
1

IS 2150 / TEL 2810
Information Security and Privacy

James Joshi
Professor, SCI

Access Control
OS Security Overview

Lecture 2,
Jan 10, 2019

Objectives
 Understand the basics of access control

model
 Access control matrix

 Understand access control in Unix and
Windows environment

2

3

ACM Background
 Access Control Matrix

 Captures the current protection state of a
system

 Butler Lampson proposed the first
Access Control Matrix model

 Refinements
 By Graham and Denning
 By Harrison, Russo and Ulman – with some

theoretical results

4

Protection System
 Subject (S: set of all subjects)

 Active entities that carry out an action/operation on other
entities;

 Examples?
 Object (O: set of all objects)

 Examples?
 Right (R: set of all rights)

 An action/operation that a subject is allowed/disallowed
on objects

 Access Matrix A: a[s, o] ⊆R
 Set of Protection States: (S, O, A)

5

Access Control Matrix Model
 Access control matrix model

 Describes the protection state of a system.
 Elements indicate the access rights that subjects have

on objects

 Is an abstract model - what does it mean?
 ACM implementation

 What is the disadvantage of maintaining a matrix?
 Two ways implement:

 Capability based
 Access control list

6

Access Control Matrix

s3 r

s1

f1 f2 f3 f4 f5 f6

s2

s3

o, r, w

o, r, w

o, r, w o, r, w

o, r, w

o, r, w

r

r

r r

w

f1

f2

f3

f4

f6

s2

s1 o, r, w s2 r

s1 o, r, w s3 r

s3 o, r, w

f5 s2 o, r, w s3 r s1 w

s3 o, r, w

f5 w s1 f2 o, r, w f3 o, r, w

f2 r s2 f1 o, r, w f5 o, r, w

f3 r s3 f4 o, r, wf2 r

f5 r f6 o, r, w

o: own
r: read
w:write

Access Matrix

Access Control ListCapabilities

o, r, w

7

Access Control Matrix
Hostnames Telegraph Nob Toadflax
Telegraph own ftp ftp
Nob ftp, nsf, mail, own ftp, nfs, mail

Toadflax ftp, mail ftp, nsf, mail, own

Counter Inc_ctr Dcr_ctr Manager

Inc_ctr +

Dcr_ctr -

manager Call Call Call

•telegraph is a PC with
ftp client but no server

•nob provides NFS but
not to Toadfax

•nob and toadfax can
exchange mail

8

Access Control Matrix
Hostnames Telegraph Nob Toadflax
Telegraph own ftp ftp
Nob ftp, nsf, mail, own ftp, nfs, mail

Toadflax ftp, mail ftp, nsf, mail, own

Counter Inc_ctr Dcr_ctr Manager

Inc_ctr +

Dcr_ctr -

manager Call Call Call

•telegraph is a PC with
ftp client but no server

•nob provides NFS but
not to Toadfax

•nob and toadfax can
exchange mail

9

Unix Security
Overview

10

Unix
 Kernel

 I/O, Load/Run Programs,
Filesystem; Device Drivers …

 Standard Utility Programs
 /bin/ls, /bin/cp, /bin/sh

 System database files
 E.g, /etc/passwd; /etc/group

MULTICS
(60s)

Unix
(69→)

multilevel

Multi-user
Multi-tasking

Security Policy

(interacts with) Developed at
AT&T Bell Labs

11

Users and password
 Each user has a

 unique account identified by a username
 Each account has a secret password

 Standard: 1-8 characters; but varies
 Passwords could be same – bad choice!

 /etc/passwd contains
 Username, Identification information
 Real name, Basic account information

root:x:0:1:System Operator:/:/bin/ksh
daemon:x:1:1::/tmp:
uucp:x:4:4::/var/spool/uucppublic:/usr/lib/uucp/uucico
rachel:x:181:100:Rachel Cohen:/u/rachel:/bin/ksh
arlin:x.:182:100:Arlin Steinberg:/u/arlin:/bin/csh

12

rachel:x:181:100:Rachel Cohen:/u/rachel:/bin/ksh

Account info
Field Contents
rachel Username.

x

Holding place for the user's "encrypted password."
Newer Unix systems store encrypted passwords in a separate file
(the shadow password file) that can be accessed only by
privileged users.

181 User's user identification number (UID).

100 User's group identification number (GID).

Rachel Cohen User's full name

/u/rachel User's home directory.

/bin/ksh User's shell (empty field means default shell)

13

Users and Groups
 Each user is uniquely identified

by a UID
 Special user names

 Root; Bin; Daemon; Mail; Guest; ftp

 Every user belongs to one or
more groups
 A primary group
 /etc/group

 Gname, Gpassword, GID, Users

16 bits: How many
IDs?
UID 0: superuser
(More bits too)

wheel:*:0:root,rachel
http:*:10:http
users:*:100:
vision:*:101:keith,arlin,janice
startrek:*:102:janice,karen,arlin
rachel:*:181:

Presenter
Presentation Notes
Most versions of Unix use the wheel group as the list of all of the computer's system administrators (in this case, rachel and the root user are the only members). On some systems, the group has a GID of 0; on other systems, the group has a GID of 10. Unlike a UID of 0, a GID of 0 is usually not significant. However, the name wheel is very significant: on many systems the use of the su command to invoke superuser privileges is restricted to users who are members of a group named wheel.
The second line of this file defines the http group. There is one member in the http group—the http user.
The third line defines the users group. The users group does not explicitly list any users; on some systems, each user is placed into this group by default through his individual entry in the /etc/passwd file.
The fourth and fifth lines define two groups of users. The vision group includes the users keith, arlin, and janice. The startrek group contains the users janice, karen, and arlin. Notice that the order in which the usernames are listed on each line is not important.

Finally, the sixth line defines a group for the user rachel.

14

Users and Groups

wheel:*:0:root,rachel
http:*:10:http
users:*:100:
vision:*:101:keith,arlin,janice
startrek:*:102:janice,karen,arlin
rachel:*:181:

Some useful commands
- groups
- id
- newgrp
- su

15

Superuser
 root; UID = 0 …….. Complete Control

 Used by OS itself for basic functions
 Logging in/out users
 Recording accounting info
 Managing input/output devices

 Security controls are bypassed
 There are few things not allowed

 Decrypt passwords shadow-file, …

Processes can run with Effective UID = 0Key Security Weakness in Unix

16

User ids
 Each process has three Ids

 Real user ID (RUID)
 a user’s “real identity”
 same as the user ID of parent

(unless changed)
 Effective user ID (EUID)

 from set user ID (SUID) bit on the
file being executed

 Can use su command to assume
another’s RUID

 Saved user ID (SUID)
 Allows restoring previous EUID

 Similar for Group

 While accessing files
 Process EUID compared

against the file UID
 GIDs are compared;

then Others are tested

17

Kernel security Levels
(BSD, Mac OS ..)
Restricts power of superuser sysctl kern.securelevel=1

• Write access to the raw disk partitions is prohibited.
• Raw access to the SCSI bus controller is prohibited.
• Files that have the immutable flag set cannot be changed. Files that

have the append-only bit set can only be appended to, and not
otherwise modified or deleted.

• The contents of IP packets cannot be logged.
• Raw I/O to the system console is prohibited.
• Raw writes to system memory or I/O device controllers from user

programs are prohibited.
• Additional kernel modules cannot be loaded.
• The system clock cannot be set backwards.

Security Level 1

Security Level 2

Security Level 3

Reads from raw disk partitions are not permitted.

Changes to the IP filter
are not permitted.

Not a comprehensive list

18

Unix file system

 File systems store
 information in files and

metadata about files.
 tree-structured

A file is a block of information that
is given a single name and can be
acted upon with a single operation.

"everything is a file"

Finenames stored in directory and
Have pointers to inodes

19

Directory
 A Unix directory is

 a list of names
 files, directories,.

 associated inode
numbers.

 Special entries
“.” and its inode # (self)
“..” and its inode #

(parent)

r Read Listing files in the directory.

w Write ?

x Execute ?

Presenter
Presentation Notes
Write -- Add a file, delete a file, rename a file
Execute – to cd into it; to access inode info of the files in the directory (search permission

20

Unix file security
 Each file/directory has owner and group
 How are the permissions set by a owner for

 Read, write, execute
 Owner, group,
 Any other?

 Only owner, root can change permissions
 This privilege cannot be delegated or shared

21

Unix File Permissions
 File type, owner, group, others
drwx------ 2 jjoshi isfac 512 Aug 20 2003 risk management
lrwxrwxrwx 1 jjoshi isfac 15 Apr 7 09:11 risk_m->risk management
-rw-r--r-- 1 jjoshi isfac 1754 Mar 8 18:11 words05.ps
-r-sr-xr-x 1 root bin 9176 Apr 6 2002 /usr/bin/rs
-r-sr-sr-x 1 root sys 2196 Apr 6 2002 /usr/bin/passwd

 File type: regular -, directory d, symlink l,
device b/c, socket s, fifo f/p

 Permissions: r, w, x
 Any other permissions?

22

Umask
 Specifies the permission you do not want given

by default to new files
 Bitwise AND with the bitwise complement of the

umask value

Umask User
Access Group Access Other Access

0000 All All All
0002 All All Read, Execute
0007 All All None
0022 All Read, Execute Read, Execute
0027 All Read, Execute None
0077 All None None

23

IDs/Operations
 Root can access any file
 Fork and Exec

 Inherit three IDs,
 except exec of file with setuid bit

 Setuid system calls
 seteuid(newid) can set EUID to

 Real ID or saved ID, regardless of current EUID
 Any ID, if EUID=0

 Related calls: setuid, seteuid, setgid, setegid

24

Setid bits
 Three setid bits

 suid
 set EUID of process to ID of file owner

 sgid
 set EGID of process to GID of file

 suid/sgid used when a process executes a file
 If suid(sgid) bit is on – the EUID (EGID) of the process changed to UID (GUID) of the file

 Sticky
 Off: if user has write permission on directory, can rename or remove files, even if not owner
 On: only file owner, directory owner, and root can rename or remove file in the directory

-r--r-Sr-T 1 root user 12324 Mar 26 1995 /tmp/example

What does this mean?

Presenter
Presentation Notes
S – means the corresponding bit r, w, e are off.

25

SUID – dangerous!

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--

file

Owner 18

Owner 25

read/write

read/write

Owner 18

26

Careful with Setuid !
 Setuid bit

 Allows one to do what the file owner can
 Be sure not to

 Take action for untrusted user
 Return secret data to untrusted user

 Principle of least privilege
 change EUID when root privileges no longer

needed

 Do not leave unattended sh terminals !!

27

Windows NT
 Windows 9x, Me

 Never meant for security
 FAT file system – no file level security
 PWL password scheme – not secure

 Can be simply deleted
 Windows NT

 Username mapped to Security ID (SID)
 SID is unique within a domain

 SID + password stored in a database handled by the
Security Accounts Manager (SAM) subsystem

28

Windows NT
 Some basic functionality similar to Unix

 Specify access for groups and users
 Read, modify, change owner, delete

 Some additional concepts
 Tokens
 Security attributes

 Generally
 More flexibility than Unix

 Can give some but not all administrator privileges

29

Sample permission options
 SID

 Identity (replaces UID)
 SID revision number
 48-bit authority value
 variable number of

Relative Identifiers
(RIDs), for uniqueness

 Users, groups,
computers, domains,
domain members all
have SIDs

30

Permission Inheritance
 Static permission inheritance (Win NT)

 Initially, subfolders inherit permissions of
folder

 Folder, subfolder changed independently
 Replace Permissions on Subdirectories

command
 Eliminates any differences in permissions

31

Permission Inheritance
 Dynamic permission inheritance (Win 2000)

 Child inherits parent permission, remains linked
 Parent changes are inherited, except explicit

settings
 Inherited and explicitly-set permissions may

conflict
 Resolution rules

 Positive permissions are additive
 Negative permission (deny access) takes priority

32

Tokens
 Security context

 privileges, accounts, and groups associated with
the process or thread

 Security Reference Monitor
 uses tokens to identify the security context of a

process or thread
 Impersonation token

 Each thread can have two tokens – primary &
impersonation

 thread uses temporarily to adopt a different
security context, usually of another user

33

Security Descriptor
 Information associated with an object

 who can perform what actions on the object
 Several fields

 Header
 Descriptor revision number
 Control flags, attributes of the descriptor

 E.g., memory layout of the descriptor
 SID of the object's owner
 SID of the primary group of the object
 Two attached optional lists:

 Discretionary Access Control List (DACL) – users, groups, …
 System Access Control List (SACL) – system logs, ..

Using ACEs in DACL
One of the following need to occur:
1. If access-denied for any requested

permission – DENY
2. If access-allowed through one or more ACEs

for trustees listed – GRANT
3. All ACEs have been checked – but there is

still one permission that has not been
allowed - DENY

34

35

Example access request
User: Mark
Group1: Administrators
Group2: Writers

Control flags

Group SID
DACL Pointer
SACL Pointer

Deny
Writers
Read, Write
Allow
Mark
Read, Write

Owner SID

Revision Number

Access
token

Security
descriptor Access request: write

What would be the
authorization decision: ???

36

Impersonation Tokens
(setuid?)
 Process uses security attributes of another

 Client passes impersonation token to server
 Client specifies impersonation level of server

 Anonymous
 Token has no information about the client

 Identification
 server obtains the SIDs of client and client's privileges, but

server cannot impersonate the client
 Impersonation

 server identifies and impersonates the client
 Delegation

 lets server impersonate client on local, remote systems

Mandatory Access Control
 Integrity controls

 Limit operations that might change the
state of an object

 Objects and subjects – integrity levels
 Low, Medium, High, System
 SIDs in token would include the level info

 Process with Medium integrity should be able to write to
Objects with what integrity level?

37

38

Encrypted File Systems (EFS)

 Store files in encrypted form
 Key management: user’s key decrypts file
 Useful protection if someone steals disk

 Windows – EFS
 User marks a file for encryption
 Unique file encryption key is created
 Key is encrypted, can be stored on smart

card

39

SELinux Security Policy
Abstractions
 Type enforcement

 Each process has an associated domain
 Each object has an associated type
 Configuration files specify

 How domains are allowed to access types
 Allowable interactions and transitions between domains

 Role-based access control
 Each process has an associated role

 Separate system and user processes
 configuration files specify

 Set of domains that may be entered by each role

40

Sample Features of Trusted
OS
 Identification and authentication
 Mandatory access control

 MAC not under user control, precedence over DAC
 Object reuse protection

 Write over old data when file space is allocated
 Complete mediation

 Prevent any access that circumvents monitor
 Audit

 Log security-related events
 Intrusion detection

 Anomaly detection
 Learn normal activity, Report abnormal actions

 Attack detection
 Recognize patterns associated with known attacks

41

Kernelized Design
 Trusted Computing Base

 Hardware and software for enforcing
security rules

 Reference monitor
 Part of TCB
 All system calls go through reference

monitor for security checking
 Reference validation mechanism –

1. Tamperproof
2. Never be bypassed
3. Small enough to be subject to analysis

and testing – the completeness can be
assured

User space

Kernel space

User
process

OS kernel

TCB

Reference
monitor

Which principle(s)?

42

Is Windows “Secure”?
 Good things

 Design goals include security goals
 Independent review, configuration guidelines

 But …
 “Secure” is a complex concept

 What properties protected against what attacks?
 Typical installation includes more than just OS

 Many problems arise from applications, device drivers
 Windows driver certification program

43

Window 2000
 Newer features than NT
 NTFS file system redesigned for

performance
 Active directory

 Kerberos for authentication
 IPSec/L2TP

44

Active Directory
 Core for the flexibility of Win2000

 Centralized management for clients, servers and user
accounts

 Information about all objects
 Group policy and remote OS operations
 Replaces SAM database

 AD is trusted component of the LSA
 Stores

 Access control information – authorization
 User credentials – authentication

 Supports
 PKI, Kerberos and LDAP

45

Win 2003

Summary
 Introduced Access Control Matrix

 ACL and Capabilities
 Overview of access control in

 Unix and Windows

46

	IS 2150 / TEL 2810�Information Security and Privacy
	Objectives
	ACM Background
	Protection System
	Access Control Matrix Model
	Access Control Matrix
	Access Control Matrix�
	Access Control Matrix�
	Slide Number 9
	Unix
	Users and password
	Account info
	Users and Groups
	Users and Groups
	Superuser
	User ids
	Kernel security Levels�(BSD, Mac OS ..)
	Unix file system
	Directory
	Unix file security
	Unix File Permissions
	Umask
	IDs/Operations
	Setid bits
	SUID – dangerous!
	Careful with Setuid !
	Windows NT
	Windows NT
	Sample permission options
	Permission Inheritance
	Permission Inheritance
	Tokens
	Security Descriptor
	Using ACEs in DACL
	Example access request
	Impersonation Tokens (setuid?)
	Mandatory Access Control
	Encrypted File Systems (EFS)
	SELinux Security Policy Abstractions
	Sample Features of Trusted OS
	Kernelized Design
	Is Windows “Secure”?
	Window 2000
	Active Directory
	Win 2003�
	Summary

