
D l i S S tDeveloping Secure Systems

IntroductionIntroduction
Aug 27 2014Aug 27, 2014

James JoshiJames Joshi,
Associate Professor

C t tContact
 James Joshi James Joshi
 706A, IS Building

Ph 412 624 9982 Phone: 412-624-9982
 E-mail: jjoshi@mail.sis.pitt.edu

W b Web: http://www.sis.pitt.edu/~jjoshi/courses/IS2620/Fall14/

Office Hours: By appointments
GSA L i Ji GSA: Lei Jin

C Obj tiCourse Objectives
 To learn about how to design/implement secure and high assurance

information systems
 Understand and analyze code for vulnerabilities
 Secure programming (e.g., C, C++, Java)
 Secure architectures & security assurance

 Understand the principles and practice towards designing secure
information systems
 Life cycle models/ security engineering principles
 Usability issues

 To learn about the tools and techniques towards assurance q
(validation/verification/testing)
 Use of tools to detect coding/design flaws;
 architectural risk analysisy

C CCourse Coverage
 Secure programmingp g g

 Coding practices, issues and guidelines
 Code analysis;

 Buffer overflows Race conditions
 Input validation SQL injection
 Cross-site scripting Mobile Code Safe LanguagesC oss s te sc pt g ob e Code Sa e a guages

 Secure software development & Assurance process
 Security Engineering/Lifecycle models

 E.g. Capability Maturity Models and Extensions Building security In

 Secure Design/Implementation Principles
 Systems / software &Formal methods and testing

 UMLSec, Model Checking (code, protocols)

 Secure Supply Chain environmentspp y
 Verification / model checking
 Reverse engineering
 Trusted computing modules/environments

P i itPre-requisite
 IS 2150/TEL 2810 Information Security & Privacy IS 2150/TEL 2810 Information Security & Privacy

 OR background in security

Follo ing co rses are preferred b t not req ired Following courses are preferred but not required:
 IS 2170/TEL 2820 Cryptography; TEL 2821 Network Security

 Talk to me if you are not sure of the background

Course Reference: Check website Course Reference: Check website

G di (T t ti)Grading (Tentative)

Assignments/Presentation/Exam: 50% Assignments/Presentation/Exam: 50%
 Read/Review and/or present research papers or

articlesarticles
 Assignments/quizzes
 Lab exercises

 Exams and Project : 50%
 Two exams
 One project

C P liCourse Policy
 Your work MUST be your own Your work MUST be your own

 Zero tolerance for cheating/plagiarism
 You get an F for the course if you cheat in anything however

small – NO DISCUSSION
Di i th bl i d Discussing the problem is encouraged

 Homework
P lt f l t i t (15% h d) Penalty for late assignments (15% each day)

 Ensure clarity in your answers – no credit will be given for vague
answers

 Homework is primarily the GSA’s responsibilityp y p y

 Check webpage for everything!
 You are responsible for checking the webpage for updatesp g p g p

Wh SWh SWhy Secure Why Secure
Software/SystemSoftware/SystemSoftware/System Software/System

Development?Development?

S ft /S t S itSoftware/Systems Security
 Renewed interest & importance Renewed ---- interest & importance
 “idea of engineering software so that it

continues to function correctly under y
malicious attack”

 Existing software is riddled with design
fl d i l t ti bflaws and implementation bugs
 ~70% related to design flaws*

 “any program, no matter howany program, no matter how
innocuous it seems, can harbor
security holes”
*http://www securitymanagement com/archive/library/atstake tech0502 p*http://www.securitymanagement.com/archive/library/atstake_tech0502.p

df

S ft P blSoftware Problem

vulnerabilities
Reported by CERT/CC

 More than half of the vulnerabilities are due to buffer overruns More than half of the vulnerabilities are due to buffer overruns
 Others such as race conditions, design flaws are equally prevalent

CERT V l bilitCERT Vulnerability

Source: Seacord’s Webinar on Secure Coding on C and C++

NVD t ti tiNVD statistics

S ft itSoftware security
 It is about It is about
 Understanding software-induced security risks

and how to manage themg
 Leveraging software engineering practice,
 thinking security early in the software lifecyle
 Knowing and understanding common problems
 Designing for security

S bj ti ll ft tif t t th h Subjecting all software artifacts to thorough
objective risk analyses and testing

 It is a knowledge intensive field It is a knowledge intensive field

T i it f t blTrinity of trouble
Bigger problem today

 Three trends
.. And growing

 Three trends
 Connectivity

 Inter networked
 Include SCADA (supervisory (p y

control and data acquisition
systems)

 Automated attacks, botnets
 Extensibility Extensibility

 Mobile code – functionality
evolves incrementally

 Web/Os Extensibility
 Complexity

 XP is at least 40 M lines of code
 Add to that use of unsafe

languages (C/C++)
INFOGRAPHICS Link:

http://h fastcompany net/multisite files/fastcompany/imageclanguages (C/C++) http://h.fastcompany.net/multisite_files/fastcompany/imagec
ache/inline-large/inline/2013/11/3021256-inline-

800linesofcode5.jpg

It b il d tIt boils down to …

more code,
more bugs,

more security problemsy p

S it bl i ftSecurity problems in software
 Defect Defect
 implementation and

design vulnerabilities
 Can remain dormant Can remain dormant

 Bug
 An implementation level

software problemsoftware problem
 Flaw
 A problem at a deeper

level
Bug Flaw
Buffer overflow: stack smashing Method over-riding problemslevel

 Bugs + Flaws
 leads to Risk

Buffer overflow: stack smashing
Buffer overflow: one-stage attacks
Buffer overflow: string format attacks
Race conditions: TOCTOU
Unsafe environment variables
Unsafe system calls (fork(), exec(),
system())

Method over riding problems
(subclass issues)
Compartmentalization problems in
design
Privileged block protection failure
(DoPrivilege())
Error-handling problems (fails open)y ())

Incorrect input validation (black list vs.
white list

Type safety confusion error
Insecure audit log design
Broken or illogical access control
(role-based access control [RBAC]
over tiers)
Signing too much code

C t f fi iCost of fixing

Relative Costs to Fix Software Defects (Source: IBM Systems Sciences Institute)

OWASP Top Ten
V l biliti (f 2013)Vulnerabilities (for 2013)
 A1 Injection A1-Injection

 SQL, OS, LDAP – input validation problem

 A2-Broken Authentication and Session
Management
 Incorrect implementation (compromise passwords,

keys, implementation flaws

 A3-Cross-Site Scripting (XSS)
 Improper validation

 A4 Insecure Direct Object References A4-Insecure Direct Object References
 Improper exposure of internal implementation

 A5-Security Misconfiguration
 A6-Sensitive Data Exposure

OWASP Top Ten
V l biliti (f 2013)Vulnerabilities (for 2013)

A7 Mi i F ti L l A Control A7-Missing Function Level Access Control
 Web applications UI and server need to enforce consistent access control

enforcement

 A8 Cross Site Request Forgery (CSRF) A8-Cross-Site Request Forgery (CSRF)
 Forged HTTP requests and compromise of victim’s session cookie
 Victim’s browser is forced to generate requests to the vulnerable application

 A9-Using Components with Known Vulnerabilities A9-Using Components with Known Vulnerabilities
 Components could run with full privileges – vulnerable program could be

exploited
 Components could be libraries or software modules and frameworks

 A10-Unvalidated Redirects and Forwards
 Improper validation issue
 Web apps can redirect victims to phishing or malware sites.

Comparison: http://www.port80software.com/support/articles/2013-owasp-top-10

R t i id tRecent incidents ..
 HeartBleed (CVE 2014 0160) HeartBleed (CVE-2014-0160)

 A serious threat in OpenSSL
 Estimated to have made 2/3 of Internet vulnerable

E ti ll b ff fl i (d) Essentially a buffer overflow issue (overreads)
 Improper input validation – allows access to more data

 Automated software testing did not catch !!
 Static analysis did not catch it ! And dynamic/hybrid not designed for such Static analysis did not catch it ! And dynamic/hybrid not designed for such

vulnerability
 Some approaches that would have helped

 Negative testing/Fuzzing with special checks
 Better Source code analysis; safer language (it was in C)
 Formal methods

Source: “Preventing Heartbleed” by David Wheeler IEEE ComputerSource: “Preventing Heartbleed” by David Wheeler, IEEE Computer
Also Check out: http://www.kb.cert.org/vuls/id/720951

R t i id tRecent incidents ..
 Stuxnet Stuxnet
 Affected several ICSs; Includes

 exploit of the LNK files – shortcut file in windows as a start (other p (
exploits possible)

 exploit some unpatched version of Win XP

 Target data breach* Target data breach
 Financial and personal info af ~110M customers
 Payment card system flaw – malware installed in POS terminals

(RAM Scraping attack)(RAM Scraping attack)
 Network access from third party (PA HVAC) which was weak in

security – allowed to gain foothold in Target’s network

*http://docs.ismgcorp.com/files/external/Target_Kill_Chain_Analysis_FINAL.pdf

R t i id tRecent incidents ..
 Russian hackers Russian hackers

 Targets: Oil, Gas, Energy security – industrial espionage
 Also target seizing control of ICS

http://www.nytimes.com/2014/07/01/technology/energy-sector-faces-attacks-from-hackers-in-russia.html

H dHence we need …
 Robust and Secure Software Design and Secure Robust and Secure Software Design and Secure

Systems Engineering practice
 Secure development life-cycle/methodologies

S Secure process models to support large scale team management
 Fix flaw early in the life-cycle – LOW COST !!

 Secure Design principlesg
 Proper Testing and Verification/Validation
 Effective Tools and Techniques
 Security Engineering education
 Etc..

