
Java Security

Lecture 10.2
Oct 25 2014Oct 25, 2014

1

J T h lJava Technology
 Has been established as important for Has been established as important for

enterprise applications
 To ease platform independent applicationTo ease platform independent application

development
 Java Servlets, JavaServer Pages (JSP), Enterprise

JavaBeans(EJB)JavaBeans(EJB)
 To provide security for e-business
 J2EE builds on J2SE
 Introduced fined-grained, policy-based security model that

is customizable and configurable

Traditional Middle-tier Enterprise
E i tEnvironment

J 2 Pl tfJava 2 Platform
 Programming language and runtime environment Programming language and runtime environment

 In each tier
 On multiple OSs
 Libraries (WWW, Apache) such as for XML(p)

 Additional frameworks are needed
 To provide structure and design patterns that

 Enable creating and deploying enterprise scalable applications.
 J2EE integrates Enterprise technologies

 Integrated through Java API
 Distributed transaction support

A h i d il Asynchronous messaging, and email
 Portable Security technologies: Authentication, authorization,

message integrity, and confidentiality
 Enables interoperable security across the enterprisep y p

J L E i tJava Language Environment
 Java 2 SDK contain Java 2 SDK contain
 Tools and library code for

compilation and testing
Java programsp g

 Libraries include
 integrated support for

various features
 E.g., opening “socket” also

includes defining proper
authorization requirements

 Type-safety

J L E i tJava Language Environment
 Execution Environment and Runtime Execution Environment and Runtime
 Mixed use of compiler and interpreter
 Process compiled classes at execution time: JIT

compilationcompilation
 Provides security mechanisms
 Type safety verification using dynamic type safety
 E.g., array-bounds, type casting

 When loaded into the JRE,
 the code location is recorded,

If digitall signed it is erified

Implemented as
Java.Security.CodeSource If digitally signed, it is verified

 For authorization
 J2SE V1.4 also contains integrated authentication and

authorization: JAAS Framework



authorization: JAAS Framework

J L E i tJava Language Environment
 Interface or APIs Interface or APIs
 Allows interaction with architected subsystems
 where vendors provide services in a vendor where vendors provide services in a vendor

neutral manner
 Allows interaction with external world
 JDBC
 JMS,
 JCA JCA,
 JCE,
 JAAS etc.

J S it T h l iJava Security Technologies

Integral,
Evolving, &
I t blInteroperable

Security had
been a primary
Design goal

From Early days: Type Safety and Sandbox

Design goal

J S it T h l iJava Security Technologies

Java
GenericGeneric
Security
Services

Cryptographic services:
Digest, Encryption, etc.Secure Sockets Layer /TLS

Th ti d lThree tier model

Generalized into N-tier
model

Java technology can
be used in some tier
and interfaced with otherand interfaced with other
existing technology
- Java Connector

Architecture (JCA)

Middl TiMiddle Tier

 CGI original model for web servers CGI – original model for web servers
 Did not scale well
 Simple HTTP servers did not support multithreading Simple HTTP servers did not support multithreading

 Lacked security
 Buffer overflows, parameter validation issues, code

i j ti t iinjection, etc. were easier
 Java Servlet Programming model

 Simplified server side programming Simplified server-side programming
 Portable, and can use JCA to interface with others
 Security services are part of the servlet architecture

Middl TiMiddle Tier

Enterprise Java Beans Enterprise Java Beans
 High throughput, scalability, and multiuser secure

distributed transaction processingdistributed transaction processing
 Have constraints
 Single threaded and may not read from file system
 Need to use connectors to do I/O operations

 Deployment descriptor (like in Servlets and JSP)
 Include security requirements Include security requirements

C l A li ti i J2EEComplex Application using J2EE

 Various protocols mediate Various protocols mediate
communication between the
client and server
 HTTP,

Simple Object Access Simple Object Access
Protocol (SOAP)

 Remote Method Invocation
(RMI) over the Internet Inter-
Object Request Broker (RMI-Object Request Broker (RMI
IIOP)

 Separation of components
and their mediation by a y
container allows
 Declarative policies

J2SE S itJ2SE Security
 Three legs of java securityg j y

 Class loaders
 Determine how and when to load code
 Ensures that system-component within RE are not replaced with untrusted

code
 Class file verifier

 Ensures proper formatting of nonsystem code
 type safety requirements
 Stacks cannot overflow/underflow

 Security Manager
 Enforces runtime access control restrictions on attempts to perform file and

network I/O
 Create a new class loader

M i l t th d Manipulate threads
 Start processes in the OS
 Terminate JVM

 E.g., implements Java sandbox function

JVM tJVM components

Access to Classes,
fInterfaces, Fields, Methods

Cl L dClass Loader
 Loading classes from a specific location Loading classes from a specific location
 Multiple class loaders may be active
 Set of classes loaded by a class loader its name space
 Security responsibilities Security responsibilities

 Name space separation
 Avoid name clash problems

 Package boundary protectiong y p
 Can refuse to load untrusted classes into the core java packages,

which contain the trusted system classes
 Access-right assignment

 Set of authorizations for each loaded class uses security policy Set of authorizations for each loaded class – uses security policy
database

 Search order enforcement
 Establishes search order that prevents trusted classes from being

replaced b classes from less tr sted so rcesreplaced by classes from less trusted sources

Sources of code
t t t d t l t- most trusted to least

 Core classes shipped with JVM system classes Core classes shipped with JVM – system classes
 E.g., java.lang, java.io, java.net
 No restriction; no integrity verification; g y

 Installed JVM extensions
 E.g., Cryptographic service providers, XML parsers

 Classes from local file system
 Found through CLASSPATH
Cl f t Classes from remote
 Remote web servers

Cl l dClass loader
 Must guarantee Must guarantee
 Protection of trusted classes

 When name classes occur, trusted local classes are loaded in
preference to untrusted ones

 Protection against name collision
 Two classes with same name from different URLs

 Protection of trusted packages
O h i i ld l i d k Otherwise, it could expose classes in trusted packages

 Name-space isolation
 Loading mechanism must ensure separate name-spaces for

different class loadersdifferent class loaders
 Classes from different name-spaces cannot interfere

 Java class loaders are organized in a tree structure

Cl l dClass loader

A di l A cannot directly
 instantiate B,
 invoke static methods on B invoke static methods on B

or
 instance methods on

objects of type Bobjects of type B

 Many class loaders may
be active at any given
time

Loading classes from Trusted
SSources

Primordial class loader Primordial class loader
 Built in JVM; also known as internal, or null, or

default class loaderdefault class loader
 Loads trusted classes of java runtime
 Loaded classes are not subject to verification Loaded classes are not subject to verification
 Not subjected to security policy restriction
 These are located using boot class path (in Java 2)g p ()

Loading classes from untrusted
SSources
 Classes from untrusted sources include: Classes from untrusted sources include:

 Application classes, extension classes and remote network
locations

 Application class loaderpp cat o c ass oade
 Users’ classes; not trusted; not by primordial
 URLClassLoader an implementation of the java.lang.ClassLoader
 Application class path from CLASSPATH
 Uses URLs to locate and load user classes
 Associate permissions based on security configuration

 Extension class loader
 Trust level is between Application and fully trusted system classes
 Typically granted all permissions (all system resources)
 Added to extension class path – should be allowed to trusted

users onlyusers only
 Only trusted users should add files to the extension class

Loading classes from untrusted
SSources
 Classes from Remote

Network – least trusted
 A class loader is

created for each set of
URLsURLs

 Classes from different
URLs may result in
multiple ClassLoaders
being created to

(Hacker)
being created to
maintain separate
name spaces

 Safety and integrity
ifi ti h kverification checks

 Run confined in
sandbox

(Bank)

E f i d D iEnforcing order - Design
 Class A is loaded by xy
 A references B; hence class loader needs to load B

 If x was primordial, getClassLoader() = null
 If B already loaded

Checks A has permissions (x interacts with SecurityManager) Checks A has permissions (x interacts with SecurityManager)
 Returns reference to object

 Else loader checks with SecurityManager to see if A can create B
 If yes, checks the boot class path first -> extension class path -> application

l th t k URL i th t dclass path -> network URL in that order
 If found in other than boot class path, verification is done

Delegation hierarchy -
I l t tiImplementation
 Primordial class loader Primordial class loader

 In general is not a java class
 is generated at JVM startup (not loaded)

 Every ClassLoader class needs to be Every ClassLoader class needs to be
loaded
 When a program instantiates a

ClassLoader the program’s class loaderClassLoader, the program s class loader
becomes the ClassLoader’s parent
 E.g., extention class loader is created at

JVM start-up by one of the JVM’s system
h l l d i thprograms, whose class loader is the

primordial class loader – hence primordial
class loader is parent

 Forms parent/child relationshipsp p

R f i lReferencing classes

 The delegation model guarantees
 A more trusted class cannot be replaced by the

less trusted
 A and its instance can call B and its instances if A and its instance can call B and its instances if

both were loaded by the same class loader
 C and its instance can call D and its instances if

D’s class loader is an ancestor of C’s loader
 E and its instance cannot call F and its

instances if E’s class loader is an ancestor of
F’s loader

 Classes in name space, created by different p y
class loaders cannot reference each other
 Prevents cross visibility
 How can such classes exchange

information?information?

Cl V ifiClass Verifier
 At this point following is guaranteed At this point following is guaranteed

 Class file loaded
 Cannot supplant core classes
 Cannot inveigle into trusted packages
 Cannot interfere with safe packages already loaded

 However the class file itself may be unsafe
 Key sources of unsafe byte code

Malicious java compiler Malicious java compiler
 byte code may itself be from non-Java programs

 Class editors, decompilers, disaasemlers

Can be easily edited by hex class editorCan be easily edited by hex class editor

B t C d E lByteCode Example
0: CA FE BA BE 00 00 00 2E 00 ID 0A 00 06 00 0F 09 Eb9<............

10: 00 10 00 11 08 00 12 0A 00 13 00 14 07 00 15 0710: 00 10 00 11 08 00 12 0A 00 13 00 14 07 00 15 07
20: 00 16 01 00 06 3C 69 6E 69 74 3E 01 00 03 28 29<init>...()
30: 56 01 00 04 43 6F 64 65 01 00 0F 4C 69 6E 65 4E V...Code...LineH
40: 75 6D 62 65 72 54 61 62 6C 65 01 00 04 6D 61 69 umberTable...mai
50: 6E 01 00 16 28 5B 4C 6A 61 76 61 2F 6C 61 6E 67 n...([Ljava/lang
60: 2F 53 74 72 69 6E 67 3B 29 56 01 00 0A 53 6F 75 /String;)V...Sou
70: 72 63 65 46 69 6C 65 01 00 0F 48 65 6C 6C 6F 57 rceFile...HelloW
80: 6F 72 6C 64 2E 6A 61 76 61 0C 00 07 00 08 07 00 orld.Java.......
90: 17 0C 00 18 00 19 01 00 0B 48 65 6C 6C 6F 20 57Hello W
A0: 6F 72 6C 64 07 00 1A 0C 00 1B 00 1C 01 00 0A 48 orld...........H
B0: 65 6C 6C 6F 57 6F 72 6C 64 01 00 10 6A 61 76 61 elloWorld...Java
C0: 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 01 00 10 6A /lang/Object j

class HelloWorld
{ public static void main(String args[])

C0: 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 01 00 10 6A /lang/Object...j
D0: 61 76 61 2F 6C 61 6E 67 2F 53 79 73 74 65 6D 01 ava/lang/System.
E0: 00 03 6F 75 74 01 00 15 4C 6A 61 76 61 2F 69 6F ..out...Ljava/io
F0: 2F 50 72 69 6E 74 53 74 72 65 61 6D 3B 01 00 13 /PrintStream;...
100: 6A 61 76 61 2F 69 6F 2F 50 72 69 6E 74 53 74 72 java/io/PrintStr
110: 65 61 6D 01 00 07 70 72 69 6E 74 6C 6E 01 00 15 eam...println...

{ System.out.println("Hello World");
}

}

p
120: 28 4C 6A 61 76 61 2F 6C 61 6E 67 2F 53 74 72 69 (Ljava/lang/Stri
130: 6E 67 3B 29 56 00 20 00 05 00 06 00 00 00 00 00 ng;)V.
140: 02 00 00 00 07 00 08 00 01 00 09 00 00 00 1D 00
150: 01 00 01 00 00 00 05 2A B7 00 01 Bl 00 00 00 01*•..±....
160: 00 0A 00 00 00 06 00 01 00 00 00 01 00 09 00 0B
170: 00 0C 00 01 00 09 00 00 00 25 00 02 00 01 00 00%......
180: 00 09 B2 00 02 12 03 B6 00 04 Bl 00 00 00 01 00 ..2......¶..±.....
190: 0A 00 00 00 0A 00 02 00 00 00 05 00 08 00 06 00
1A0: 01 00 0D 00 00 00 02 00 0E

Cl V ifiClass Verifier
 Bytecode can be easily modified to change the Bytecode can be easily modified to change the

behavior of the class using such hex editors
 Decompilers can recreate source code Decompilers can recreate source code
 It can then be modified to create malicious byte

code using a custom compiler
 Disassembler generates pseudo assembly code,

which can be modified and reassembled back to
corrupted java codecorrupted java code

Cl V ifiClass Verifier
 Class editors decompilers and dissemblers can also be used to Class editors, decompilers and dissemblers can also be used to

perpetrate privacy and intellectual property attacks
 Valuable algorithm can be broken
 Security mechanism can be revealed and bypassed Security mechanism can be revealed and bypassed
 Hard-coded confidential information (keys, password) can

be extracted
A break in release to release compatibility can cause a class to A break in release-to-release compatibility can cause a class to
be unsafe
 A member that was accessible is not available
 A member has changed from static to instance A member has changed from static to instance
 New version has different return, number and type parameters

 All these need to be checked by Class Verifier !

D ti f Cl Fil V ifiDuties of Class File Verifier
 Some possible compromise to the integrity of Some possible compromise to the integrity of

JVM as follows
 Forge illegal pointers

 Class confusion attack: obtain reference to an
object of one t pe and se it as another t peobject of one type and use it as another type

 Contain illegal bytecode instructions
 Contain illegal parameters for bytecode

instructions

Check the size
of stack before
and after each

 Overflow or underflow the program stack
 Underflow – attempting to pop more values than it

pushed
 Overflow placing values on it that it did not

call

 Overflow – placing values on it that it did not
remove

 Perform illegal casting operation
 Attempt to access classes, fields or methods

ill ll

Tag each
object with
type

illegally

Cl V ifiClass Verifier
 Four passes based on Sun JVM Four passes based on Sun JVM
 Over the newly loaded class
 Any pass fails the class is rejectedy p j
 First three before the execution and the last during the

execution
P 1 Fil i t it h k Pass 1: File-integrity check
 Checks for a signature

 The first four bytes is magic number 0xCAFEBABEy g
 Check that the class itself is neither too long nor too short –

otherwise throws exceptions

Cl V ifiClass Verifier

Pass 2: Class integrity check ensures Pass 2: Class-integrity check – ensures
 Class has a superclass unless it is Object

Superclass is not a final class Superclass is not a final class
 Class does not override a final method in its

superclasssuperclass
 Constant pool entries are well formed
 All the method and field references have legal All the method and field references have legal

names and signatures

Cl V ifiClass Verifier

Pass 3: bytecode integrity check the Pass 3: bytecode-integrity check – the
bytecode verifier runs
 Checks how the code will behave at runtime Checks how the code will behave at runtime
 Dataflow analysis,
 Stack checking
 Static type checking

 Bytecode verifer is responsible for ensuring
B t d h t d d th i t Bytecodes have correct operands and their types

 Data types are not accessed illegally
 Stack is not overflowed/underflowed
 Method calls have appropriate parameters

Cl V ifiClass Verifier

The result indicates a class file in one The result indicates a class file in one
category
 Runtime behavior is demonstrably safe (accept) Runtime behavior is demonstrably safe (accept)
 Runtime behavior is demonstrably unsafe (reject)
 Runtime behavior is neither demonstrably safe norRuntime behavior is neither demonstrably safe nor

demonstrably unsafe
 Cannot be completely eliminated

M b t d ifi i t h t t ti Means bytecode verifier is not enough to prevent runtime
errors – some runtime checking is required

Cl V ifiClass Verifier

P 4 R ti i t it h k Pass 4: Runtime-integrity check
 Bytecode verification cannot confirm certain behavior

ClassB b = new ClassB();
ClassA a = b.methodReturningClassA();

ClassB b = new ClassB();
ClassA a = b.methodReturningClassC();

Class files are loaded only when a
method call is executed or a fieldClassA a b.methodReturningClassC(); method call is executed or a field
in an object of that class is
modified

S it MSecurity Manager
 Java environment attacks can be Java environment attacks can be
 System modification

 A program gets read/write access
 Privacy invasion Privacy invasion

 Read access to restricted information
 Denial of service

 Program uses up system resources without being invited Program uses up system resources without being invited
 Impersonation

 Masquerades as a real user of the system
 Security manager enforces restriction against first Security manager enforces restriction against first

two attacks and to some extend the last

S it MSecurity Manager

SecurityManager concrete class SecurityManager – concrete class
 Implementation supports policy driven security

modelmodel
 Resource-level, access control facility
 checkPermission(Permission object) in checkPermission(Permission object) in

AccessController

S it MSecurity Manager

Resources protected by default Resources protected by default
SecurityManager

S it MSecurity Manager
 SM Automatically grantsSM Automatically grants

 a class file java.io.FilePermission necessary to read to all files in
its directory and subdirectory

 Java.net.SocketPermission that allows remote code to connect
to accept and resolve local host and the host the code is loadedto, accept, and resolve local host and the host the code is loaded
from

S it M O tiSecurity Manager Operation
 Once installed, a SecurityManager is active only on request – it does not Once installed, a SecurityManager is active only on request it does not

check anything unless one of its check methods is called by other system
functions

T f tt kTypes of attacks

Some of the security holes in previous java Some of the security holes in previous java
releases
 Infiltrating local classes Infiltrating local classes
 JVM implementation bug: allowed an applet to load a

class from any directory on the browser systemy y y
 OS should be configured to restrict writing access to the

directories pointed to by the boot class path
 Extension framework are by default granted full access toExtension framework are by default granted full access to

the system resources – only trusted users should be
allowed to add extensions to the runtime environment

T f tt kTypes of attacks
 Type confusion Type confusion
 If an attacker can create an object reference that

is not of the type it claims to be, there is possibility yp , p y
of breaking down protection. JVM flaws
 Bug that allowed creating a ClassLoader but avoided calling

the constructor that invokes checkCreateClassLoader()the constructor that invokes checkCreateClassLoader()
 JVM access checking that allowed a method or an object

defined as private in one class to be accessed by another
class as publicclass as public

 JVM bug that failed to distinguish between two classes with
the same name but loaded by different class loaders

T f tt kTypes of attacks
 Network lookpholes Network lookpholes
 Failure to check the source IP address rigorously
 This was exploited by abusing the DNS to fool SM in

ll i th t t t t h t th t ldallowing the remote program to connect to a host that would
normally have been invisible to the server (bypass firewall)

 JavaScript backdoors
 Exploit allowed script to persist after the web page has

been exited
 Malicious code: Balancing Permission Malicious code: Balancing Permission
 Cycle stealing
 Impersonation

I t d d f th lInterdependence of three legs
 Although have unique functions they are inter- Although have unique functions, they are inter

dependent

 Class-loading mechanism relies on SM to prevent untrusted code
f l di it l l dfrom loading its own class loader

 SM relies on class-loading mechanism to keep untrusted classes
and local classes separate name spaces and to prevent the local
t t d l f b i itttrusted classes from being overwritten

 Both the SM and CL system rely on class file verifier to make
sure that class confusion is avoided and that class protection p
directives are honored.

 If an attacker can breach one of the defenses – the
security of the whole system can be compromisedsecurity of the whole system can be compromised

J 2 P i i M d lJava 2 Permission Model

Fi i d t l d l Fine-grained access control model
 Ability to grant specific permissions to a particular

piece of code about accessing specific resourcespiece of code about accessing specific resources
 Based on the signers of the code, and
 The URL location from which code was loaded

 System admin can specify permission on a case-
by-case basis
 the policy database is by default implemented as a flat

file, called policy profile

J 2 P i i M d lJava 2 Permission Model
 In multiuser system In multiuser system,
 a default system policy data base can be defined, and
 each user can have a separate policy databasep p y

 In an intranet,
 network admin can define a corporate wide policy

d t b ddatabase and
 install it on a policy server for all the Java systems in the

network to download and use
 At runtime, (corporate wide policy database + system policy

database + user-defined policy database) gives the current
security policy in effect

J 2 A t l h iJava 2 Access control mechanism
 Predetermined security policy of the java system dictates Predetermined security policy of the java system dictates

the Java security domains within which a specific piece of
code can reside

Lexical scoping of privilege
difi timodifications

 A piece of code can A piece of code can
be defined as
privileged

Trusted code called opens
socket connection and logs
to a file all the times it has

been accessed someMethod()
{

// unprivileged code here...
AccessController.doPrivileged(new PrivilegedAction()
{

Caller should have
java.net.SocketPermission
but not necessary to have

{
public Object run()
{

// privileged code goes here, for example:
System.loadLibrary("awt");
return null; // nothing to returnbut not necessary to have

java.io.FilePermission
; // g

}
});
// unprivileged code here...

}

J 2 S it T lJava 2 Security Tools
 jar utility jar utility

 Aggregates and compresses collections of java programs and
related resources

 Only JAR files can be signed/sealedOnly JAR files can be signed/sealed
 keytool utility

 Creates key pairs; imports/exports X.509 certificates; manages
keystorey

 Keystore – protected database containing keys/certificates
 jarsigner utility

 To sign JAR files and to verify signatures of JAR files To sign JAR files and to verify signatures of JAR files
 Policytool

 To create and modify policy configuration files

Java Authentication and
A th i ti S iAuthorization Service

Basic java security model Basic java security model
 Grants permissions based on code signers and

URL locationsURL locations
 Insufficient in enterprise environment – as concept of

user running the code is not captured

 JAAS complemented basic model by taking
into account users running the code

J P i iJava Permissions

java security package contains abstract java.security package contains abstract
Permission class
 Subclasses define specific permission Subclasses define specific permission

Permissions API
inheritance treeinheritance tree

Specific permission class generally in
packages in which they are most likely topackages in which they are most likely to
be used, e.g.,

FilePermission in java.io package
SocketPermission in java.net package

J P i iJava Permissions

Permission may have Permission may have
 A target and optional actions (access mode)

E g both target and action included E.g., both target and action included
 java.io.FilePermission “C:\AUTOEXEC.BAT”, “read, write, execute”

 E.g., target onlyg g y
 java.io.RuntimePermission “exitVM”

 E.g., no target
 java security AllPermission – full access to all system resources java.security.AllPermission – full access to all system resources

J P i iJava Permissions

Classes Classes
 PermissionCollections and Permissions

Abstract
Final
classAbstract

class
class

HomogeneousHomogeneous
permission; e.g.,
file permissions Group of heterogeneous permission objects

P i i lPermission class

implies() method abstract method that implies() method – abstract method that
returns true
 a implies b means a implies b means
 Granting an application permission a autmatically

grants it permission b also.g p
 Giving AllPermisions implies granting rest of the

permissions
 java.io.FilePermission “/tmp/*”, “read” impliesjava.io.FilePermission /tmp/ , read implies

java.io.FilePermission “/tmp/readme.txt”, ‘read”

AllP i iAllPermissions
 Care should be taken Care should be taken
 when granting AllPermissions and any of the following

Permissions
 Permission to define the system’s SecurityManager; Permission to define the system s SecurityManager;

 E.g.,
 RuntimePermissions “createSecurityManager” and

RuntimePermissions “setSecurityManager”RuntimePermissions setSecurityManager
 Permission to create a class loader
 Delegation hierarchy may not be respected

 Permission to create native code Permission to create native code
 Native code runs on OS and hence bypasses java

security restrictions
P i i t t th t ’ it li Permission to set the system’s security policy

J S it P liJava Security Policy
 Policy can be configured – declarativey g

 Can also be easily changed
 java.security.policy can be subclassed to develop customized policy

implementation

grant [signedBy signers][, codeBase URL] {
permission Perm_class [target][, action][, signedBy signers];
[permission ...]
}; //GRANT Entry syntax

grant signedBy "bob, alice" codeBase "http://www.ibm.com" {
permission java.io.FilePermission "C:\AUTOEXEC.BAT", "read";
permission java.lang.RuntimePermission "setSecurityManager";
};// GRANT entry

Keystore used by JVM
should have certificates of
bob AND alice. To do OR,
duplicate the grant
statement

Multiple policy files
C dCode source
 Can be combined at runtime to Can be combined at runtime to

form single policy object
 No risk of conflict as only positive

permissionsp
 By default program is denied any

access
 CodeSource

 Codebase is the URL location
that the code is coming from

 If two classes have the same
d b d i d b thcodebase and are signed by the

same signers – they have the
same CodeSource

P t ti d iProtection domain
 When a class is loaded into JVM When a class is loaded into JVM

 CodeSource of that class is mapped to the Permissions granted
to it by the current policies

 Class loader stores CodeSource and Permissions object into aClass loader stores CodeSource and Permissions object into a
ProtectionDomain object
 That is: Based on the class’s CodeSource the ClassLoader builds the

ProtectionDomain for each class

S t d A li ti d iSystem and Application domains

 System classes are fully trusted System classes are fully trusted
 ProtectionDomain (system domain) is pre-built

that grants AllPermissions (also known as null g (
protection domain)

 Application domain
 Non system classes
 Zero or more application domains
 As many application domains as there are non system As many application domains as there are non-system

CodeSource

R l ti hiRelationships
 All the classes with the same CodeSource belong to the sameAll the classes with the same CodeSource belong to the same

ProtectionDomain
 Each class belongs to one and only one ProtectionDomain
 Classes that have the same Permissions but are different from

C d S b l t diff t P t ti D iCodeSources belong to different ProtectionDomains

Basic Java 2 Access Control
M d lModel
 SecurityManager checkPermission() is called to SecurityManager.checkPermission() is called to

allow access to resources
 It is an interface
 Actually relies on AccessController checkPermission() to Actually relies on AccessController.checkPermission() to

verify the permission has been granted

Basic Java 2 Access Control
M d lModel

Thread of execution Thread of execution
 may occur
 Completely within a single Protection domain (e g the Completely within a single Protection domain (e.g., the

system domain), or
 May involve one or more application domains and also

the system domain
 contains a number of stack frames – one for each

method invocationmethod invocation
 Each stack frame is mapped to the class in which the

method is declared

Basic Java 2 Access Control
M d lModel
 AccessController checkPermission() AccessController.checkPermission()
 Walks through each thread’s stack frames, getting the

protection domain for each class on the thread’s stack
 As each ProtectionDomain is located, the implies() method

is invoked to check if Permission is implied by the
ProtectionDomain
 Repeats until the end of the stack is reached
 If all the classes in the frame have the Permission to

f th ti th h k i itiperform the operation – the check is positive
 If even one ProtectionDomain fails to imply the

permission – it is negative

Basic Java 2 Access Control
M d lModel

Examples

L i il d t i il dLess privileged to more privileged

More privileged to less privileged

P i il d C dPrivileged Code

Intersection of permission of the Intersection of permission of the
ProtectionDomain can be a limitation
 Controlled solution: Wrap the needed code into Controlled solution: Wrap the needed code into
 AccessController.doPrivileged() to see whether

Permission being checked is impliedg p
 The search stops at the stack with doPrivilege

P i il d C dPrivileged Code

PD i h itPD inheritance
 When a thread spawns a child thread When a thread spawns a child thread

 New runtime stack for each thread
 Child may have less PDs and hence more permissions
 Malicious program can create threads to by-pass!!

 Solution: Attach the parent thread !!

