IS 2150 / TEL 2810 Information Security & Privacy

James Joshi Professor, SIS

Information Privacy

Lecture 11 March 30, 2016

What is privacy?

- Hard to define
- Privacy is the claim of individuals, groups, or institutions to determine for themselves when, how, and to what extent information about them is communicated to others"
 - Alan Westin, Privacy and Freedom, 1967

OECD Guidelines on the Protection of Privacy (1980)

- Collection limitation
- Data quality
- Purpose specification
- Use limitation
- Security safeguards
- Openness
- Individual participation
- Accountability

- Notice/Awareness
- Choice/Consent
- Access/Participation
- Integrity/Security
- Enforcement/Redress

Privacy Laws

- EU: Comprehensive
 - European Directive on Data Protection
- US: Sector specific
 - HIPAA (Health Insurance Portability and Accountability Act of 1996)
 - Protect individually identifiable health information
 - COPPA (Children's Online Privacy Protection Act of 1998)
 - Address collection of personal information from children under 13, how to seek verifiable parental consent from their parents, etc.
 - GLB (Gramm-Leach-Bliley-Act of 1999)
 - Requires financial institutions to provide consumers with a privacy policy notice, including what info collected, where info shared, how info used, how info protected, opt-out options, etc.

WebTrust

Online Privacy Seal Programs (1)

WebTrust


- Developed by the American Institute of Certified Public Accountants and the Canadian Institute of Chartered Accountants
- Privacy standards established by the Online Privacy Alliance, the EU, and Canada with regard to business practices and information privacy, transaction integrity, and security

TRUSTe

- Founded by Electronic Frontier Foundation and CommerceNet Consortium, Inc.
- Adherence to TRUSTe's privacy policies of disclosure, choice, access, and security
- Ongoing oversight and alternative dispute resolution processes

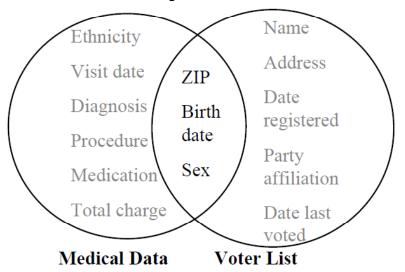
Online Privacy Seal Programs

BBBOnLine

- Developed by the Council of Better Business Bureaus
- Features verification, monitoring and review, consumer dispute resolution, enforcement mechanisms, and an educational component
- The Platform for Privacy Preferences (P3P)
 - Developed by W3C
 - Enables Websites to express their privacy practices in a standard format that can be retrieved automatically and interpreted easily by user agents

DATA ANONYMIZATION

Some slides borrowed from Vitaly Shmatikov


Data Collection & Publishing

- Health-care datasets
 - Clinical studies, hospital discharge databases ...
- Genetic datasets
 - 1000 genome, HapMap, deCode ...
- Demographic datasets
 - U.S. Census Bureau, sociology studies ...
- Search logs, recommender systems, social networks, blogs ...
 - AOL search data, social networks of blogging sites, Netflix movie ratings, Amazon ...

Linking Attack

- 87% of US population uniquely identifiable by 5-digit ZIP code, gender, DOB [using 1990 US census summary data]
- A practical attack [Sweeney2002]

- Massachusetts governor's hospital record re-identified
 - 6 with same DOB, 3 men, only one with same ZIP code

Quasi-identifier

- Identifier attributes
 - e.g., Name, SSN, address, phone no., etc.
 - A naïve anonymization method will always remove these
- Quasi-identifier attributes
 - 5-digit ZIP code, gender, DOB
 - Combination of attributes that can be used for linking attack
- Other attributes

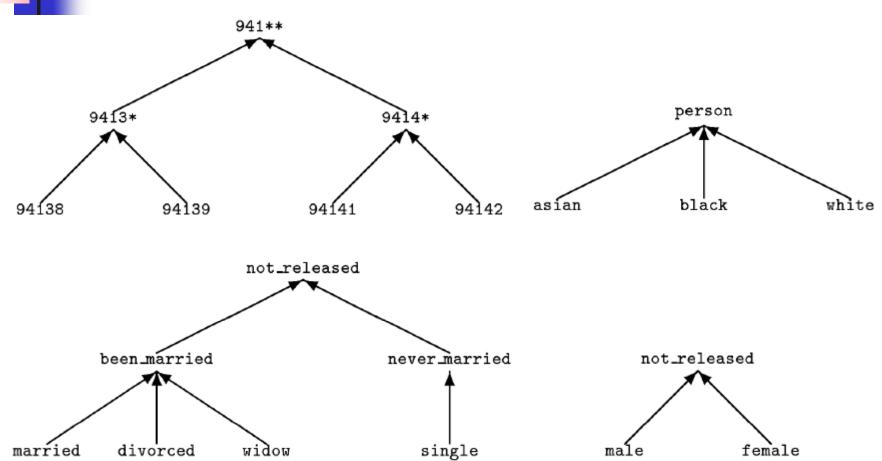
k-Anonymity

- Each record must be indistinguishable with at least k 1 other records with respect to the quasi-identifier
- Linking attack cannot be performed with confidence
 1/k
- Formal definition [Samarati2001]
 - Let T(A₁, ..., A_n) be a table and QI be a quasi-identifier associated with it. T is said to satisfy k-anonymity wrt QI iff each sequence of values in T[QI] appears at least with k occurrences in T[QI].
 - (T[QI] is the projection of T on quasi-identifier attributes)

k-Anonymity: Example

• k=2 and $QI=\{Race, Birth, Gender, ZIP\}$

		Race	Birth	Gender	ZIP	Problem
	t1	Black	1965	m	0214*	short breath
	t2	Black	1965	m	0214*	chest pain
Equivalency	t3	Black	1965	f	0213*	hypertension
Class	t4	Black	1965	f	0213*	hypertension
	t5	Black	1964	f	0213*	obesity
	t6	Black	1964	f	0213*	chest pain
(t7	White	1964	m	0213*	chest pain
	t8	White	1964	m	0213*	obesity
l	t9	White	1964	m	0213*	short breath
	t10	White	1967	m	0213*	chest pain
	t11	White	1967	m	0213*	chest pain



Achieving k-Anonymity

- Generalization
 - Use less specific values to get k identical values
 - Partitioning range of values
- Suppression
 - Remove some records
 - When generalization causes too much information loss
- Many algorithms in the literature
 - Anonymizations vs utility is not always clear

Generalization Hierarchy

k-Anonymity Is Not Enough

k-anonymity protects against identity disclosure, but not attribute disclosure!

	ZIP Code	Age	Disease
1	47677	29	Heart Disease
2	47602	22	Heart Disease
3	47678	27	Heart Disease
4	47905	43	Flu
5	47909	52	Heart Disease
6	47906	47	Cancer
7	47605	30	Heart Disease
8	47673	36	Cancer
9	47607	32	Cancer

		ZIP Code	Age	Disease
	1	476**	2*	Heart Disease
П	2	476**	2*	Heart Disease
L	3	476**	2*	Heart Disease
	4	4790*	≥ 40	Flu
	5	4790*	≥ 40	Heart Disease
	6	4790*	≥ 40	Cancer
	7	476**	3*	Heart Disease
П	8	476**	3*	Cancer
	9	476**	3*	Cancer

Table 1. Original Patients Table Table 2. A 3-Anonymous Version of Table 1

 Lack of diversity in sensitive attributes of an equivalency class can reveal sensitive attributes

l-Diversity

- A table is said to have l-diversity if every equivalence class of the table has l-diversity
 - i.e., there are at least l "well-represented" values for the sensitive attribute
- Distinct *l*-diversity
 - Each equivalence class has at least l well-represented sensitive values
 - Does not prevent probabilistic inference attacks

		Disease	
		HIV	
		HIV	8 records have HIV
10 records .	J		o records flave fifty
		HIV	
		pneumonia	 2 records have other values
		bronchitis	2 records riave other values

1-Diversity: Skewness Attack

Example

- One sensitive attribute with two values: HIV+(1%)/HIV-(99%)
- Suppose one class has equal number of HIV+ and HIV-
- Satisfies any 2-diversity requirement
- Anyone in the class has 50% probability of being HIV+ (compare it to 1% chance in overall population)
- Issue: When the overall distribution is skewed, satisfying l-diversity does not prevent attribute disclosure

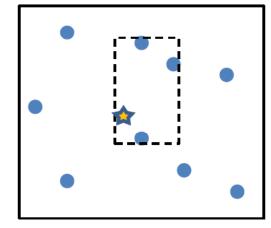
1-Diversity: Similarity Attack

- Bob (ZIP=47621, Age=26)
- Leakage of sensitive info
 - Low salary [3K,5K]
 - Stomach-related disease

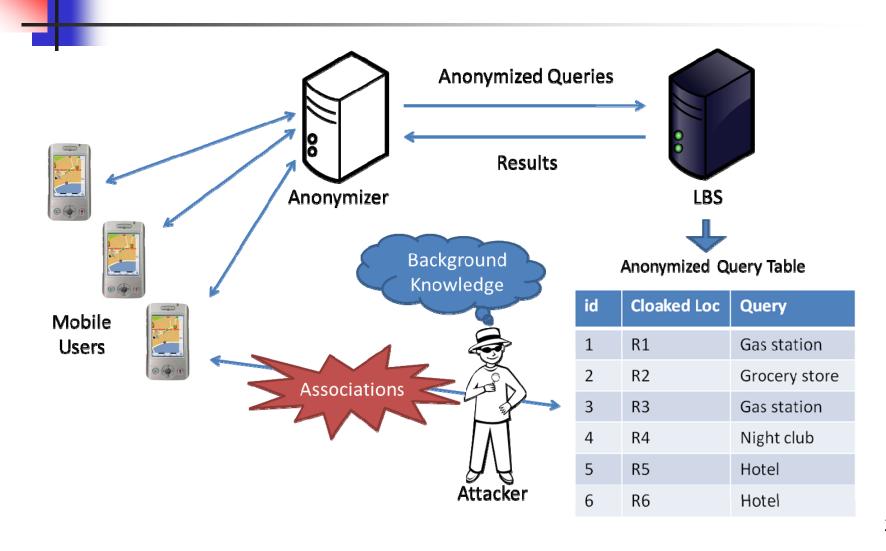
	ZIP Code	Age	Salary	Disease
1	476**	2*	3K	gastric ulcer
2	476**	2*	4K	gastritis
3	476**	2*	5K	stomach cancer
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
7	476**	3*	7K	bronchitis
8	476**	3*	9K	pneumonia
9	476**	3*	10K	stomach cancer

 Issue: *l*-Diversity does not take into account the semantical closeness of sensitive values

PRIVACY IN LOCATION-BASED SERVICES

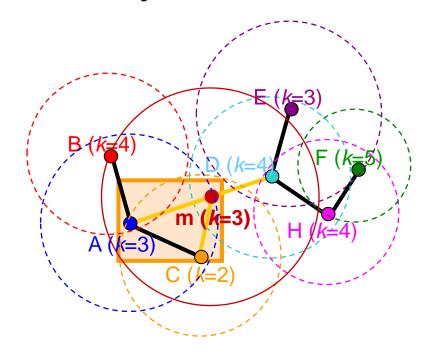

Location-Based Services

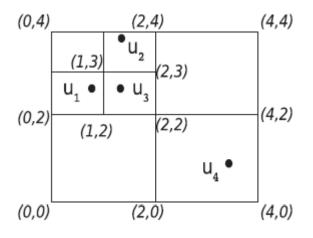
- Location-Based Service (LBS)
 - A service that is offered based on a user's location
- Privacy risks
 - Tracking a user
 - Identifying a user based on location
- Service/Privacy tradeoff
 - Report perturbed location
 - cloaking/obfuscation
 - A region containing the actual location is reported (i.e., generalization of location)


Location k-Anonymity

- Submitted cloaked region must contain at least k users
 - Collect and submit k queries together
 - If not enough queries to group with
 - Drop the query (may not be acceptable)
 - Generate enough dummy (fake) queries (raises service cost)

- Different users may have different privacy requirements, service level needs
 - Important distinction from traditional *k*-anonymity


LBS Anonymization: Threat Model



Location k-Anonymization

- Various algorithms
 - Nearest neighbor k-anonymization
 - Quad-tree spatial cloaking
 - CliqueCloak
 - Privacy Grid

3	2	1	0	4
0	3.	4	4	5
2	4	3	3	4
6	2	3	4	5
0	2	4	5	6

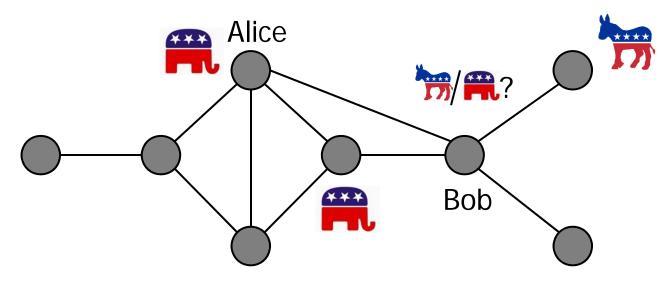
PRIVACY IN SOCIAL NETWORKING SYSTEMS

Social Networking Systems

- Social networking systems (Online social networks)
 - Facebook, Orkut, LinkedIn, Twitter, Buzz, etc.
- Social network: a collection of
 - Social entities, e.g., people in Facebook, and
 - Relations among them, e.g., friendship relation in Facebook
 - Basically, a graph

Nodes / vertices / actors

Links / edges / relations



- Not enough control features
- Configuring a policy is a complicated task for an ordinary user
 - Hundreds of just directly linked friends
 - Magnitude of information objects: profile, status, posts, photos, etc.
 - Third party apps
- Even if you have the tool and knowledge to use it, still hard to determine your ideal protection preferences!

Privacy Risks in Releasing SNs

- Identity disclosure
- Link disclosure
- Attribute disclosure

Social Network Anonymization

Generalization

- Cluster nodes, usually based on communities
- Replace a cluster with a hyper node
- Only report hyper nodes, incl. summarized structural properties, and their links

Perturbation

- Insert/delete edges in a network to meet a privacy goal such as
 - Degree k-anonymity

• . . .

Summary

- Privacy issues overview
- Anonymity techniques
 - K-anonymity, I-diversity
- Social networks privacy issues