IS 2150 / TEL 2810 Information Security & Privacy

James Joshi Associate Professor, SIS

Access Control Model Foundational Results

Lecture 3 Jan 20, 2015

Objective

- Understand the basic results of the HRU model
 - Saftey issue
 - Turing machine
 - Undecidability

Protection System

- State of a system
 - Current values of
 - memory locations, registers, secondary storage, etc.
 - other system components
- Protection state (P)
 - A system state that is considered secure
- A protection system
 - Captures the conditions for state transition
 - Consists of two parts:
 - A set of generic rights
 - A set of commands

Protection System

- Subject (S: set of all subjects)
 - Eg.: users, processes, agents, etc.
- Object (O: set of all objects)
 - Eg.:Processes, files, devices
- Right (R: set of all rights)
 - An action/operation that a subject is allowed/disallowed on objects
 - Access Matrix A: $a[s, o] \subseteq R$
- Set of Protection States: (S, O, A)
 - Initial state $X_0 = (S_0, O_0, A_0)$

State Transitions

 $X_i - \tau_{i+1} X_{i+1}$: upon transition τ_{i+1} , the system moves from state X_i to X_{i+1}

 X_i X

 $X \rightarrow Y$: the system moves from state *X* to *Y* after a set of transitions

 $X_i \vdash c_{i+1}(p_{i+1,1}, p_{i+1,2}, ..., p_{i+1,m}) X_{i+1}$: state transition upon a command For every command there is a sequence of state transition operations

Create subject s	Creates new row, column in ACM; s does not exist prior to this	
Create object o	Creates new column in ACM o does not exist prior to this	
Enter r into $a[s, o]$	Adds r right for subject s over object o Ineffective if r is already there	
Delete r from $a[s, o]$	Removes r right from subject s over object o	
Destroy subject s	Deletes row, column from ACM;	
Destroy object o	Deletes column from ACM	

Primitive commands (HRU)

Create subject s

Creates new row, column in ACM; s does not exist prior to this

```
Precondition: s \notin S

Postconditions:

S' = S \cup \{ s \}, O' = O \cup \{ s \}

(\forall y \in O')[a'[s, y] = \emptyset] (row entries for s)

(\forall x \in S')[a'[x, s] = \emptyset] (column entries for s)

(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]
```


Primitive commands (HRU)

Enter r into a[s, o]

Adds r right for subject s over object o Ineffective if r is already there

```
Precondition: s \in S, o \in O

Postconditions:

S' = S, O' = O

a'[s, o] = a[s, o] \cup \{r\}
(\forall x \in S')(\forall y \in O')
[(x, y) \neq (s, o) \rightarrow a'[x, y] = a[x, y]]
```


System commands

• [Unix] process p creates file f with owner read and write (r, w) will be represented by the following:

```
Command create\_file(p, f)
Create object f
Enter own into a[p,f]
Enter r into a[p,f]
Enter w into a[p,f]
End
```


System commands

Process p creates a new process q

```
Command spawn\_process(p, q)

Create subject q;

Enter own into a[p,q]

Enter r into a[p,q]

Enter w into a[p,q]

Enter r into a[q,p]

Parent and child can signal each other

End
```


System commands

 Defined commands can be used to update ACM

```
Command make\_owner(p, f)
Enter own into a[p,f]
End
```

- Mono-operational:
 - the command invokes only one primitive

Conditional Commands

Mono-operational + monoconditional

```
Command grant_read_file(p, f, q)

If own in a[p,f]

Then

Enter r into a[q,f]

End
```


Conditional Commands

Mono-operational + biconditional

```
Command grant\_read\_file(p, f, q)

If r in a[p,f] and c in a[p,f]

Then

Enter r into a[q,f]

End

Command grant\_read\_file(p, f, q)

Command grant\_read\_file(p, f, q)

If r in a[p,f]
```

Why not "OR"??

```
Command grant_read_file(p, f, q)
If r in a[p,f] OR c in a[p,f]
Then
Enter r into a[q,f]
End
```

```
Command grant_read_file1(p, f, q)

If r in a[p,f]

Then

Enter r into a[q,f]

End

Command grant_read_file2(p, f, q)

If c in a[p,f]

Then

Enter r into a[q,f]

End
```

```
V
Executing command:
    grant_read_file

is equivalent to executing commands:
    grant_read_file1;
    grant_read_file2
```


Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being "secure"
- Is there a generic algorithm that allows us to determine whether a computer system is secure?

What is a secure system?

- A simple definition
 - A secure system doesn't allow violations of a security policy
- Alternative view: based on distribution of rights
 - Leakage of rights: (unsafe with respect to right r)
 - Assume that A representing a secure state does not contain a right r in an element of A.
 - A right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which did not contain r

What is a secure system?

- Safety of a system with initial protection state X_o
 - Safe with respect to r: System is safe with respect to r if r can never be leaked
 - Else it is called unsafe with respect to right r.

- Given
 - Initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c
 - r is not in $A_{o}[s, o]$
- Can we reach a state X_n where
 - $\exists s,o$ such that $A_n[s,o]$ includes a right r not in $A_0[s,o]$?
 - If so, the system is not safe
 - But is "safe" secure?

Undecidable Problems

Decidable Problem

 A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.

Undecidable Problem

 A problem that cannot be solved for all cases by any algorithm whatsoever

Theorem:

• Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X_0 is safe with respect to right r.

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can't leak
 - Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - No test for absence of right
 - Tests on A[s₁, o₁] and A[s₂, o₂] have same result as the same tests on A[s₁, o₁] and A[s₁, o₂] = A[s₁, o₂] \cup A[s₂, o₂]
 - If *n* rights leak possible, must be able to leak k= $n(|S_0|+1)(|O_0|+1)+1$ commands
 - Enumerate all possible states to decide

After execution of c_b

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can't leak
 - Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - No test for absence of right
 - Tests on A[s₁, o₁] and A[s₂, o₂] have same result as the same tests on A[s₁, o₁] and A[s₁, o₂] = A[s₁, o₂] \cup A[s₂, o₂]
 - If *n* rights leak possible, must be able to leak k= $n(|S_0|+1)(|O_0|+1)+1$ commands
 - Enumerate all possible states to decide

Decidability Results (Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof need to know Turing machines and halting problem

The halting problem:

 Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

Theorem:

- It is undecidable if a given state of a given protection system is safe for a given generic right
- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)
- TM is an abstract model of computer
 - Alan Turing in 1936

Turing Machine

- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols M
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state

Current state is *k*Current symbol is *C*

Turing Machine

- Transition function $\delta(k, m) = (k', m', L)$:
 - In state k, symbol m on tape location is replaced by symbol m',
 - Head moves one cell to the left, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state

Current state is *k*Current symbol is *C*

Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state

Turing Machine

Current state is *k*Current symbol is *C*

Current state is *k*

head

Current symbol is *C*

Proof: Reduce TM to safety problem

- Symbols, States ⇒ rights
- Tape cell ⇒ subject
- Cell s_i has $A \Rightarrow s_i$ has A rights on itself
- Cell $s_k \Rightarrow s_k$ has end rights on itself
- State p, head at $s_i \Rightarrow s_i$ has p rights on itself
- Distinguished Right own:
 - s_i owns s_{i+1} for $1 \le i < k$

	s_1	S_2	S_3	S_4	
s_1	A	own			
S_2		В	own		
s_3			C k	own	
S_4				D end	

(Left move)

Current state is *k*

Current symbol is *C*

$$\delta(k, C) = (k_1, X, L)$$

$$\delta(k, C) = (k_1, X, L)$$

If head is not in leftmost

command $c_{k,C}(s_i, s_{i-1})$ if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete k from $a[s_i, s_i]$; delete C from $a[s_i, s_i]$; enter X into $a[s_i, s_i]$; enter k_1 into $a[s_{i-1}, s_{i-1}]$; End

	s_1	S_2	S_3	S_4	
s_1	A	own			
S_2		В	own		
s_3			C k	own	
S_4				D end	

Command Mapping (Left move)

Current state is k_1

Current symbol is D head

$$\delta(k, C) = (k_1, X, L)$$

$$\delta(k, C) = (k_1, X, L)$$

If head is not in leftmost

command $c_{k,C}(s_i, s_{i-1})$ if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$ and C in $a[s_i, s_i]$ then delete k from $a[s_i, s_i]$; delete C from $a[s_i, s_i]$; enter X into $a[s_i, s_i]$; enter k_1 into $a[s_{i-1}, s_{i-1}]$; End

If head is in leftmost both s_i and s_{i-1} are s_1

	s_1	s_2	s_3	S_4	
s_1	A	own			
S_2		$\mathbf{B} k_1$	own		
s_3			X	own	
S_4				D end	

Command Mapping (Right move)

Current symbol is *C*

$$\delta(k, C) = (k_1, X, R)$$

$$\delta(k, C) = (k_1, X, R)$$

command $c_{k,\mathbb{C}}(S_i, S_{i+1})$ if own in $a[S_i, S_{i+1}]$ and k in $a[S_i, S_i]$ and \mathbb{C} in
in $a[s_i, s_i]$ and C in
$a[S_i, S_i]$
then
delete k from $a[s_i, s_i];$
delete k from $a[s_i, s_i];$ delete C from $a[s_i, s_i];$ enter X into $a[s_i, s_i];$
enter X into $a[s_i, s_i]$;
enter k_1 into $a[S_{i+1}]$,
S_{j+1}]; end

	s_1	s_2	s_3	S_4	
s_1	A	own			
S_2		В	own		
S_3			C k	own	
S_4				D end	

Command Mapping (Right move)

Current symbol is *C*

head

$$\delta(k, C) = (k_1, X, R)$$

$$\delta(k, C) = (k_1, X, R)$$

command $c_{k,C}(s_i, s_{i+1})$ if own in $a[s_i, s_{i+1}]$ and k in $a[s_i, s_i]$ and C in
in $a[S_i, S_i]$ and C in
$a[s_i, s_i]$
then
delete k from $a[s_i, s_i];$
delete k from $a[s_i, s_i];$ delete C from $a[s_i, s_i];$
enter X into $a[s_i, s_i]$;
enter k_1 into $a[s_{i+1}]$,
S_{i+1}];
end

	s_1	s_2	s_3	S_4	
s_1	A	own			
S_2		В	own		
s_3			X	own	
<i>s</i> ₄				$D k_1$ end	

Current state is k_1

Current symbol is *C*

head

$$\delta(k_1, D) = (k_2, Y, R)$$
 at end becomes

$$\delta(k_1, C) = (k_2, Y, R)$$

s_1	s_2	s_3	S_4	
A	own			
	В	own		
		X	own	
			$D k_1$ end	
		A own	A own B own	A own B own X own

Current state is k_1

Current symbol is *D*

head

$$\delta(k_1, D) = (k_2, Y, R)$$
 at end becomes

$$\delta(k_1, D) = (k_2, Y, R)$$

command crightmost _{k,C} (s_i, s_{i+1}) if end in $a[s_i, s_i]$ and k_1 in $a[s_i, s_i]$ and D in $a[s_i, s_i]$ then delete end from $a[s_i, s_i]$;
create subject s_{i+1} ,
create subject S_{i+1} ; enter OWn into $a[S_i, S_{i+1}]$;
enter end into $a[s_{i+1}, s_{i+1}];$
delete k_1 from $a[s_i, s_i];$
delete D from $a[s_i, s_i]$;
enter Y into $a[s_i, s_i]$;
enter 1 into $a[S_i, S_i]$,
enter k_2 into $a[s_i, s_i]$;
end

s_1	S_2	s_3	S_4	s_5
A	own			
	В	own		
		X	own	
			Y	own
				b k_2 end
		A own	A own B own	A own B own C own X own Y

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - Only 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_n then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state ⇒ halting state in the matrix ⇒ Halting state reached
- Conclusion: safety question undecidable

Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete destroy, delete primitives;
 - The system becomes monotonic as they only increase in size and complexity
- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

Summary

- HRU Model
- Some foundational results showing that guaranteeing security is hard problem