IS 2150 / TEL 2810 Information Security & Privacy

James Joshi Professor, SIS

Lecture 9.1 March 23, 2016

Vulnerability Analysis Risk Management

Objectives

- Understand/explain the issues related to, and utilize the techniques
 - Vulnerability analysis/classification
 - Techniques
 - Taxonomy
 - Security risks management

Vulnerability Analysis

- Vulnerability or security flaw: specific failures of security controls (procedures, technology or management)
 - Errors in code
 - Human violators
 - Mismatch between assumptions
- Exploit: Use of vulnerability to violate policy
- Attacker: Attempts to exploit the vulnerability

Techniques for Detecting Vulnerabilities

- System Verification
 - Determine preconditions, post-conditions
 - Validate that system ensures post-conditions given preconditions

Can prove the absence of vulnerabilities

- Penetration testing
 - Start with system/environment characteristics
 - Try to find vulnerabilities

Can not prove the absence of vulnerabilities

Types/layers of Penetration Testing

- Black Box (External Attacker)
 - External attacker has no knowledge of target system
 - Attacks built on human element Social Engineering
- System access provided (External Attacker)
 - Red team provided with limited access to system
 - Goal is to gain normal or elevated access
- Internal attacker
 - Red team provided with authorized user access
 - Goal is to elevate privilege / violate policy

Red Team Approach Flaw Hypothesis Methodology:

- Information gathering
 - Examine design, environment, system functionality

Flaw does

Not exist

understanding

- Flaw hypothesis
 - Predict likely vulnerabilities
- Flaw testing
 - Determine where vulnerabilities exist Refine with new
- Flaw generalization
 - Attempt to broaden discovered flaws
- Flaw elimination (often not included)
 - Suggest means to eliminate flaw

Problems with Penetration Testing

- Nonrigorous
 - Dependent on insight (and whim) of testers
 - No good way of evaluating when "complete"
- How do we make it systematic?
 - Try all classes of likely flaws
 - But what are these?
- Vulnerability Classification!

Vulnerability Classification

- Goal: describe spectrum of possible flaws
 - Enables design to avoid flaws
 - Improves coverage of penetration testing
 - Helps design/develop intrusion detection
- How do we classify?
 - By how they are exploited?
 - By where they are found?
 - By the nature of the vulnerability?

Example flaw: xterm log

- xterm runs as root
 - Generates a log file
 - Appends to log file if file exists
 - Problem: In /etc/passwd log_file
 - Solution

if (access("log_file", W_OK) == 0)
 If ((fd = open("log_file", O_WRONLY|O_APPEND)) < 0) {
 - error handling
 }</pre>

What can go wrong?

Example: Finger Daemon *(exploited by Morris worm)*

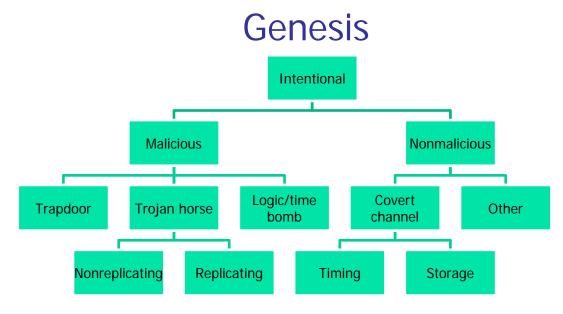
- finger sends name to fingerd
 - *fingerd* allocates 512 byte buffer on stack
 - Places name in buffer
 - Retrieves information (local finger) and returns
- Problem: If name > 512 bytes, overwrites return address
- Exploit: Put code in "name", pointer to code in bytes 513+
 - Overwrites return address

RISOS: Research Into Secure Operating Systems (7 Classes)

- 1. Incomplete parameter validation
 - E.g., buffer overflow –
- 2. Inconsistent parameter validation
 - Different routines with different formats for same data
- 3. Implicit sharing of privileged / confidential data
 - OS fails to isolate processes and users
- 4. Asynchronous validation / inadequate serialization
 - Race conditions and TOCTTOU flaws
- 5. Inadequate identification / authentication / authorization
 - Trojan horse; accounts without passwords
- 6. Violable prohibition / limit
 - Improper handling of bounds conditions (e.g., in memory allocation)
- 7. Exploitable logic error
 - Incorrect error handling, incorrect resource allocations etc.

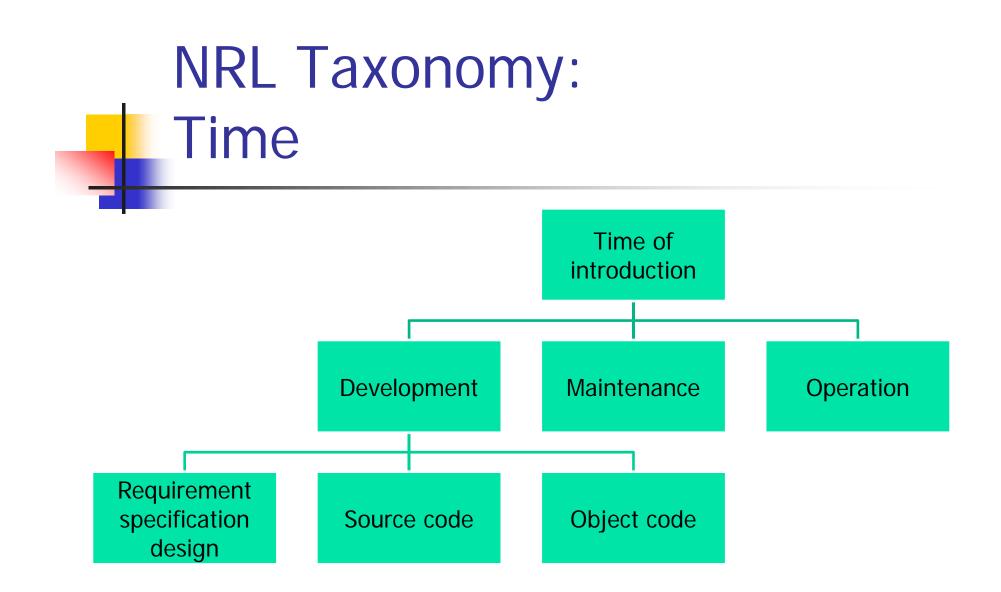
Protection Analysis Model Classes

- Pattern-directed protection evaluation
 - Methodology for finding vulnerabilities
- Applied to several operating systems
 - Discovered previously unknown vulnerabilities
- Resulted in two-level hierarchy of vulnerability classes
 - Ten classes in all

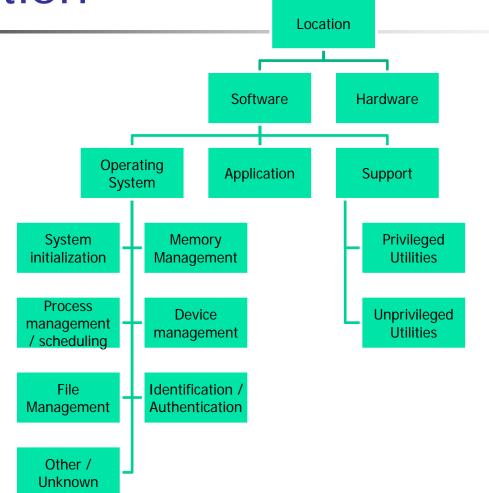

PA flaw classes

- 1. Improper protection domain initialization and enforcement
 - *a. domain*: Improper choice of initial protection domain
 - *exposed representations*: Improper isolation of implementation detail (Covert channels)
 - *c. consistency of data over time*: Improper change
 - *a naming*: Improper naming (two objects with same name)
 - e. residuals: Improper deallocation or deletion
- 2. Improper validation *validation of operands, queue management dependencies*:
- 3. Improper synchronization
 - *a. interrupted atomic operations*: Improper indivisibility
 - *b. serialization*: Improper sequencing
- 4. Improper choice of operand or operation *critical operator selection errors*

NRL Taxonomy


Three classification schemes

- How did it enter
- When was it "created"
- Where is it



NRL Taxonomy (Genesis)

Inadvertent	Validation error (Incomplete/Inconsistent)
	Domain error (including object re-use, residuals, and exposed representation errors
	Serialization/aliasing (including TCTTOU errors)
	Boundary conditions violation (including resource exhaustion and violable constraint errors)
	Other exploitable logic error

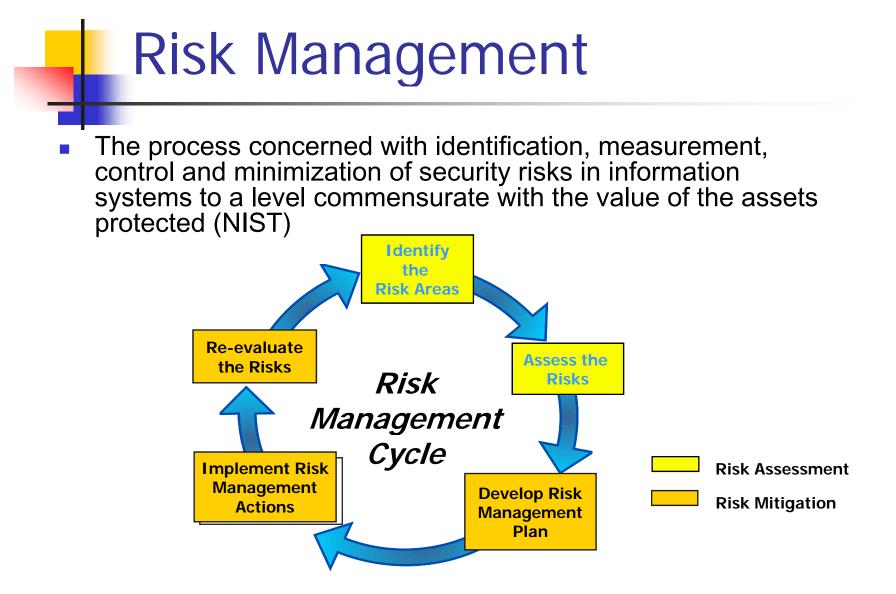
NRL Taxonomy: Location

Aslam's Model

- Attempts to classify faults unambiguously
 - Decision procedure to classify faults
- Coding Faults
 - Synchronization errors
 - Timing window
 - Improper serialization
 - Condition validation errors
 - Bounds not checked
 - Access rights ignored
 - Input not validated
 - Authentication / Identification failure

- Emergent Faults
 - Configuration errors
 - Wrong install location
 - Wrong configuration information
 - Wrong permissions
 - Environment Faults

Common Vulnerabilities and Exposures (cve.mitre.org)


- Captures *specific* vulnerabilities
 - Standard name
 - Cross-reference to CERT, etc.
- Entry has three parts
 - Unique ID
 - Description
 - References

Name	CVE-1999-0965
Description	Race condition in xterm allows local users to modify arbitrary files via the logging option.

References •CERT:CA-93.17 •XF:xterm

Overview of Risk, Cost-benefit analysis

Risk

- The *likelihood* that a particular *threat* using a specific *attack*, will exploit a particular *vulnerability* of a system that results in an undesirable *consequence* (NIST)
 - Likelihood of the threat occurring is the estimation of the probability that a threat will succeed in achieving an undesirable event

Risk Assessment/Analysis

- A process of analyzing *threats* to and *vulnerabilities* of an information system and the *potential impact* the loss of information or capabilities of a system would have
 - List the threats and vulnerabilities
 - List possible control and their cost
 - Do cost-benefit analysis
 - Is cost of control more than the expected cost of loss?
- The resulting analysis is used as a basis for identifying appropriate and cost-effective counter-measures
 - Leads to proper security plan

Risk Assessment steps

- Identify assets
 - Hardware, software, data, people, supplies
- Determine vulnerabilities
 - Intentional errors, malicious attacks, natural disasters
- Estimate likelihood of exploitation
 - Considerations include
 - Presence of threats
 - Tenacity/strength of threats
 - Effectiveness of safeguards
 - Delphi approach
 - Raters provide estimates that are distributed and re-estimated

Risk Assessment steps (2)

- Compute expected annual loss
 - Physical assets can be estimated
 - Data protection for legal reasons
- Survey applicable (new) controls
 - If the risks of unauthorized access is too high, access control hardware, software and procedures need to be re-evaluated
- Project annual savings of control

Example 1

- Risks:
 - disclosure of company confidential information,
 - computation based on incorrect data
- Cost to correct data: \$1,000,000
 - @10% liklihood per year: \$100,000
 - Effectiveness of access control sw:60%: -\$60,000
 - Cost of access control software: +\$25,000
 - Expected annual costs due to loss and controls:
 - $\bullet $100,000 $60,000 + $25,000 = $65,000$
 - Savings:
 - $\bullet $100,000 $65,000 = $35,000$

Example 2

Risk:

- Access to unauthorized data and programs
 - 100,000 @ 2% likelihood per year: \$2,000
- Unauthorized use of computing facility
 - 100,000 @ 40% likelihood per year: \$4,000
- Expected annual loss: \$6,000
- Effectiveness of network control: 100%
 -\$6,000

Example 2 (2)

- Control cost
 - Hardware +\$10,000
 - Software +\$4,000
 - Support personnel +\$40,000
 - Annual cost: +\$54,000
 - Expected annual cost
 - **(6000-6000+54000)** +\$54,000
 - Savings
 - **(6000 54,000)** -\$48,000

Some Arguments against Risk Analysis

- Not precise
 - Likelihood of occurrence
 - Cost per occurrence
- False sense of precision
 - Quantification of cost provides false sense of security
- Immutability
 - Filed and forgotten!
 - Needs annual updates
- No scientific foundation (not true)
 - Probability and statistics

Summary

- Vulnerability Analysis taxonomy
- Risk Management cost benefit analysis