are formulas in logic

 Truth values are dynamic (Temporal 
logic)

p
complete but before a product is 
released to the general market
 Primarily for reactive, concurrent 

systemsg ) y

Developed primarily 
for 
concurrent/reactiveconcurrent/reactive 
systems that react to 
environment



Formal Verification:
C tComponents
 Formal Specification Formal Specification 

 Defined in unambiguous (mathematical) language –
precise semantics!

 Restricted syntax and well-defined semantics based Restricted syntax, and well defined semantics based 
on established mathematical concepts
 Example: BLP Model

 Implementation Language
 Generally somewhat constrained

F l S ti l ti th t Formal Semantics relating the two

 Methodology to ensure implementation ensures 
specifications metspecifications met



S ifi ti  LSpecification Languages

 Specify WHAT not HOW Specify WHAT, not HOW
 Valid states of system
 Pre/Post-conditions of operationsp

 Non-Procedural
 Typical Examples:
 Propositional / Predicate Logic
 Temporal Logic (supports before/after conditions)

S t b d d l Set-based models 
 E.g., RBAC, formal Bell-LaPadula



Example:p
Primitive commands (HRU)

Create subject s
Creates new row, column in ACM; 
s does not exist prior to this

Create object o
Creates new column in ACM
o does not exist prior to this

Adds r right for subject s over object o
Enter r into a[s, o]

Adds r right for subject s over object  o
Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object oDelete r from a[s, o] Removes r right from subject s over object  o

Destroy subject s Deletes row, column from ACM;
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Destroy object o Deletes column from ACM



Example:p
Primitive commands (HRU)

Create subject s
Creates new row, column in ACM; 
s does not exist prior to this

Precondition: Precondition: ss  SS
PostconditionsPostconditions::

S´ = S { s }, O´ = O { s }

Precondition: Precondition: ss  SS
PostconditionsPostconditions::

S´ = S { s }, O´ = O { s }

(y  O´)[a´[s, y] = ] (row entries for s)
(x  S´)[a´[x, s] = ] (column entries for s)
(x  S)(y  O)[a´[x y] = a[x y]]

(y  O´)[a´[s, y] = ] (row entries for s)
(x  S´)[a´[x, s] = ] (column entries for s)
(x  S)(y  O)[a´[x y] = a[x y]](x  S)(y  O)[a [x, y] = a[x, y]](x  S)(y  O)[a [x, y] = a[x, y]]

Safety Theorems
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S ifi ti  LSpecification Languages

 Must support machine processing Must support machine processing
 Strong typing
 Model input/output/errors

 Example:  SPECIAL  (from SRI)
 First order logic based; Non procedural

Well suite for 
functional 

 Strongly typed
 Expressive; has capability to describe
 Inputs, constraints, errors, outputs

specification

 A rich set of built-in operators



SPECIALSPECIAL
 Specification modules for a system Specification modules for a system

 Specifier defines the scope of the module
 Provides convenience and ease of manipulation

S f Sections for describing
 Types, 

 E.g., DESIGNATOR type: Allows use of type whose specifics are to be g y
defined at a lower level of abstraction

 Parameters: Constants and entities 

 Assertions
 About elements in the module 

 Functions – heart of SPECIAL
 Statement variables and state transitions

VFUN:  describes variables (state)
OFUN/OVFUN:  describe state 
transitions

 Private or visible outside the module



E l   SPECIALExample:  SPECIAL
 MODULE Bell_LaPadula_Model Give_access
 Types

 Subject_ID:  DESIGNATOR;
 Object_ID:    DESIGNATOR;

A M d   {READ  APPEND  WRITE} Access_Mode:  {READ, APPEND, WRITE};
 Access:  STRUCT_OF(Subject_ID subject; Object_ID object; 

Access_Mode mode);
 Functionsu ct o s

 VFUN active (Object_ID object) -> BOOLEAN active:  HIDDEN; 
INITIALLY TRUE;

 VFUN access_matrix() -> Accesses accesses: HIDDEN;
INITIALLY FORALL Access a: a INSET accesses => active(a.object);INITIALLY FORALL Access a: a INSET accesses > active(a.object);

 OFUN give_access(Subject_ID giver; Access access);
ASSERTIONS active(access.object) = TRUE;
EFFECTS `access_matrix() = access_matrix() UNION (access);

 END MODULE END_MODULE



Example:  Enhanced Hierarchical 
Development Methodology

 Based on HDM Based on HDM
 A general purpose design and implementation methodology
 Goal was

 To mechanize and formalize the entire development process
 Design specification and verification + implementation 

specification and verificationspecification and verification
 Key idea; Successive refinement of specification

 Design Spec: hierarchy of abstract machines

 Proof-based method
 Uses Boyer-Moore Theorem Prover



L l f Ab t tiLevels of Abstraction

Formal Top Level 
Spec (FTLS)Spec (FTLS)



Example:  Enhanced Hierarchical 
Development Methodology

 Hierarchical approach Hierarchical approach
 Abstract Machines defined at each level

 Hierarchy specification in in Hierarchy Specification Language (HSL)
 AM specification written in SPECIAL AM specification written in SPECIAL

 Mapping Specifications in SPECIAL
 define functionality in terms of machines at next lower layers

 Hierarchy Consistency Checker Hierarchy Consistency Checker
 validates consistency of HS, Module Spec and Mapping Spec

 Compiler : programs for each AM in terms of calls to lower level
 that maps a program into a Common Internal Form (CIF) for HDM toolsp p g ( )
 Two levels of spec translated to CIF  correctness is verified (BMT prover)

 Successfully used on MLS systems
 Few formal policy specifications outside MLS domainp y p



HDM V ifi tiHDM Verification
Used for MLSUsed for MLS

Using the mapping two level 
specifications Translated to 
intermediate form



B M Th PBoyer-Moore Theorem Prover
 Fully automated Fully automated
 No interface for comments or directions
 User provides all the theorems axioms lemmata User provides all the theorems, axioms, lemmata, 

assertions
 LISP like notation

V diffi l f i l h Very difficult for proving complex theorems
 Key idea

U d t d d iti l l l Used extended propositional calculus
 Efficiency – to find a proof.



B M Th PBoyer-Moore Theorem Prover

Steps: Steps:
 Simplify the formula

 Apply axioms lemmata theorems Apply axioms, lemmata, theorems

 Reformulate the formula with equivalent terms
 E.g., replace x-1, x by y and y+1

 Substitute equalities
 Generalize the formula by introducing variables
 Eliminate irrelevant terms
 Induct to prove



Gypsy verification Gypsy verification 
environment (GVE)

 Based on Pascal
 Formal proof and runtime validation support

Focused on Implementation proofs rather than Focused on Implementation proofs rather than 
design proofs 
 verification of specification and its implementation
Also to support incremental development Also to support incremental development

 Specifications defined on procedures
 Entry conditions, Exit conditions, AssertionsEntry conditions, Exit conditions, Assertions

 Proof techniques ensure exit conditions / 
assertions met given entry conditions
 Also run-time checking



Oth  E lOther Examples

 Prototype Verification System (PVS) Prototype Verification System (PVS)
 Based on EHDM
 Interactive theorem-proverp

 Symbolic Model Verifier
 Temporal logic based  / Control Tree Logic
 Notion of “path” – program represented as tree
 Statements that condition must hold at a future state, all

future states, all states on one path, etc.future states, all states on one path, etc.



Oth  E lOther Examples

Formal verification of protocols Formal verification of protocols
 Naval Research Laboratory Protocol Analyzer
 For Crypto protocols For Crypto protocols
 Key management (distribution)
 Authentication protocols

 Verification of libraries
 Entire system not verified
 But components known okay

 High risk subsystems



P t l V ifi tiProtocol Verification

Generating protocols that meet security Generating protocols that meet security 
specifications
 BAN Logic BAN Logic
 Believes, sees, once said

 Assumes cryptography secure Assumes cryptography secure
 But cryptography is not enough


