
D l i S S tDeveloping Secure Systems

IntroductionIntroduction
Aug 27 2014Aug 27, 2014

James JoshiJames Joshi,
Associate Professor

C t tContact
 James Joshi James Joshi
 706A, IS Building

Ph 412 624 9982 Phone: 412-624-9982
 E-mail: jjoshi@mail.sis.pitt.edu

W b Web: http://www.sis.pitt.edu/~jjoshi/courses/IS2620/Fall14/

Office Hours: By appointments
GSA L i Ji GSA: Lei Jin

C Obj tiCourse Objectives
 To learn about how to design/implement secure and high assurance

information systems
 Understand and analyze code for vulnerabilities
 Secure programming (e.g., C, C++, Java)
 Secure architectures & security assurance

 Understand the principles and practice towards designing secure
information systems
 Life cycle models/ security engineering principles
 Usability issues

 To learn about the tools and techniques towards assurance q
(validation/verification/testing)
 Use of tools to detect coding/design flaws;
 architectural risk analysisy

C CCourse Coverage
 Secure programmingp g g

 Coding practices, issues and guidelines
 Code analysis;

 Buffer overflows Race conditions
 Input validation SQL injection
 Cross-site scripting Mobile Code Safe LanguagesC oss s te sc pt g ob e Code Sa e a guages

 Secure software development & Assurance process
 Security Engineering/Lifecycle models

 E.g. Capability Maturity Models and Extensions Building security In

 Secure Design/Implementation Principles
 Systems / software &Formal methods and testing

 UMLSec, Model Checking (code, protocols)

 Secure Supply Chain environmentspp y
 Verification / model checking
 Reverse engineering
 Trusted computing modules/environments

P i itPre-requisite
 IS 2150/TEL 2810 Information Security & Privacy IS 2150/TEL 2810 Information Security & Privacy

 OR background in security

Follo ing co rses are preferred b t not req ired Following courses are preferred but not required:
 IS 2170/TEL 2820 Cryptography; TEL 2821 Network Security

 Talk to me if you are not sure of the background

Course Reference: Check website Course Reference: Check website

G di (T t ti)Grading (Tentative)

Assignments/Presentation/Exam: 50% Assignments/Presentation/Exam: 50%
 Read/Review and/or present research papers or

articlesarticles
 Assignments/quizzes
 Lab exercises

 Exams and Project : 50%
 Two exams
 One project

C P liCourse Policy
 Your work MUST be your own Your work MUST be your own

 Zero tolerance for cheating/plagiarism
 You get an F for the course if you cheat in anything however

small – NO DISCUSSION
Di i th bl i d Discussing the problem is encouraged

 Homework
P lt f l t i t (15% h d) Penalty for late assignments (15% each day)

 Ensure clarity in your answers – no credit will be given for vague
answers

 Homework is primarily the GSA’s responsibilityp y p y

 Check webpage for everything!
 You are responsible for checking the webpage for updatesp g p g p

Wh SWh SWhy Secure Why Secure
Software/SystemSoftware/SystemSoftware/System Software/System

Development?Development?

S ft /S t S itSoftware/Systems Security
 Renewed interest & importance Renewed ---- interest & importance
 “idea of engineering software so that it

continues to function correctly under y
malicious attack”

 Existing software is riddled with design
fl d i l t ti bflaws and implementation bugs
 ~70% related to design flaws*

 “any program, no matter howany program, no matter how
innocuous it seems, can harbor
security holes”
*http://www securitymanagement com/archive/library/atstake tech0502 p*http://www.securitymanagement.com/archive/library/atstake_tech0502.p

df

S ft P blSoftware Problem

vulnerabilities
Reported by CERT/CC

 More than half of the vulnerabilities are due to buffer overruns More than half of the vulnerabilities are due to buffer overruns
 Others such as race conditions, design flaws are equally prevalent

CERT V l bilitCERT Vulnerability

Source: Seacord’s Webinar on Secure Coding on C and C++

NVD t ti tiNVD statistics

S ft itSoftware security
 It is about It is about
 Understanding software-induced security risks

and how to manage themg
 Leveraging software engineering practice,
 thinking security early in the software lifecyle
 Knowing and understanding common problems
 Designing for security

S bj ti ll ft tif t t th h Subjecting all software artifacts to thorough
objective risk analyses and testing

 It is a knowledge intensive field It is a knowledge intensive field

T i it f t blTrinity of trouble
Bigger problem today

 Three trends
.. And growing

 Three trends
 Connectivity

 Inter networked
 Include SCADA (supervisory (p y

control and data acquisition
systems)

 Automated attacks, botnets
 Extensibility Extensibility

 Mobile code – functionality
evolves incrementally

 Web/Os Extensibility
 Complexity

 XP is at least 40 M lines of code
 Add to that use of unsafe

languages (C/C++)
INFOGRAPHICS Link:

http://h fastcompany net/multisite files/fastcompany/imageclanguages (C/C++) http://h.fastcompany.net/multisite_files/fastcompany/imagec
ache/inline-large/inline/2013/11/3021256-inline-

800linesofcode5.jpg

It b il d tIt boils down to …

more code,
more bugs,

more security problemsy p

S it bl i ftSecurity problems in software
 Defect Defect
 implementation and

design vulnerabilities
 Can remain dormant Can remain dormant

 Bug
 An implementation level

software problemsoftware problem
 Flaw
 A problem at a deeper

level
Bug Flaw
Buffer overflow: stack smashing Method over-riding problemslevel

 Bugs + Flaws
 leads to Risk

Buffer overflow: stack smashing
Buffer overflow: one-stage attacks
Buffer overflow: string format attacks
Race conditions: TOCTOU
Unsafe environment variables
Unsafe system calls (fork(), exec(),
system())

Method over riding problems
(subclass issues)
Compartmentalization problems in
design
Privileged block protection failure
(DoPrivilege())
Error-handling problems (fails open)y ())

Incorrect input validation (black list vs.
white list

Type safety confusion error
Insecure audit log design
Broken or illogical access control
(role-based access control [RBAC]
over tiers)
Signing too much code

C t f fi iCost of fixing

Relative Costs to Fix Software Defects (Source: IBM Systems Sciences Institute)

OWASP Top Ten
V l biliti (f 2013)Vulnerabilities (for 2013)
 A1 Injection A1-Injection

 SQL, OS, LDAP – input validation problem

 A2-Broken Authentication and Session
Management
 Incorrect implementation (compromise passwords,

keys, implementation flaws

 A3-Cross-Site Scripting (XSS)
 Improper validation

 A4 Insecure Direct Object References A4-Insecure Direct Object References
 Improper exposure of internal implementation

 A5-Security Misconfiguration
 A6-Sensitive Data Exposure

OWASP Top Ten
V l biliti (f 2013)Vulnerabilities (for 2013)

A7 Mi i F ti L l A Control A7-Missing Function Level Access Control
 Web applications UI and server need to enforce consistent access control

enforcement

 A8 Cross Site Request Forgery (CSRF) A8-Cross-Site Request Forgery (CSRF)
 Forged HTTP requests and compromise of victim’s session cookie
 Victim’s browser is forced to generate requests to the vulnerable application

 A9-Using Components with Known Vulnerabilities A9-Using Components with Known Vulnerabilities
 Components could run with full privileges – vulnerable program could be

exploited
 Components could be libraries or software modules and frameworks

 A10-Unvalidated Redirects and Forwards
 Improper validation issue
 Web apps can redirect victims to phishing or malware sites.

Comparison: http://www.port80software.com/support/articles/2013-owasp-top-10

R t i id tRecent incidents ..
 HeartBleed (CVE 2014 0160) HeartBleed (CVE-2014-0160)

 A serious threat in OpenSSL
 Estimated to have made 2/3 of Internet vulnerable

E ti ll b ff fl i (d) Essentially a buffer overflow issue (overreads)
 Improper input validation – allows access to more data

 Automated software testing did not catch !!
 Static analysis did not catch it ! And dynamic/hybrid not designed for such Static analysis did not catch it ! And dynamic/hybrid not designed for such

vulnerability
 Some approaches that would have helped

 Negative testing/Fuzzing with special checks
 Better Source code analysis; safer language (it was in C)
 Formal methods

Source: “Preventing Heartbleed” by David Wheeler IEEE ComputerSource: “Preventing Heartbleed” by David Wheeler, IEEE Computer
Also Check out: http://www.kb.cert.org/vuls/id/720951

R t i id tRecent incidents ..
 Stuxnet Stuxnet
 Affected several ICSs; Includes

 exploit of the LNK files – shortcut file in windows as a start (other p (
exploits possible)

 exploit some unpatched version of Win XP

 Target data breach* Target data breach
 Financial and personal info af ~110M customers
 Payment card system flaw – malware installed in POS terminals

(RAM Scraping attack)(RAM Scraping attack)
 Network access from third party (PA HVAC) which was weak in

security – allowed to gain foothold in Target’s network

*http://docs.ismgcorp.com/files/external/Target_Kill_Chain_Analysis_FINAL.pdf

R t i id tRecent incidents ..
 Russian hackers Russian hackers

 Targets: Oil, Gas, Energy security – industrial espionage
 Also target seizing control of ICS

http://www.nytimes.com/2014/07/01/technology/energy-sector-faces-attacks-from-hackers-in-russia.html

H dHence we need …
 Robust and Secure Software Design and Secure Robust and Secure Software Design and Secure

Systems Engineering practice
 Secure development life-cycle/methodologies

S Secure process models to support large scale team management
 Fix flaw early in the life-cycle – LOW COST !!

 Secure Design principlesg
 Proper Testing and Verification/Validation
 Effective Tools and Techniques
 Security Engineering education
 Etc..

